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AbstractEfficient and reliable monitoring systems are mandatory to assure the required security
standards in industrial complexes. This paper describes the recent developments of FaultBuster,
a purely data-driven diagnostic system. It is designed so to be easily scalable to different monitor
tasks. Multivariate statistical models based on principal components are used to detect abnormal
situations. Tailored to alarms, a probabilistic inference engine process the fault evidences to
output the most probable diagnosis. Results from the DX 09 Diagnostic Challenge shown strong
detection properties, whereas the need of further investigations in the diagnostic system.

Keywords: Statistical Process Control, Fault detection, Artificial intelligence, Diagnostic
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1. INTRODUCTION

Alarms are essential in every process, system and indus-
trial complex. Unplanned shut-downs are one of the most
serious sources of production loss. Even if triggered by
minor problems, intervents may require the temporary
process stop. Detect and diagnose quickly and precisely
the root cause of a developing abnormal situation is a key
to keep systems working as smoothly as possible.

Plant monitoring represents also a way to fullfill envi-
ronmental regulations on emissions. Governments impose
fines on violations of environmental protection regulations,
which erode profits and the social image.

The other and probably the most important reason for
plant monitoring is related to safety. According to the Ab-
normal Situation Management Consortium, petrochemical
plants on average suffer a major incident every three years,
which usually cause human casualties. These incidents oc-
cur not usually because of major design flaws or equipment
malfunctions, but rather simple mistakes. In all these cases
a prevention system (comprising means of detection and
diagnosis, logic/control equipment and independent means
of control) would probably have prevented the deploying
of these situations.

This paper presents the first developments of FaultBuster,
an industrial fault detection and diagnosis system. It is
built to extract as much information as possible from the
data flowing from and to the monitored plant without
embedding specific process knowledge.

FaultBuster is composed by co-operating modules organ-
ised in the Integra Agent Framework (IAF), an agent
architecture discussed by Caponetti et al. (2009). Modules
can be exchanged or modified independently to let the
system be easily scalable. FaultBuster may tune on-line a

statistical model to detect deviant situations. Tailored to
detection is the diagnosis. Based on the knowledge learnt
from past observations and diagnosis examples it gives the
set of the probable faults that may be occurring.

FaultBuster has been participant of the DX 09 Diagnostic
Challenge Competition (http://dx-competition.org),
demonstrating low rates of missed/false alarms whereas
some problems in the diagnostic part. The competition
winner, ProDiagnose used a probabilistic approach, ac-
complishing the diagnostic task with Bayesian Network
models compiled to Arithmetic Circuits (Ricks and Meng-
shoel, 2009).

In this paper it is described the fault detection and
diagnosis algorithm implemented in FaultBuster and the
DX 09 Competition results are presented as benchmark.

2. ADAPT TESTBED

Researchers at NASA Ames Research Centre have devel-
oped the Advanced Diagnostics and Prognostics Testbed
(ADAPT). It allows performance assessment of diagnostic
algorithms in a standardised testbed and repeatable failure
scenarios. The hardware of the testbed is an Electrical
Power System (EPS) of a space exploration vehicle and
consists of three major modules: a power generation unit,
a power storage unit and a power distribution unit (See
Fig.1). The system has hybrid dynamics where mode tran-
sitions are commanded or triggered by events. the installed
sensors provide data sample only at the rate of 2Hz, which
cannot capture the dynamics of some ADAPT subsystems
that operate at much higher frequencies. ADAPT has been
used as basis for the Diagnostic Challenge 2009 to which
all the data used to produce the results discussed refers to.



E265

ST

265

                
                

CB136

                
                

CB236

                
                

CB336

                
                

CB266

                
                

CB166

ESH

170

EY160

ESH

160A
E161

IT161

E165

ST

165
EY171

E167

IT167

ESH

171

EY172

ESH

172

EY170

EY174

ESH

174

EY175

ESH

175

EY173

ESH

173

EY183

ESH

183

EY184

ESH

184

L1A

L1B

L1C

L1D

L1E

L1F

L1G

L1H

Load Bank 1

120V AC >>

24V DC >>

Battery Cabinet
TE

133

BAT1

TE

128

E135

EY141

E140

EY144

IT140

ESH

141A

ESH

144A
TE

129

ISH

136

ISH

162

                
                

CB162

ISH

166

ISH

180

                
                

CB180

ESH

270

EY260

ESH

260A
E261

IT261
EY271

E267

IT267

ESH

271

EY272

ESH

272

EY270

EY274

ESH

274

EY275

ESH

275

EY273

ESH

273

EY283

ESH

283

EY284

ESH

284

L2A

L2B

L2C

L2D

L2E

L2F

L2G

L2H

Load Bank 2

120V AC >>

24V DC >>

ISH

262

                
                

CB262

ISH

266

ISH

280

                
                

CB280

BAT2

TE

228

E235

EY241

E240

EY244

IT240

ESH

241A

ESH

244A
TE

229

ISH

236

BAT3

TE

328

E335

EY341

E340

EY344

IT340

ESH

341A

ESH

344A
TE

329

ISH

336

E142

E242

XT167

XT267

IT181

IT281

  

TE

500

TE

501

TE

502

LT

500

TE

505

TE

506

TE

507

LT

505

ST

515

FT

525

TE

511

FT

520

TE

510

ST

516

LGT400

LGT401

LGT402

LGT405

LGT406

LGT407

FAN415

FAN480

LGT481

PMP425

LGT411

DC482

PMP420

LGT410

FAN483

LGT484

FAN416

DC485

E181

E281

INV

1

INV

2

ADAPT-Lite

ESH

ISHE

IT

FT LT

ST

TE

XT

Voltage

Relay Position 

Feedback

Circuit Breaker 

Position Feedback

Current

Flow Light

Speed

Temperature

Phase Angle

Sensor Symbols

Figure 1. The ADAPT Tier 2 EPS. ADAPT Tier 1 (Lite) is a subset of Tier 2. (Courtesy of Tolga Kurtoglu)

3. FAULTBUSTER

FaultBuster is engineered to fullfill the requirements of
a fast, accurate, reliable and reconfigurable diagnostic
system. Opposite and tight constraints lead to implement
a tradeoff solution.

The system was born to supervise tightly coupled, complex
industrial systems. Quite often poor process knowledge is
available, whereas huge archives of data may be accessible.
This is the case when small-medium enterprises wants
to improve their throughput and quality by monitoring
already running machinery.

Statistical process monitoring techniques have been heav-
ily researched in the last few years. Multivariate statistical
methods based on Principal Component Analysis (PCA),
partial Least Squares, and Independent Component Anal-
ysis have been used and extended with success in various
applications (Qin, 2009; Liu et al., 2009; Du et al., 2007;
Al Ghazzawi and Lennox, 2008; Liu et al., 2005; Bakshi,
1998).

FaultBuster processes all the observations using a statis-
tical reference model and an adaptive detection scheme.
Detection is based on residuals built from multivariate

statistics of the data projected through the model. Once
an alarm is issued the contribution of each sensor to the
abnormal situation is determined. In this way, the vector
of contribution rates represents the fault pattern that an
inference engine based on Markov logic networks has to
interpret. The inference output is the set of most probable
faults. Fig. 2 shows the concept scheme of the system.

3.1 Statistical model

FaultBuster can be bootstrapped on a pre built model
or configured to fit on-line a PCA model. For industrial
systems, with slow dynamics, a pre-built model adapted
on-line would be the best option. Due to the high number
of working modes which ADAPT may present and the
limited amount of available training examples available,
a pre-built model resulted to be too conservative.

ADAPT works fault-less for 30s after a boot. The first
observations collected on-line compose a training dataset
constructed in a way that columns represent the monitored
variables (m) and each row an observation (n).

X ∈ A(n×m)

Because of the different magnitude of variables, the dataset
is standardised to null mean and unit variance. Boolean
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Figure 2. Concept scheme of FaultBuster.

observations from ADAPT are fed to the model by adding
a Gaussian noise with small standard deviation to the true
value.

The dataset can be decomposed as:

X = X̂ + E, (1)

The matrices X̂ and E represent the modeled and the
residual variation of X.

X̂ =TPT ,

E =T̂ P̂T ,

where T ∈ <n×d and P ∈ <m×1 are the score and loading
matrices.

The decomposition of X is such that the matrix [PPT ]
is orthonormal and [TTT ] is orthogonal. The columns of
P are eigenvectors of the correlation matrix R associated
to the largest l eigenvalues. The columns of P̂ are the
remaining eigenvectors of R. The correlation matrix is
evaluated on the scaled dataset as

R =
1

n− 1
XXT

The PCA model partitions the measurement space (m
dimensional) into two orthogonal subspaces. One spanned
by the first l principal components, in which the normal
data variations should occur, and a residual space where
abnormal situations and noise fall. The interested reader
may refer to Jackson (1991).

Once a command is issued, ADAPT is supposed to change
working mode. Several solution may be appliable to con-
tinue the monitoring, e.g. a new PCA model may be
trained. To minimise the work load and supervise fast
dynamical systems like ADAPT, FaultBuster implements
an adaptive detection solution.

To detect faults in discrete dynamic, FaultBuster has to be
extended with a discrete observer by embedding knowledge
on the expected state after commands or triggers.

3.2 Fault detection

Each observation x is decomposed by the PCA model into:
x̂ = PPTx, (2)

the projection on the principal component subspace
(PCS), and

x̃ = (I − PPT )x, (3)
the projection on the residual subspace.

Two statistical distance measures are commonly computed
to generate residual signals, the Hotelling’s T 2 and the
squared prediction error (SPE)

T 2(x) =||D−1/2
λk

PTx||2, (4)

SPE(x) =||x̃||2 = xT (I − PPT )x. (5)

Where D
−1/2
λk

= diag(λ−1/2
i ) with λi=1,...,l equal to the

first l eigenvalues of the correlation matrix R.

Both statistics can be evaluated against fixed thresholds
designed on the average run length (ARL). Due to the
hybrid nature of ADAPT, poor results have been obtained
utilising fixed thresholds. As done previously by Wang and
Tsung (2008), FaultBuster tries to improve the detection
performances by using a predictor on the PCA subspaces
issuing an alarm only after violation of an adaptive thresh-
old.

A multivariate exponentially weighted moving average
(MEWMA) is used in each subspace (xp may be x̂ or x̃) to
overcome the T 2 chart limitations (Montgomery, 2005).

Zi = αxpi + (1− α)Zi−1, (6)
where 0 < α ≤ 1 and Z0 = 0. The control chart is

T 2(Zi) = ZTi Σ−1
Zi
Zi, (7)

where the covariance matrix is

ΣZi
=

α

2− α
[
1− (1− α)2i

]
Σ, (8)

where Σ is a diagonal matrix containing the eigenvalues of
R corresponding to the subspace considered.

The MEWMA signals are monitored by a set of Kalman
filters on the four signal features in Tab. 1. To maintain

Table 1. Features used for residual generation.

Feature Description

Si Value of T̂ 2(Ẑi) or T̃ 2(Ẑi)
∆Si = Si − Si−1 Approximated first derivative
∆2Si = ∆Si − ∆Si−1 Approximated second derivative
f = ∆Si ∗ ∆2Si Relation between derivatives

a simple implementation each feature has its own Kalman
filter. The models are based on a linear regression updated
on-line by least square minimisation each nls samples,
allowing to handle eventual non linearity in the statistics.
The detection of both abrupt and progressive faults de-
pends on a correct design of nls.

A 3σ control chart is used to monitor the Kalman pre-
diction. The control variance which defines the Upper and
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Lower Control Limit (UCL, LCL) is the estimated Kalman
variance. A detection is issued if all the control charts of
a subspace register a violation of the same control limit.

Fig. 3 shows the control chart for ∆Si in Exp 675 pb t2.
The Inverter 2 fails off and afterward the position sensor
ESH273 fails stuck closed. This experiment shows the
ability of FaultBuster to detect faults on components not
directly observable (Inverter) and multiple faults by the
combination of the single feature detectors (Fig. 4).

To manage intermittent faults, after each alarm a refer-
ence model has to be stored to establish when the fault
disappears. The detection capability of progressive faults
with slow dynamics has to be investigated, since some
limitations expected due to the adaptivity of the detector.

As response to command, the detection is inhibited for
im samples. New feature models are fitted on the data,
avoiding the computation of a new PCA model.

3.3 Observation identification

After an alarm the anomaly source have tos be identified.
Several approaches have been proposed to boost the iden-
tification capabilities of the commonly used contribution
plots (Mnassri et al., 2008). Since the detection is based
on MEWMA signals and on some non-Gaussian sensors,
FaultBuster explores and implements an alternative solu-
tion.

The PCA model is seen as a Multi-Layer Perceptron
network (MLP) where: the output stage represents the
PCA projection, the hidden the observations, and the
input stage is not used. By retropropagating the quadratic
error between the mean of the last nm normal measures
and the abnormal, the contribution rate of each sensor to
the abnormality is estimated.

The corresponding MLP realises the mapping Y = XTW
where W = P if the alarm comes from the PC subspace
(W = P̂ otherwise). Letting xref given by the mean of
the last nm fault-less observations, and xflt be the faulty
observation, the quadratic error is:

E = Err2 =
1
2
(
xTfltW − xTrefW

)2
.
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Figure 4. Exp 675 pb t2 PC subspace alarm signals. Scalar
detector would be inadequate while their combination
lead to 2 true positives and a false alarm in t = 100.

The hidden node j is responsible for some fraction of
the error Err in each of the output nodes to which it
connects (Russell and Norvig, 2003). Thus, the values
of Err are divided according to the strength of the
connection between the hidden node and the output node
and propagated back to provide the ∆j values for the
hidden layer. The propagation rule for the hidden nodes j
is,

∆j = (xfltj − x
ref
j )

∑
i

Wj,iErri. (9)

Where Erri is the ith component of the error vector
Err = (xTfltW−xTrefW ). The term (xfltj −x

ref
j ) is intended

as the first derivative of the not known activation function.
The resulting vector ∆ is interpreted as the contribution
of each sensor to the abnormal situation.

To filter false alarms, ∆ is pruned using a threshold.
Once fitted a PCA model the backpropagation is tested
using normal observations as examples and targets. The
maximum ∆j among all the sensors is stored in ∆max.
It represent the maximum expected contribution rate for
a sensor in nominal conditions. At run-time, each ∆j

is zeroed if less than ∆max. If this results into a null
vector the alarm is classified as false and removed. Fig.
5 shows how the alarms issued by the detectors are
filtered, removing the false alarm characterised by zero
contributions and leaving the true alarms.

An analogous solution for the PCA has been discussed by
Chiang et al. (2001), where each component of the weight
matrix has been scaled by the corresponding variance.

∆j =
∑
i

ti
σ2
i

Wi,j(x
flt
j − µj)

Where ti is ist column of the score matrix T , σ2
i the related

variance and µj is the off-line learnt mean value of the
sensor j. FaultBuster does not use the PCA model to



Figure 5. Exp 675 pb t2, sensor identification. The alarm
for t = 100 is discarded since ∆j < ∆max∀j.

directly estimate the contribution rate, since a new PCA
model is not trained after each mode switch.

3.4 Fault diagnosis

PCA can efficiently isolate faults on the monitored vari-
ables, but as also described recently by Mnassri et al.
(2008) has limitations to diagnose problems in components
non directly observable. FaultBuster tries to fill the gap by
using a diagnostic module based on probabilistic reasoning
and first order logic. Markov logic combines the two by
attaching weights to first-order formulae and viewing them
as templates for features of Markov networks (Richardson
and Domingos, 2006). Weights are tuned by learning and
the implementation in FaultBuster is based on Alchemy.

ADAPT and normal industrial systems are in general
complex. To manage the number of components and
failure modes, the inference is done hierarchically. Using
the evidences a general Knowledge Base (KB) outputs
the component class, i.e. pump, relay, voltage sensor. By
inference on specific component class KBs, the probable
faulty component is individuated with its failure mode.

The predicates defined in the KBs are reported in Tab. 2.
Each predicate may make use of the variables in Tab. 3.
Them describe the facts that the KB is able to interpret.
Evidences are generated from a fault pattern as an ordered
sequence of discrete contributions in the form of oocss and
oocb. The discrete value is obtained by quantisation of the
contribution space (See values in Tab.3).

Table 2. Knowledge base predicates

Predicate Description

FA False alarm
oocsb(boolsens) Boolean variable fault contribution
oocss(contsens,value) Continuous variable fault contribution
command(cmd) Command sent
fault(faultClass) Fault diagnosis

The KB for the component classes is composed by simple
first order logic rules not specific to the monitored system.

If a command has been executed recently and an alarm
has been issued than it likely to be a false alarm. This
rule allows the system to move from one operating point
to another avoiding nuisance alarms.

command(+c)^oocss(+s,+v)=>FA

If no commands has been sent, the presence of a fault have
to be investigated, hence a false alarm is unlikely to be.

!command(c)=>!FA
!command(c)^oocss(+s,+v)=>fault(+x)
!command(c)^oocsb(+s)=>fault(+x)

The inference on the general KB leads to the probability
distribution among the fault classes in Tab. 3. Knowing
the most likely fault class, the class-specific KBs can be
interrogated (Tab. 4). For example, in ADAPT system,
the knowledge base relative to a large fan looks like:

//Variable declaration
FaultModeLargeFan = {OverSpeed,
UnderSpeed, FailedOff}
[..]
//Predicate declaration
FaultLargeFan(LargeFan, FaultModeLargeFan)
[..]
//Rules
!command(z)^oocss(+s,+v)=>FaultLargeFan(+x,+f)
!command(z)^oocsb(+s)=>FaultLargeFan(+x,+f)

Table 4. Exp 675 pb t2, Markov logic inference.

Predicate Probability

General KB

Fault(BasicLoad) 0.00
Fault(Battery) 0.00
Fault(BooleanSensor) 0.00
Fault(CircuitBreaker) 0.00
Fault(CommandableCircuitBreaker) 0.04
Fault(Inverter) 0.94
Fault(LargeFan) 0.00
Fault(LightBulb) 0.00
Fault(Relay) 0.03
Fault(ContinuousSensor) 0.57
Fault(WaterPump) 0.00
FA 0.00

Inverter KB

FaultInverter(INV1, FailedOff) 0.00
FaultInverter(INV2, FailedOff) 0.96

No specific knowledge about the physical system intercon-
nection has been modeled. This gives generalisation power
at the cost of depending on the amount and quality of
examples used to train the initial KBs. The diagnostic
performances are expected to increase with the amount
of information modeled in the single KBs and with the
number of faults that occour in the monitored plant. For
industrial applications the system can be taught to classify
new fault patterns by the plant operators. Planned exten-
sion is in the way to use Bond Graph Models to generate
interconnection rules to boost the diagnostic performance
by evaluating possible failure chains.

4. RESULTS

To demonstrate FaultBuster in action the metrics in (Kur-
toglu et al., 2009) has been evaluated in 233 ADAPT
scenarios and summarised in Tab.5. The data consists
with either nominal, single, double or triple fault, with
various relay and circuit breaker open/close (Kurtoglu
et al., 2009). Each scenario starts with ADAPT unpow-
ered. Two configurations has been tested: fully adaptive,
namely FBuster, and with a bootstrap model, FBusterM .

The fully adaptive solution shown very low false posi-
tive/negative rate and a fair detection accuracy. This is



Table 3. Knowledge base variables

Variable Description

boolsens ESH141A, ESH144A, ESH160A, ESH170, ESH171, ESH172, ESH173, ESH174, ESH175, ESH183, ESH184,
ESH241A, ESH244A, ESH260A, ESH270, ESH271, ESH272, ESH273, ESH274, ESH275, ESH283, ESH284,
ESH341A, ESH344A, ISH136, ISH162, ISH166, ISH180, ISH236, ISH262, ISH266, ISH280, ISH336

contsens E135, E140, E142, E161, E165, E167, E181, E235, E240, E242, E261, E265, E267, E281, E335, E340, FT520,
FT525, IT140, IT161, IT167, IT181, IT240, IT261, IT267, IT281, IT340, LT500, LT505, ST165, ST265, ST515,
ST516, TE128, TE129, TE133, TE228, TE229, TE328, TE329, TE500, TE501, TE502, TE505, TE506, TE507,
TE510, TE511, XT167, XT267

cmd EY136 OP, EY236 OP, EY336 OP, EY141 CL, EY144 CL, EY160 CL, EY170 CL, EY171 CL, EY172 CL,
EY173 CL, EY174 CL, EY175 CL, EY183 CL, EY184 CL, EY241 CL, EY244 CL, EY260 CL, EY270 CL,
EY271 CL, EY272 CL, EY273 CL, EY274 CL, EY275 CL, EY283 CL, EY284 CL, EY341 CL, EY344 CL

faultClass BasicLoad, Battery, BooleanSensor, CircuitBreaker, CommandableCircuitBreaker, Inverter, LargeFan, LightBulb,
Relay, ContinuousSensor, WaterPump

value Big, Medium, Small

Table 5. DX Competition results metrics

Metric FBuster FBusterM ProDiagnose

Detection Accuracy 74% 83.1% 88.33%
False Positives Rate 2.53% 15.56% 7.32%
False Negatives Rate 38.96% 17.53% 13.92%
Classification Errors 236 217 76
Mean Time To Detect (ms) 14553.3 17789.9 5873
Mean Time To Isolate (ms) 48893.5 54104.6 11988

related to its capacity to better tune a reference PCA
model scaled on the actual working status. False negative
and detection rate are influenced strongly by the inability
to detect fault in the first 120 samples. This limitation has
been removed in FBusterM by providing an off-line model.
Results confirm the increase of detection rate by a lever-
age of the false and missed alarms. Isolation performance
confirm the need to introduce process knowledge to boost
the diagnosis.

5. CONCLUSION

FautlBuster was born to diagnose complex industrial sys-
tem where limited or no process knowledge were available.
FaultBuster combined the performances of a statistical
model based detector and of a probabilistic first order
logic inference engine. The system demonstrated good
detection capabilities in the DX 09 Diagnostic Challenge.
Both detection and diagnosis modules have been based
on knowledge directly extracted from example data to
explore the capabilities of a pure data-driven system. The
detection module needs minor refinements, whereas to
better diagnose, the KBs have to embed process knowledge
or have to be trained on larger example sets. FaultBuster
demonstrated to be computationally lightweight since the
inference was executed only after confirmed alarms.
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