Downloaded from orbit.dtu.dk on: Dec 17, 2017

Technical University of Denmark

=
—
—

i

Analysis and Design of Wide-Band SiGe HBT Active Mixers

Johansen, Tom Keinicke; Krozer, Viktor; Vidkjeer, Jens

Published in:
| E E E Transactions on Microwave Theory and Techniques

Link to article, DOI:
10.1109/TMTT.2005.850421

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Johansen, T. K., Krozer, V., & Vidkjeer, J. (2005). Analysis and Design of Wide-Band SiGe HBT Active Mixers. |
E E E Transactions on Microwave Theory and Techniques, 53(7), 2389-2397. DOI: 10.1109/TMTT.2005.850421

DTU Library
Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


http://dx.doi.org/10.1109/TMTT.2005.850421
http://orbit.dtu.dk/en/publications/analysis-and-design-of-wideband-sige-hbt-active-mixers(82978494-3954-4c91-bf02-e108df484d5f).html

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 7, JULY 2005

2389

Analysis and Design of Wide-Band
S1Ge HBT Active Mixers

Tom K. Johansen, Member, IEEE, Jens Vidkjer, Member, IEEE, and Viktor Krozer, Senior Member, IEEE

Abstract—The frequency response of SiGe HBT active mixers
based on the Gilbert cell topology is analyzed theoretically. The
time-varying operation of the active mixer is taken into account by
applying conversion matrix analysis. The main bandwidth-limiting
mechanisms experienced in SiGe HBT active mixers performing
frequency conversion of wide-band signals is discussed. The anal-
ysis is verified by computer simulations using a realistic high-fre-
quency large-signal SiGe HBT model. An active mixer design based
on the Gilbert cell topology modified for wide-band operation using
emitter degenerated transconductance stage and shunt feedback
load stage is discussed. Experimental results are given for an active
mixer implemented in a 0.8-pm 35-GHz fr SiGe HBT BiCMOS
process.

Index Terms—Active mixer circuits, frequency-response anal-
ysis, SiGe HBT.

1. INTRODUCTION

ECENT advances in radar and wireless communication
systems demand monolithic microwave integrated circuits
(MMICs) providing frequency conversion, modulation, and de-
modulation of wide-band signals around microwave carriers.
Active mixers based on the Gilbert cell topology [1] are usu-
ally preferred for monolithic integration of these functions due
to their high conversion gain over a broad frequency band, and
good port-to-port isolation. Good microwave performance has
been reported for active mixers implemented in InP HBT [2],
SiGe HBT [3], GaAs HBT [4], and GaAs pseudomorphic high
electron-mobility transistor (pHEMT) [5] technologies.
Previously reported monolithic active mixers have mostly
been optimized for downconversion performance in wireless
applications. Typically, such mixers are capable of frequency
conversion of narrow-band signals over a wide range of RF
input frequencies to a fixed low IF output frequency. This differs
from the demands on active mixers for wide-band applications.
Here, the wide-band signal experiences bandwidth limitations
at both the RF input frequency and IF output frequency. In order
to optimize the performance of active mixers for wide-band ap-
plications, an understanding of the main bandwidth limitations
in the Gilbert cell topology is needed. The large local-oscillator
(LO) signal applied to the transistors in the switching stage of
the Gilbert cell gives rise to a time-varying circuit. Therefore, a
traditional linear time-invariant circuit analysis for finding the
bandwidth limitations becomes invalid. Instead, a conversion
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Fig. 1. Gilbert cell mixer.

matrix analysis [6] should be applied in order to find an ex-
pression for the conversion gain as a function of the RF input
frequency and IF output frequency. A previous attempt [7] to
analyze the conversion gain of the Gilbert cell neglected the
IF output frequency response and, thus, only considered the
downconversion of narrow-band signals.

This paper describes a theoretical analysis of the conversion
gain of SiGe HBT active mixers based on the Gilbert cell
topology. An analytical expression is derived, which is capable
of predicting the main bandwidth limitations for active mixers
performing frequency conversion of wide-band signals. The
analysis is verified with harmonic-balance simulations using
a realistic SiGe HBT high-frequency large-signal model. The
insight gained from the analysis is used in the design optimiza-
tion of an SiGe HBT active mixer for wide-band applications.
Experimental results are given for an active mixer implemented
in a 0.8-pum 35-GHz fr SiGe HBT BiCMOS process.

II. FREQUENCY-RESPONSE ANALYSIS

The schematic representation of an SiGe HBT active mixer
based on the Gilbert cell topology is shown in Fig. 1. The Gilbert
cell mixer consists of the transconductance stage (Q5 — Qg),
switching quad (@1 —Q4), and load circuit. The circuit is biased
from a tail current source 217. The transconductance stage con-
verts the input voltage signal at the RF frequency into a current
signal. The switching quad (Q1 — Q4) then ideally multiplies
this current by +1 at the rate of the LO signal, thus enabling the
wanted frequency conversion. The output current signal at the

0018-9480/$20.00 © 2005 IEEE
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Fig. 2. Time-varying small-signal equivalent-circuit model.

IF frequency from the switching quad is finally converted into
a voltage signal by the load circuit. Neglecting any device par-
asitics, the voltage conversion gain of the Gilbert cell mixer is
given as [8]

21t b, (1)

Gcnv = -
m VT

where V7 is the thermal voltage. When the device parasitics
are taken into account, the expression for the conversion gain
(1) changes, as will be shown using conversion matrix analysis
below. First of all, the conversion-gain expression becomes a
function of two frequencies, i.e., the RF input frequency and IF
output frequency. Secondly, the low-frequency conversion gain
is reduced because of the presence of series resistances.

A. Conversion Matrix Analysis

The starting point for conversion matrix analysis is to make
a linearization around a time-varying operation point for
the nonlinear elements of the Gilbert cell mixer circuit. The
large-signal LO drive pumps the transistors in the switching
quad (@1 — @4). The common-emitter points for the differ-
ential transistor pairs (@1 — @2) and (Q3 — Q4) are virtual
ground for the large-signal LO drive. As a consequence, the
transconductance stage is time invariant under small-signal
RF drive conditions. At high frequencies, the dominating
nonlinearities in the switching quad transistors are associated
with the transfer current and the base—emitter charge [9] so the
simplified time-varying small-signal equivalent-circuit model
shown in Fig. 2 is sufficient for analysis. In this model, only
one pair of transistors in the switching quad is considered,
which is justified by the symmetry of the switching quad.
The base—collector capacitance and base—emitter conductance
have been neglected because their contributions are small,
but significantly complicate the analysis. Constant values are
assumed for the base resistance Ry, emitter resistance 2., and
collector resistance R... A constant value equal to the bias value
is also used for the collector—substrate capacitance C.s and the
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Fig. 3. Evaluation of time-varying transconductance.

substrate resistance R, respectively. Furthermore, the value of
the collector—substrate capacitance is doubled and the value of
the substrate resistance is halved in order to take into account
the collector dotting in the switching quad. The time-varying
switching stage is driven from an ideal small-signal current
source i5(t). This current source can be determined from tra-
ditional linear time-invariant analysis of the transconductance
stage.

The nonlinear /-V characteristic of the transfer current /...
results in a time-varying transconductance waveform given by

dl.
gm(t) =

= 2
Ve |y, @

=0y

where Vo (t) is the applied LO signal.

A graphical evaluation of the transconductance waveform
gm (1) for the switching quad transistors under large-signal LO
drive is illustrated in Fig. 3. Notice that the large-signal LO
drive is superimposed on the base bias voltage V},co. Assuming
instantaneous switching of the transistors (@1 — Q4), the
transconductance waveform resembles a square wave given as

gm (1)
if |t —nT| < T/4;

otherwise

T
r =0,+1,42,43,...
_ ‘,Ty n ’ i ’ i
0,

3

where T is the period of the LO signal. The instantaneous
switching assumption remains valid as long as the LO ampli-
tude across the internal junctions is sufficient to assure hard
limiting of the differential pairs in the switching quad. Simi-
larly, the nonlinear () — V' characteristic of the base—emitter
charge Qp. results in a time-varying capacitance waveform
given by

Cbe(t) — deo

“

Whe [y, =410 1y,
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and includes depletion and diffusion terms. Assuming instan-
taneous switching, the base—emitter capacitance waveform also
resembles a square wave given as

TfIT
Cho(t)=¢ VT

0, otherwise

+ 4Cjeo, if [t —nT| < T/4;

n—=0+1,42,43,. .. ©

where 7¢ is the forward transit time and Cje, is the zero bias
base—emitter depletion capacitance. The peak value of 4Cjc, is
justified by the fact that the average value of the base—emitter
depletion capacitance for a forward-biased junction is approx-
imately 2Cjc, [10]. This formulation provides a satisfactory
tradeoff between analysis accuracy and easy interpretation of
the final expression for the conversion gain.

The time-varying elements in the Gilbert cell mixer in the
presence of the small-signal RF excitation give rise to mixing
frequencies represented as [11]

Wy = Wif + NWLO, n=0,x1,+£2,+£3,... (6)
where wir = |wr,o —w;t| is the IF angular frequency and w,¢ and
wro are the RF and LO angular frequencies, respectively. For
the present investigation, only the response at the IF frequency,
as well as the upper and lower RF sideband, are considered in
the analysis.

Conversion matrices relate the current and voltage compo-
nents at different mixing frequencies in a time-varying circuit.
For the time-varying transconductance, the relation is

I*, Go G_1 G_» vV,
Iy | =G Gy G Vo )
Il G2 Gl GO Vl

where I,, are the resulting currents at the mixing frequency
wy, for voltages V,,, at all relevant excitations frequencies wy,,
and the asterisks denote a complex conjugate. The elements of
the conversion matrix are the Fourier coefficients of the time-
varying transconductance given as

I
ﬁ, forn =20
= I
Gn . forn = +1 ®
7TVT

0, forn = +2

where G corresponds to the average transconductance. Similar
for the time-varying base—emitter capacitance, the relation is

Iil jw,l 0 0 C() Ofl C,Q
IO = 0 ij 0 Cl C() C_ 1
Il 0 0 jwl 02 Cl OQ
A
x| Vo ©))
Vi
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where the diagonal matrix containing the mixing frequencies is
the frequency-domain equivalent to a time-domain differentia-
tion. The Fourier coefficients for the time-varying base—emitter
capacitance are given as

TfIT

2V + 2Cco, forn =0
On = TfIT 4Cjeo7 fOI‘ n — ﬂ:l (10)
7V T

0, forn = +2

where C corresponds to the average base—emitter capacitance.

Kirchoff’s laws must hold for the individual current and
voltage components in the vectors in (7) and (9). As a conse-
quence, the time-varying equivalent circuit for the Gilbert cell
mixer in Fig. 2 can thus be analyzed in a manner analogous
to that used for linear time-invariant circuit. An important
difference is that all elements must have a conversion matrix
form. For fixed-value components, this form is a diagonal
matrix, and the element value must occupy all the locations on
the main diagonal [6]. Kirchoff’s voltage law makes it possible
to express the base—emitter voltage vectors Vi,e1 and Vi 2 in
terms of the voltage vector V4 at the common-emitter point as

Vier = — [T+ GmiRe + j2Che1 (R + Ro)] "'V (11)
Viez = —[I+ GmzRe + j2Che2(Rp + Ro)] "'V, (12)

where I is the identity matrix, G,1 is the conversion matrix
for gm1(t), Gma is the conversion matrix for gm2(t), Che1 is
the conversion matrix for Che1(t), Chez2 is the conversion ma-
trix for Cpe 2(t), €2 is the diagonal matrix containing the mixing
frequencies as described above, R, is a diagonal matrix with
elements R., and Ry, is a diagonal matrix with elements Ry.
Kirchoff’s current law gives

(Gml + jQCbel)Vbel + (Gm2 + jQCbeZ)Vbe2 = Is
(13)

where I is the small-signal excitation vector with typically only
one nonzero element. Substitution of (11) and (12) into (13)
determines Vg in terms of the current source excitation I as

Vo= —[(Gum1+72Che1) [I+Gm Re

+jQCbe1 (Rb+Re)] -
+(Gm2 +jQCbe,2) [I+ Gm2Re

+j92Chez(Ru+Re)] | L.
(14)

The differential output voltage vector Vira — Vip can be ex-
pressed in terms of the base—emitter voltage vectors Ve and
Vies2 as

Viez — Vigr = [T+ 2Y4(Re + Ry)] -

X [Gmlvbel - Gm2Vbe2]RL (15)
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where Yy is a diagonal matrix with frequency-dependent ele-
ments given as

j.u}, 1 C’cs 0 0
1 —{—]LU_ 1 Rs Ocs
jwo Ccs
Y = 0 —_— 0
1+jw0Rs C'cs .
0 0 j.wl Ccs
1 +]wl Rs Ccs

(16)

R. is a diagonal matrix with elements R., and Ry, is a diag-
onal matrix with elements R;. Combining expressions (11),
(12), (14), and (15), the conversion switching gain Gy, (wif, wyr)
defined as the ratio between the differential output voltage at
the IF frequency and the ideal current excitation at the RF fre-
quency can be determined. As expected for a balanced struc-
ture, the RF excitation is fully suppressed in the differential
output voltage. Substitution of the Fourier coefficients for the
time-varying transconductance and time-varying base—emitter
capacitance into the expression for the conversion switching
gain, and simplifying using a symbolic mathematical software
tool, gives

Gsw rf, Wif ) =
sw(wnt, wit) L Wif Wit L Wrf
-2 ) (12 ) (11— ;22
P1 P2 D3

a7)
where the low-frequency conversion gain Gy, ¢ is given as
2 Ry,
Gewo = — 18
sw 0 7r1+(—8—|—7r2)ITR ( )
271'2 VT €

and shows a very small gain reduction due to the emitter
resistances in the switching quad transistors. The conversion
switching gain shows a two-pole and one zero response with
respect to the IF frequency expressed as

TfIT :
1 Vo Tk (Cg4a?)
_ = — 5 ) (Rb + Re)
P1 1+(—8+7r)I_TR 27
271'2 VT €
(19)
and
1
— = —C(Rs + 2R. + 2Ry) (20)
P2
for the poles and
1
- = _CCSRS (21)
Z1

for the zero, respectively. It is observed that a significant sub-
strate resistance 2, actually may lead to partial pole-zero can-
cellation in the IF frequency response of the Gilbert cell mixer.
The single pole response with respect to the RF frequency is ex-
pressed as

4C5eVr ) 22)

1
—=— (7 +
D3 (f It
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and represent the finite current switching delay in the quad tran-
sistors. The gain Gy, (w,f) for the transconductance stage de-
fined as the ratio between the short-circuited output current and
the RF voltage excitation is easily determined from a linear
time-invariant analysis of a small-signal hybrid-7 equivalent cir-
cuit with the following approximate result [12]:

C;(‘crO

LWt
1_«
( Jp4>

where the low-frequency transconductance Gy, ¢ is given as

Gtr<wrf) = (23)

9gms

1+ Re5(gm5 + Gbe 5) + RngbeS

Giro = (24)
and where the elements refer to )5 in Fig. 1.1 It shows a reduc-
tion in the low-frequency transconductance due to the series re-
sistances R.5 and Ry5. The frequency response of the transcon-
ductance stage is determined by a single-pole response given as

1 (Rps + Res)gms

~

pd 27 fr(1 4 Res(gms + Gbes) + Rosgbes)

(25)

where the influence of the base—collector capacitance, col-
lector—substrate capacitance, and collector resistance have been
neglected. This is justified by the fact that, at any instant, the
switching quad presents a low impedance to the transconduc-
tance stage. The final expression for the voltage conversion gain
of the Gilbert cell mixer G cpy (wrt, wi) is then found simply by
multiplying (17) and (23) as follows:

Gcnv (wrf7 wif)

. Wif
GtrOGSWO <1_.]—>
Z1

= , , (26)
() ()05
b1 b2 p3 P4

and shows a two-pole response with respect to the RF frequency
and a two-pole and one zero response with respect to the IF
frequency.

B. Analysis Verification

To verify the derived expression for the conversion gain, har-
monic-balance simulations on a Gilbert cell mixer were per-
formed using Agilent ADS. The high-frequency large-signal
model for the SiGe HBT devices used in the simulations is
shown in Fig. 4. This model includes the dominating nonlin-
earities and parasitic elements in the SiGe HBT devices [13].
The large-signal model parameters for a 4 x 0.8 um? area SiGe
HBT device used in the current investigation are I, = 6.3 aA,
ﬂf = 80,7'}0 = 3.6 pS, Cjeo = 25.1 fF, ij = 6.8 fF, chc =
0.4,Ciso = 37.7TfF, Ry = 114.0Q, R. =3.0Q, R, =12.0 Q,
and R; = 965.0 (2. Several of the large-signal model parameters
has been extracted from a dedicated small-signal equivalent-cir-
cuit model using the method described in [14].

The Gilbert cell mixer is designed for a low-frequency con-
version gain of 20 dB at a bias current of 2/ = 2.8 mA.

1A differential-mode half-circuit is considered here.
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Fig. 4. High-frequency large-signal SiGe HBT model for harmonic-balance
simulations.
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Fig. 5. Comparing calculated and simulated conversion gain for the Gilbert
cell mixer. Solid line: calculated. Dashes line: simulated without Ci..
Dotted—dashed line: simulated with C},.

The SiGe HBT devices in the transconductance stage and the
switching quad each have an emitter area of 4 x 0.8 ;m?. The
devices in the transconductance stage are biased at peak fr.
Fig. 5 compares the calculated conversion gain versus IF fre-
quency for a fixed LO frequency of 1.25 GHz with harmonic-
balance simulations. An excellent agreement is observed for
both the 3-dB IF bandwidth and the high-frequency rolloff rate
up to 100 GHz. As shown in Fig. 5, the effect of the base—col-
lector capacitance is small, and neglecting it in the analysis is
justified.

C. Discussion

It is instructive to investigate the main bandwidth limitations
in the Gilbert cell mixer. The expression derived for the conver-
sion gain provides improved design insight into the optimization
of Gilbert cell mixers for wide-band applications. In Table I, the
individual contributions from the poles (p; — p4) and the zero
(21) to the 3-dB IF bandwidth is calculated under the assump-
tion of fixed LO frequency of 1.25 GHz. The dominant poles
are related to the transconductance stage and the output loading
at the switching quad. As mentioned previously, the zero due
to the substrate resistance partly compensates for the dominant

2393

TABLE 1
INDIVIDUAL CONTRIBUTION FROM POLES AND ZEROS TO
3-dB IF BANDWIDTH OF SiGe HBT GILBERT CELL MIXER

Contribution | IF Bandwidth [GHz]
P1 49.7
D2 5.8
p3 28.5
P4 5.8
z1 9.9

pole due to output loading at the switching quad. If a lower bias
current is used, the pole (ps) due to the finite current switching
delay in the quad transistors may become significant.

III. WIDE-BAND ACTIVE MIXER DESIGN

The schematic of an SiGe HBT active mixer design based
on a Gilbert cell topology modified for wide-band operation is
shown in Fig. 6. The Gilbert cell employs emitter degeneration
(R. and C.) for the transconductance stage (@5 — Qg) and a dif-
ferential amplifier stage (Q)7 — Qs) with resistive shunt feedback
(Ry) for the load circuit. The Gilbert cell core is embedded with
emitter follower stages (Q13 — Q1) With on-chip 50-Q shunt
resistors for input buffering at the RF and LO ports, as well as
emitter follower stages (Q9 — Q12) for output buffering at the IF
port. Two stages of emitter followers are needed at the IF port in
order to minimize loading of the shunt feedback stage. Resistive
emitter degeneration in the transconductance stage allows a sig-
nificant extension of the RF bandwidth. This is, however, at the
expense of reduced conversion gain, as shown in (23)—(25). A
peaking capacitor provides a zero in the transfer function, which
extends the transconductance stage bandwidth with relaxed re-
sistive emitter degeneration, as shown by the following expres-

sion [15]:
GtrO <1 - j:rf)
Gtr(wrf) = =
. 2KS w?f
T+ jwrg—— — 2
Woe Woe
9Ims
Gio~ ———5—=
tro 1+ ngRe/z
1
— =—-C.R,
Zle
o me g | LT gmstie/2
%"V Ry5ChesCeR,
KE ~ 1 CgRg + CbeS(RbS + R€/2) (27)

5 \/(1 + ngRe/Q)Rb5Cbe5OeRe

where the approximation (Rp5 + R./2) < Ryes is applied. It
should be mentioned, however, that the combination of resis-
tive and capacitive emitter degeneration leads to nonoptimum
linearity and noise for the active mixer compared to inductive
emitter degeneration typically found in narrow-band designs
[8]. The shunt feedback load circuit originally described in
[16] has several advantages compared with other methods for
extending the IF bandwidth of the Gilbert cell mixer [17].
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Fig. 6. Modified Gilbert cell mixer.

Including the effect of the shunt feedback load circuit into the
expression for the conversion switching gain, (17) results in

Gsw (wrﬁ wif)

L Wif
Gewo | 1—7
0< Jz1> 08)
Wi . 2Kp w2 Wy
(l—j—f> <1—|—jwif—f——2lf) <1—j f)
P1 Wof Wy D3

where the low-frequency conversion gain Gy is now deter-
mined by the feedback resistance Ry as

2 Ry
Gswo = — 29
sw 0 7r1+( 8+’/T2)I_TR ( )
271'2 VT €

and the simple pole ps in (17) is transformed into a second-order
response with

wgf:\/

K~ l Ry + Ryy
! 2 |aV0|Ccst7(Rs + 2Rf)

|avol

Rb7CcsObc7(Rs + 2Rf)

(30)

where |ayo| is the low-frequency open-loop voltage gain. The
details of the analysis of the shunt feedback load circuit are
given in the Appendix. The frequency wos mainly determines
the bandwidth of the shunt feedback load circuit. The frequency
response peaks when the damping factor becomes Ky < 1/ V2.
In general, the following observations regarding conversion
gain, bandwidth, and peaking of the shunt feedback load circuit
are made.

* The conversion gain is independent of the low-frequency
open-loop voltage gain |ayo|.

* For increasing low-frequency open-loop voltage
gain |ayo|, the bandwidth increases; however, once
Ky<1/ /2, the frequency response peaks, thus, optimal
low-frequency open-loop voltage gain exist.

* For increasing feedback resistance I, the conversion
gain increases; however, the bandwidth decreases.

Thus, the key to obtaining high conversion gain and wide IF
bandwidth without excessive peaking in the Gilbert cell mixer
lies in the proper design of the shunt feedback load circuit for
optimal performance.

IV. EXPERIMENTAL RESULTS

The wide-band active mixer design based on the modified
Gilbert cell was realized in a 0.8-um 35-GHz fr SiGe HBT
BiCMOS process. A photograph of the active mixer is shown in
Fig. 7. The die size is 0.9 x 0.9 mm? and the power consump-
tion is 170 mW when biased at +5 V. The active mixer was mea-
sured with on-wafer probes and the frequency-dependent cable
and connector losses were carefully deembedded from the mea-
surement results.

When both the RF and LO ports are swept in frequency with
a fixed IF frequency of 0.4 GHz, a conversion gain of 8.5 dB
at 0-dBm LO power and a 3-dB RF bandwidth of 11 GHz was
achieved, as shown in Fig. 8. The LO-IF isolation is better than
—25 dB despite a single-ended measurement condition for the
active mixer.

A 3-dB IF bandwidth of 7.5 GHz was achieved when both
the RF and IF port are swept in frequency with the LO fre-
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Fig. 7. Photograph of the active mixer.
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Fig. 8. Measured (-) and simulated (-o-) RF frequency response and LO-IF
isolation under single-ended condition.
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Fig. 9. Measured (-) and simulated (-o-) IF frequency response.

quency fixed at 2 GHz, as shown in Fig. 9. The IF bandwidth
presents a significant extension compared with the obtainable
IF bandwidth from the traditional Gilbert cell, which is lim-
ited to approximately 4 GHz for the 0.8-pym 35-GHz fr SiGe
HBT BiCMOS process. An input RF power level of —18 dBm
was measured at 1-dB IF output power compression, as shown
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Fig. 10. Measured (-) and simulated (-o-) IF output power versus RF input
power.

in Fig. 10. The measured double-sideband noise figure for the
wide-band active mixer is around 14 dB.

The measured performance for the active mixer are very well
predicted by simulations. The good agreement is a result of
accurate high-frequency modeling of SiGe HBT devices and
substrate effects associated with interconnection lines and pad
structures.

V. CONCLUSION

An expression for the conversion gain of SiGe HBT active
mixers based on the Gilbert cell topology has been derived using
conversion matrix analysis. The expression is capable of pre-
dicting the frequency response of the Gilbert cell mixer up to
the 3-dB bandwidth and beyond. An optimized active mixer de-
sign based on the modified Gilbert cell topology for wide-band
operation has been described. The experimental results for a
modified Gilbert cell mixer implemented in a 0.8-pm 35-GHz
fr SiGe HBT BiCMOS process demonstrated 11- and 7.5-GHz
RF and IF bandwidths, respectively, and a conversion gain of
8.5 dB. This presents a significant extension compared with the
theoretically obtainable bandwidths from the traditional Gilbert
cell in this process.

APPENDIX
ANALYSIS OF SHUNT FEEDBACK LOAD CIRCUIT

The shunt feedback load circuit in the modified Gilbert cell
mixer is most easily analyzed using feedback theory. In order
to apply feedback theory, the single-ended equivalent circuit is
divided into a basic amplifier and a feedback network, as shown
in Fig. 11 [10].

A number of approximations are applied in order to simplify
the analysis. First, it is assumed that the signal feedback through
the devices is much smaller than the signal feedback through
Ry so that the base—collector capacitance can be neglected. It is
furthermore assumed that the forward transmission through the
feedback resistance is negligible compared with the transmis-
sion through the devices because the latter has gain. The capac-
itive loading at the output of the shunt feedback load circuit has
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Fig. 11. Single-ended equivalent circuit for the shunt feedback load circuit.

The loading due to the feedback network is absorbed in the basic amplifier.

little influence on the frequency response for typical values of
load resistances so it is neglected in the analysis. The output of
the switching quad at the IF frequency is represented as a Norton
equivalent circuit (/;+ and Yj¢) with Yjr absorbed into the basic
amplifier. The basic amplifier open loop gain a and feedback
network transfer function f are found from Fig. 11 as

_ —gm7 R Ry
a= - (€1))
1+ YieRy + jwie((1 4 YieRy)Ryr + Ry) Cher
and
f=-— (32)
=%

respectively, where R; = RpRy¢/(Ry + Ry) is the effective
load resistance when the loading effects from the feedback net-
work is taken into account. The transfer function from the input
current (Ii¢) to the output voltage at the IF frequency (Vi¢) can
be represented as

Vit o 1y (33)
Le | YuR; (14 YieRp)Ry + Ry)Che
14 e f+]wif(( tlp) Ry + Ry)Cy
Ia‘V0| |a'vo
where |ayvo| = gm7 R} is the low-frequency open-loop voltage

gain of the basic amplifier. The approximation in (33) is valid
for |ayo| > 1. Substituting the Norton admittance

jwif2Ccs

Y'i =
! 1 +jwifccsRs

(34)

where the collector resistance has been neglected for simplicity
into (33) gives

. Wif
—Rf(1— )
Vie _ ! ( 21f
Iy . 2K w2
ol gL - L
Wor  Woy
1
- = _CcsRs
Z1f
o Iav0|
wof =

Rb7CCSCbe7(RS + QRf)

1 R¢ + Ryr
2 |(J,VO|OCSR1,7(RS + 2Rf)

Ky~ (35)
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where the last approximation is valid if Ces(Rs|avo| +2Ry) <
Che7(Ry + Ry7), which is normally the case.

REFERENCES

[1] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond re-
sponse,” IEEE J. Solid-State Circuits, vol. SC-3, no. 4, pp. 365-373,
Dec. 1968.

[2] K. Kobayashi, R. M. Desrosiers, A. Gutuerrez-Aitken, J. C. Cowles, B.
Tang, L. T. Tran, T. R. Block, A. K. Oki, and D. C. Streit, “A DC-20
GHz InP HBT balanced analog multiplier for high-data-rate direct-dig-
ital modulation and fiber-optic receiver applications,” IEEE Trans. Mi-
crow. Theory Tech., vol. 48, no. 2, pp. 194-202, Feb. 2000.

[3] J. Glenn, M. Case, D. Harame, B. Meyerson, and R. Poisson, “12-GHz
Gilbert mixers using a manufacturable Si/SiGe epitaxial-base bipolar
technology,” in IEEE Bipolor/BiCMOS Circuit Tech. Meeting, 1995, pp.
186-189.

[4] K. Osafune and Y. Yamauchi, “20-GHz 5-dB-gain analog multipliers
with AlGaAs/GaAs HBT’s,” IEEE Trans. Microw. Theory Tech., vol.
42, no. 3, pp. 518-520, Mar. 1994.

[5] C. Campbell and J. Beall, “Design and performance of a highly inte-
grated wide-band active downconverter MMIC,” presented at the IEEE
Radio Frequency Integrated Circuits Symp., 2001.

[6] S. A.Maas, Nonlinear Microwave and RF Circuits, 2nd ed. Norwood,
MA: Artech House, 2003.

[7] C. Pallier, C. Algani, and G. Alquie, “Analysis of conversion gain in a
bipolar Gilbert cell microwave mixer,” in High Frequency Postgraduate
Student Collog., 1997, pp. 130-135.

[8] K.L.FongandR.G.Meyer, “Monolithic RF active mixer design,” IEEE
Trans. Circuits Syst. II, Analog Dig. Signal Process., vol. 46, no. 3, pp.
231-239, Mar. 1999.

[9] R. G. Meyer, “Intermodulation in high-frequency bipolar transistor in-

tegrated-circuit mixers,” IEEE J. Solid-State Circuits, vol. SC-21, no. 4,

pp. 560-563, Apr. 1986.

P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated

Circuits, 3rd ed. New York: Wiley, 1993.

S. A. Maas, “Theory and analysis of GaAs MESFET mixers,” IEEE

Trans. Microw. Theory Tech., vol. MTT-32, no. 10, pp. 1402—1406, Oct.

1984.

M. Reisch, High-Frequency Bipolar Transistors.

Springer-Verlag, 2003.

J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar

Transistors, 1st ed. Norwood, MA: Artech House, 2003.

T. K. Johansen, J. Vidkjar, and V. Krozer, “Substrate effects in SiGe

HBT modeling,” in Proc. Eur. Gallium Arsenide and Other Compound

Semiconductors Application Symp., Munich, Germany, Oct. 2003, pp.

879-882.

K. Ohhata, E. Ohue, and K. Washio, “Design of a 32.7-GHz bandwidth

AGC amplifier IC with wide dynamic range implemented in SiGe HBT,”

IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1290-1297, Sep. 1999.

E. M. Cherry and D. E. Hooper, “The design of wide-band transistor

feedback amplifiers,” Proc. Inst. Elect. Eng., vol. 110, no. 2, pp.

375-389, Feb. 1963.

T. K. Johansen, “Monolithic microwave integrated circuits for wide-

band SAR system,” Ph.D. dissertation, Dept. Elect. Eng., Tech. Univ.

Denmark, Lyngby, Denmark, 2003.

[10]

[11]

[12] Berlin, Germany:

[13]

[14]

[15]

[16]

[17]

Tom K. Johansen (M’03) was born in Ringsted,
Denmark, in 1972. He received the M.S. and Ph.D.
degrees in electrical engineering from the Technical
University of Denmark, Lyngby, Denmark, in 1999
and 2003, respectively.

In 1999, he joined the Section of Electromagnetic
Systems, @rstede DTU, Technical University of Den-
mark, Denmark, where he is currently an Assistant
Professor. From September 2001 to March 2002, he
was a Visiting Scholar with the Center for Wireless
Communication, University of San Diego, La Jolla,
CA. His research includes the modeling of HBT devices, nonlinear circuit anal-
ysis, and MMIC design.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on December 2, 2009 at 03:25 from |IEEE Xplore. Restrictions apply.



JOHANSEN et al.: ANALYSIS AND DESIGN OF WIDE-BAND SiGe HBT ACTIVE MIXERS

Jens Vidkjeer (S’72-M’72) received the M.S. and
Ph.D. degrees from the Technical University of Den-
mark, Lyngby, Denmark, in 1968 and 1975, respec-
tively.

Since 1970, he has been with the Electronics Labo-
ratory and the Semiconductor Laboratory, Technical
University of Denmark, where he is currently a
Reader with the Electromagnetic System Group,
OrstedeDTU. His research areas have included
RF power-amplifier design, computer-aided design
(CAD) methods, device modeling, measurement
accuracies, and MMIC design.

2397

Viktor Krozer (M-93-SM’03) was born in
Leningrad, Russia, in 1958. He received the
Dipl.-Ing. degree in electrical engineering and
Dr.-Ing. degree (suma cum laude) from the
Technische Hochschule Darmstadt (TH Darm-
stadt), Darmstadt, Germany, in 1984 and 1991,
respectively. His Dr.-Ing. thesis focused on the
development of analysis methods for large-signal
nonlinear microwave circuits and semiconductor
device simulation.

In 1991, he joined the Microwave Electronics Lab-
oratory, TH Darmstadt, as a Senior Research Scientist involved in the areas
of high-temperature semiconductor device operation and submillimeter-wave
device development. From 1996 to 2002, he was a Professor of electrical en-
gineering with the Technical University of Chemnitz (TU Chemnitz), where
he was involved in the area of microwave electronics, and where he was the
Head of the Microwave Laboratory. Since 2002, he has been with the Section of
Electromagnetic Systems, @rstede DTU, Lyngby, Denmark. He has contributed
to several book chapters and has authored or coauthored over 100 papers ap-
pearing in international journals and conferences. His research interests include
physical modeling of semiconductor devices and circuits, MMIC and multichip
module (MCM) technology, reliability of semiconductor devices, and submil-
limeter-wave devices and systems.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on December 2, 2009 at 03:25 from |IEEE Xplore. Restrictions apply.



	toc
	Analysis and Design of Wide-Band SiGe HBT Active Mixers
	Tom K. Johansen, Member, IEEE, Jens Vidkjær, Member, IEEE, and V
	I. I NTRODUCTION

	Fig.€1. Gilbert cell mixer.
	II. F REQUENCY -R ESPONSE A NALYSIS

	Fig.€2. Time-varying small-signal equivalent-circuit model.
	A. Conversion Matrix Analysis

	Fig.€3. Evaluation of time-varying transconductance.
	B. Analysis Verification

	Fig.€4. High-frequency large-signal SiGe HBT model for harmonic-
	Fig.€5. Comparing calculated and simulated conversion gain for t
	C. Discussion

	TABLE I I NDIVIDUAL C ONTRIBUTION F ROM P OLES AND Z EROS TO 3-d
	III. W IDE -B AND A CTIVE M IXER D ESIGN

	Fig.€6. Modified Gilbert cell mixer.
	IV. E XPERIMENTAL R ESULTS

	Fig.€7. Photograph of the active mixer.
	Fig.€8. Measured (-) and simulated (-o-) RF frequency response a
	Fig.€9. Measured (-) and simulated (-o-) IF frequency response.
	Fig.€10. Measured (-) and simulated (-o-) IF output power versus
	V. C ONCLUSION
	A NALYSIS OF S HUNT F EEDBACK L OAD C IRCUIT

	Fig.€11. Single-ended equivalent circuit for the shunt feedback 
	B. Gilbert, A precise four-quadrant multiplier with subnanosecon
	K. Kobayashi, R. M. Desrosiers, A. Gutuerrez-Aitken, J. C. Cowle
	J. Glenn, M. Case, D. Harame, B. Meyerson, and R. Poisson, 12-GH
	K. Osafune and Y. Yamauchi, 20-GHz 5-dB-gain analog multipliers 
	C. Campbell and J. Beall, Design and performance of a highly int
	S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed. Norwood
	C. Pallier, C. Algani, and G. Alquie, Analysis of conversion gai
	K. L. Fong and R. G. Meyer, Monolithic RF active mixer design, I
	R. G. Meyer, Intermodulation in high-frequency bipolar transisto
	P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integr
	S. A. Maas, Theory and analysis of GaAs MESFET mixers, IEEE Tran
	M. Reisch, High-Frequency Bipolar Transistors . Berlin, Germany:
	J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipo
	T. K. Johansen, J. Vidkjær, and V. Krozer, Substrate effects in 
	K. Ohhata, E. Ohue, and K. Washio, Design of a 32.7-GHz bandwidt
	E. M. Cherry and D. E. Hooper, The design of wide-band transisto
	T. K. Johansen, Monolithic microwave integrated circuits for wid



