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Microwave Oscillator Based on an Intrinsic
BSCCO-Type Josephson Junction

N. F. Pedersen and S. Madsen

Abstract—The electrical behavior of anisotropic BSCCO single
crystals is modeled by mutually coupled long Josephson junctions.
For the basic fluxon modes with one fluxon per layer, the fluxons
will arrange themselves in an anti phase configuration (triangular
lattice) because of the mutual repulsion. We are interested in the
in-phase modes (square lattice) desired for many potential appli-
cations. We consider two mechanisms (i) intrinsic locking by out
of phase oscillations at the trailing edge and (ii) locking by an ex-
ternal high- resonator with a resonance frequency corresponding
to fluxon in-phase motion. The resulting model is a set of coupled
nonlinear partial differential equations. By direct numerical sim-
ulations we have demonstrated that the qualitative behavior of the
combined intrinsic Josephson junction and cavity system can be
understood on the basis of general concepts of nonlinear oscilla-
tors interacting with a resonator. For some region of the parameter
space it is possible to reach the desired synchronous state, making
the system potentially suitable for applications. We also consider
the system in the flux flow mode under a high magnetic field.

Index Terms—BSCCO, cavity, fluxons, THz oscillator.

I. INTRODUCTION

RECENTLY attempts to fabricate a microwave oscillator
based on fluxon motion in intrinsic Josephson junctions

of the highly anisotropic BSCCO type have been reported [1].
The frequency range is potentially in the hundreds of giga-
hertz—or even terahertz range. The basic physical mechanism
to be exploited is the emission of electromagnetic radiation
by a Josephson fluxon when it hits an edge of the junction. In
an intrinsic junction there are many junctions on top of each
other and potentially the power can be enhanced by several
orders of magnitude if in-phase motion of the fluxons in the
different layers can be obtained. Such coherent fluxon motion
is sometimes referred to as the ‘square lattice’ situation, and
has been observed experimentally in BSCCO single crystals
[1]. The difficulty in obtaining in-phase motion arises from the
fact that same polarity fluxons basically repel each other and
therefore would rather favor anti-phase motion. In this paper we
discuss two mechanisms that may contribute to in-phase fluxon
motion: (i) intrinsic nonlinearities leading to oscillations in the
fluxon line shape and (ii) frequency locking using a cavity with
a resonance frequency corresponding to the in-phase fluxon
frequency. The latter mechanism has been observed both for
small [2] and long [3]–[5] Josephson junctions. In the case
to be investigated here the long Josephson junctions in the
stack are both coupled to each other and individually to the

Manuscript received October 5, 2004.
The authors are with the Oersted-DTU, Section of Electric Power En-

gineering, The Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark.

Digital Object Identifier 10.1109/TASC.2005.850131

Fig. 1. Geometry of the Josephson stack (top) and schematic drawing of the
BSCCO—cavity system (bottom).

cavity as shown schematically in Fig. 1. Preliminary work
in that direction has recently been reported in [6]. In the last
section we apply a large magnetic field through the boundary
conditions and investigate the ordering of the flux lattice in the
flux flow mode.

II. THE BSCCO MODEL

The standard model for inductively coupled stacks is a set of
Partial Differential Equations coupled via the magnetic flux [7]:

. . .
. . .

. . .

(1)

where

(2)

Here is the gauge-invariant phae difference across junction ,
is the dissipation parameter ( , ,

and are the normal resistance, the critical current and the
capacitance, respectively), is the bias current normalized to
the critical current of the individual junctions and the nor-
malized coupling term among the junctions in the stack reads

, [7]. We only
consider the case where . Time is normalized to
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the inverse of the Josephson frequency and
space with respect to the Josephson length .
The resonator at one edge of the junctions (see Fig. 1) gives a
boundary condition [7] expressing that the spatial derivative of
the phase is equal to the current fed by the resonator, i.e.

(3)

Here is the normalized current at the right hand
side of the LJJ (see Fig. 1). Such current is connected to the
normalized (with respect to ) charge in the capacitor of
the circuit via the equation:

(4)

Here is the cavity resonance frequency normalized to the
Josephson frequency , , its quality

factor, is the dissipation in the cavity and c is
the total capacitance normalized to the Josephson capacitance,

. The charge in the resonator is given by the stan-
dard linear equation for the charge of a circuit:

(5)

Eqs. (1)–(5) have been integrated with a standard fourth (some-
times fifth) order Runge-Kutta routine for the time dependence.
The spatial derivative has been approximated by the two-point
discrete finite difference for the first derivative and the three-
point finite difference for the second derivative.

III. NUMERICAL RESULTS—INTRINSIC LOCKING

Fig. 2 shows some results for an intrinsic Josephson stack
without any coupling to a cavity. We have chosen the smallest
nontrivial stack, , and kept the length short in order to
discover the essentials of the problem without needing too ex-
cessive calculations. In the following we will need the charac-
teristic velocities for electromagnetic waves in the stack consid-
ered as a linear resonator. For an -stack there are charac-
teristic velocities for the different modes of propagation for
linear modes. These velocities depend on the coupling param-
eter S, and the simple formula for calculating these velocities
may be found for example in [7]. Here we will consider only
the so-called in-phase velocity and the anti-phase velocity

, which for the case of are given by:

(6)

Fig. 2 shows for the two most important plasma oscil-
lation modes out of the three possible. As was demonstrated
in [8] the fundamental fluxon modes lend their symmetry
from the simpler plasma modes, and the figure also shows the
fundamental fluxon modes together with the plasma modes of

Fig. 2. Numerical solutions of anti-phase mode (left column), and in-phase
mode (right column) of the 3 junction stack. The top middle and bottom
junctions are shown from top to bottom in each column. The bias current is
chosen to give the different modes. Full curves are fluxons and dotted curves
are plasmons. Parameters used: � = 0, 1, S = �0, 2 and  = 0, 2(left), and
0,45(right).

similar symmetry. Fig. 2 also defines the difference between
in-phase modes (‘square lattice’) and anti-phase mode (‘tri-
angular lattice’). The first column of Fig. 2 shows how the
anti-phase mode with essentially undisturbed fluxons manifests
itself in the three junctions. The top/bottom fluxons move
together but in anti-phase with the center fluxon. This is the
stable and natural mode since the fluxons in the different layers
repel each other. The desired mode for microwave applications
is the in-phase mode seen in the second column. As can be
seen, although the three fluxons move coherently, the natural
fluxon pulse shape is modified by strong oscillations in the
trailing edge. We note that these oscillations are in anti-phase
in adjacent layers such that a maximum in one layer correspond
to a minimum in the neighboring layer. Such oscillations are
intrinsic to the nonlinear equations and have been noted very
early in connection with soliton locking [9]. Here it was noted
that with 2 solitons (fluxons) on the same line, the solitons
could bunch by a mechanism in which a soliton was trapped in
the potential created by trailing oscillations of the other soliton.
Also similar oscillations have been seen in connection with
the so-called Cerenkov oscillations in Josephson stacks [10].
The appearance of such anti-phase oscillations is a dynamic
effect and is the mechanism that keep fluxons phase locked in
spite of their natural repulsion. This mechanism exists even for
the stack without a cavity; but as we shall see later, a resonant
cavity represents another locking mechanism that may enhance
in-phase motion. The third mode (not shown) has the top and
bottom fluxons and plasmons in anti-phase and the middle
junction has neither a fluxon or a plasma oscillation [8].

To get an understanding of the nature of the trailing edge os-
cillations we note that for an approximate analytical
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Fig. 3. N = 6. Top and bottom junctions have switched to the McCumber
curve.

expression can be derived [8]. We assume the phases of the
top/bottom and middle junctions respectively are expressed by

Inserting this in (1) we find

(7)

with and where and are some unknown
constants. A plot showing the above formula together with a
numerical solution of the full system can be seen in [8]. Such
damped anti-phase oscillations can also be seen in the second
column of Fig. 2. The analytical result shows what happens if
we have the bunched state and then introduces some small dif-
ference between the top/bottom and center junction. The system
reacts with anti-phase oscillations in the two junctions trying to
preserve fluxon locking, for example with being trapped in a
local minimum of . The appearance of an amplitude of in
the amplitude of is a natural consequence of the middle layer
interacting with both the top and bottom layers. Several authors
have investigated this locking scenario i.e. for example [11].

The role of the oscillations discussed for are generic
for the locking mechanism leading to in-phase fluxon motion.

As discussed above the basic idea is that the fluxons get
locked in the in-phase configuration through the trailing edge
oscillations. Since the fluxons in the neighboring layers natu-
rally repel each other there is a competition between the two
mechanisms. With more and more layers in the stack it was
found in [8] that particularly the top and bottom junctions has
a tendency to switch to the McCumber curve and thus loose
the fluxons in the outer layers. Such an example is shown in
Fig. 3 for a 6 layer stack. Fluxons in junctions 2,3,4,5 are in
phase—locked together by the anti phase trailing oscillations
(2, 5 and 3, 4 are identical for reasons of symmetry). In layers
1, 6 the anti-phase trailing oscillations were not sufficient to
lock these fluxons, and the top and bottom junctions switched
to finite voltage. (For clarity we show here the phase rather
than the voltage ). It is however important to note that the
fluxon structure from the internal junctions are repeated in the
switched top/bottom junctions. Thus in the voltage there
would still be an in-phase voltage pulse—although with a
slightly reduced amplitude. When the total voltage is found by
adding all the voltage pulses from all the junctions, we find that

Fig. 4. N = 3. Dynamics of the fluxon system charging the cavity. The
in-phase pulses from the N = 3 stack inject charge into the cavity close to
its resonance frequency. A sinusoidal cavity current builds up (dashed curve)
eventually phase locking the junctions to its (resonance) frequency.

the switching of the top and bottom junctions has negligible
effect on the amplitude of the total voltage pulse, and thus on
the potential power to be generated in the oscillator mode [12].

IV. NUMERICAL RESULTS—LOCKING

BY EXTERNAL RESONATOR

Besides the anti-phase trailing oscillations discussed above
the other mechanism for in-phase locking of the fluxons in the
stack is the interaction with a cavity when the fluxon frequency
is close to the resonator frequency. The basic idea is that the fun-
damental oscillators (the fluxons moving back and forth in the
individual junction layers) emit pulsed radiation at a frequency
close to the resonance frequency of the cavity. At each colli-
sion some small amount of power—depending on the coupling
coefficient, determined essentially by —is transferred to the
cavity. The current waveform in the (linear) cavity is essen-
tially sinusoidal, and the current amplitude builds up over many
fluxon oscillation periods until a power balance is obtained, see
Fig. 4. In this situation the power transferred from the fluxons to
the cavity in each oscillation period is equivalent to the power
transferred from the cavity to the junctions in the same period.
When the frequency of the oscillators is close enough to the res-
onance frequency of the cavity, the amplitude of the cavity os-
cillations become large enough to furnish the clock that forces
the junction fluxon oscillators to phase-lock to the cavity reso-
nance frequency. The mechanism is rather equivalent to the case
of applying an external microwave signal to phase lock all the
junctions in a stack [13], [14].

If the junction parameters are such that intrinsically the
in-phase motion is favored at a frequency close to the cavity
resonance frequency, the cavity—junction interaction will
stabilize the fluxon in-phase motion and contribute even further
to the build up of power in the cavity. We note as a general
feature of our system that it is an unusual variant of the classical
problem of a nonlinear oscillator coupled to a linear resonator.
Here all the individual oscillators are each coupled to the cavity.
In addition the individual oscillators are coupled to each other
by inductive coupling, defining a number of different intrinsic
oscillation modes. The competition between the two different
types of coupling of the junctions will be essential for the
outcome of the dynamics, and the possibilities for utilizing the
combined system for applications.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on December 2, 2009 at 02:56 from IEEE Xplore.  Restrictions apply. 



PEDERSEN AND MADSEN: MICROWAVE OSCILLATOR BASED ON AN INTRINSIC BSCCO-TYPE JOSEPHSON JUNCTION 951

Fig. 5. The magnetic field dependence of the 3 junction stack. The inset shows
the phase-behavior of the individual junctions and the average voltage nearH =

2:8. Parameters used: N = 3, L = 20, S = �0:1, � = 0:1 and  = �0:15.

V. NUMERICAL RESULTS—MAGNETIC FIELD

DEPENDENCE AND FLUX FLOW

Some of the recent experimental results on BSCCO have been
obtained by applying a magnetic field while having a constant
bias current [15]. Fig. 5 shows the effect of applying a constant
(with respect to time) magnetic field to a 3 stack with a bias cur-
rent of . The average flux flow voltage per junction
is shown. For low values of the magnetic field there is a transi-
tion to a state in which fluxons enter the center junction. When

is about 2.2 there is another transition to a state in which
fluxons enter all three junctions in the stack. In this so-called
flux flow state fluxons enter from one side and leave from the
other—driven by the applied magnetic field. Also shown (right
scale) is the total phase shift from one side of the stack to the
other, , which is related to the number of fluxons
present in the stack. The jumps correspond to the entering of
fluxons. To help understanding the entering of fluxons, the inset
shows, as an example, the details near .

We note, that although the flux flow voltage looks somewhat
erratic, it is reproducible under the changing of initial condi-
tions, step size etc. but there is a small hysteresis in the system.
From the time pictures (not shown) we can see that the fluxon
lattice is triangular with the top and bottom fluxons in phase. The
symmetry of one plus two can clearly be seen in the total number
of fluxons (right scale in Fig. 5), however the inset shows that
both top/bottom and center phase shift is rather similar, indi-
cating that the triangular lattice is rather stiff. On the other hand,
the rate of change of both flux entry and flux flow voltage change
significantly with the magnetic field and also with bias current.
Accordingly we also made a calculation of the derivative with
respect to the bias current, i.e. the flux flow resistance. It shows
clear and regular resonances, instead of steps, corresponding to
fluxon entry. The appearance of the resonances in the flux flow
resistance as a function of the magnetic field is in general agree-
ment with measurements on BSCCO single crystals [1], [15],
although we only observed triangular lattice, not square lattice.
We suspect the reason for not finding the square lattice is that
we have not yet identified the proper parameters.

VI. CONCLUSION

The system consisting of a stack of Josephson junctions
has been investigated with the purpose of understanding the
in-phase modes. Both the intrinsic origins and the coupling of
the stack to a cavity were considered. We find that anti-phase
oscillations in the trailing edges of neighboring fluxons play
an essential role in the locking process. With a resonator we
find that if it has a resonance frequency corresponding to the
in-phase intrinsic resonance of the stack, large amounts of
power can be coupled to the cavity. We investigated the fluxon
ordering in a magnetic field and found only the anti-phase
ordering (triangular lattice). This part is not conclusive since
we investigated only a limited number of parameter values. The
BSCCO system with in-phase fluxon ordering has a potential
for practical applications in microwave generation using high

BSCCO single crystals at hundreds of Gigahertz.
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