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Abstract—Buffered crossbars with Virtual Output Queuing 
are considered an alternative to bufferless crossbars mainly 
because the latter requires a complex global scheduling algorithm 
that matches input with output. Buffered crossbars require only 
simple schedulers that operate independently for each output 
crosspoint queue column and independently for each port card. 
In this paper, fluid-model techniques will be utilized to show that 
the necessary and sufficient speedup for a NxN buffered crossbar 
with 1-cell crosspoint buffers is 2-1/N to deliver 100% 
throughput. Round robin scheduling is assumed, both among 
Virtual Output Queues in port cards and among crosspoint 
buffers in output columns. 

Index Terms—Packet switching, buffered crossbar, 
Throughput, Fluid models. 

I. INTRODUCTION

ROSSBAR switch fabrics have been studied 
extensively in the literature. In combination with Virtual 

Output Queuing (VOQ), the architecture provides a scalable 
solution with respect to memory access bandwidth. The 
crossbar can be either unbuffered or contain a small amount of 
buffering in each crosspoint. A bufferless crossbar requires a 
complex scheduling mechanism that matches input with 
output.  Due to the complexity of scheduling algorithms for 
bufferless crossbars, buffered crossbars are considered as an 
alternative. As originally proposed in [1], by adding a small 
buffer capacity in each crosspoint, it is possible to perform the 
scheduling decision independently among the output columns. 
The crosspoint buffers generate backpressure signals towards 
the VOQ’s in the port card to avoid overflow. The minimum 
crosspoint buffer size to maintain full throughput is 
determined by the round trip delay for the backpressure 
mechanism. As an alternative to small crossbar buffers in 
combination with VOQ, one may consider pure crosspoint 
buffering, however, this requires large buffer capacity in each 
crosspoint to reduce cell loss. 

It has recently been shown that a buffered crossbar switch 
with a speedup of 2 can emulate a pure output queued switch 
[7].  A similar result is available for bufferless crossbars:  
Emulation of an output buffered switch of size NxN is 
obtainable with a speedup of 2-1/N [8]. The emulation 
algorithm proposed in [8] is, however, much more complex 
than the one proposed in [7]. This result indicates that QoS is 
more easily supported in the buffered crossbar architecture.  

The performance of buffered crossbars with VOQ has been 

studied in various papers. The architecture was originally 
proposed in [1] where a simple round-robin scheduling 
scheme was compared to a more advanced scheme taking into 
account buffer size and cell age.  In [5], a stability analysis is 
performed for a CICQ (Combined Input and Crosspoint 
Queued) switch with one cell sized crosspoints. The switch 
uses Longest Queue First VOQ schedulers. Different 
combinations of scheduling algorithms are compared in [10].  
Longest Queue First, Oldest Cell First and round-robin were 
considered for VOQ scheduling in combination with Oldest 
Cell First and round-robin for the crossbar. The paper 
concludes that the performance is quite similar and 
recommends the round-robin approach due to its simplicity. 
The combined input one cell crosspoint buffered switch 
(CIXB) is compared to iSLIP and pure output queuing (OQ) in 
[10].  The delay performance of CIXB is better than iSLIP and 
close to that of an OQ switch. For unbalanced traffic, that is 
traffic with an uneven distribution of destinations, the CIXB 
will not support 100 % throughput even if the traffic is 
admissible. The throughput for unbalanced traffic is, however, 
better for CIXB compared to iSLIP. In [2] the study is 
extended to cover more than one buffer location in the 
crosspoints. Due to the round trip time for backpressure 
signals, a single buffer location in each crosspoint is not 
feasible. The high memory consumption is the main drawback 
of this architecture, and the results are mainly interesting from 
a theoretical point of view.  

Another benefit of a buffered crossbar compared to a 
bufferless crossbar is the less stringent synchronisation 
requirement between the port cards and the switch cards [9]. 
Bufferless crossbars require that all port cards are 
synchronized to the same clock.  

In this chapter, a buffered crossbar with one cell sized 
crosspoint buffers and round robin arbitration among VOQs 
and output crosspoint buffers is examined. It is shown, 
through fluid model techniques that a speedup of 2-1/N is 
sufficient to deliver 100 % throughput. It is furthermore 
shown, by example, that this value is also necessary, that is, no 
speedup values lower than 2-1/N can deliver 100 % 
throughput.  

Here, the switch architecture is described in more detail in 
section II. A lower bound on speedup is determined in section 
III based on a specific deterministic arrival pattern. In section 
IV, it will be shown by fluid model techniques that this 
speedup is also sufficient for delivering 100% throughput for a 
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wide range of admissible traffic patterns. Finally, section   V 
presents proofs and theoretical background for results stated in 
section IV. 

II. SWITCH MODEL

A crossbar buffered switch system of size N x N consists of 
N Input/Output port cards and a switch card implementing the 

2N  crosspoint buffers as shown in Fig. 1. Each input port card 
contains VOQs with one buffer for each of the N outputs. The 
switch model uses round-robin scheduling between VOQs in 
the port cards and also between crosspoint buffers in an output 
column. The output port card contains a buffer to store cells in 
case of speedup. In order to avoid overflow, the crossbar 
buffers will generate a backpressure signal towards the 
corresponding VOQ buffer in the port card.  

Port Card 1

Port Card N

Switch Card
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(1,1) (1,N)
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Fig. 1.  Buffered crossbar with 1-cell sized crosspoint buffers. The input 
buffers are organized as Virtual Output Queues, and the output buffers are 
required to perform rate adaptation due to speedup.  

Each crosspoint buffer has a capacity of one cell. It is 
assumed that in one switch card timeslot, a cell can be 
transferred from a VOQ buffer to a crosspoint buffer and 
further on to the output buffer, if possible. That is, the 
crosspoint buffers support cut-through. Backpressure from a 
crosspoint is asserted only if the cell must wait in the 
crosspoint buffer. These assumptions ensures full throughput 
for a single traffic stream at 100% load between input i and 
output j. On the other hand, if the crosspoint buffers would not 
have cut-through support, then a minimum speedup of 2 
would have been required to support 100 % load for this flow, 
since a cell must wait in the crosspoint buffer for one slot 
time.  

From a performance point of view, the crossbar buffered 
switch behaves like an output buffered switch for very large 
crosspoint buffers, and 100% throughput is achieved for all 
admissible traffic patterns.  This is, however, not the case for 
limited size crosspoint buffers. In [2], the reduction in switch 
throughput has been investigated for unbalanced traffic.  To 

increase throughput, a speedup S can be introduced between 
the port card and the switch card. The egress port card must 
then contain buffering to adapt between the different rates, as 
shown in Fig. 1. The results in [2] were based on a simulation 
study, however in this paper, fluid model techniques will be 
utilized to show, that a 100 % throughput can be achieved 
with S=2-1/N. Fluid models were used in [3] to show that with 
S=2, 100% throughput is obtained with a maximal matching 
algorithm (e.g. iSLIP [4]) in a bufferless crossbar. In [5], a 
fluid model analysis is performed for a buffered crossbar with 
one cell sized crosspoints and Longest Queue First (LQF) 
VOQ schedulers. With all traffic matrix elements less than or 
equal to 1/N, the switch was shown to deliver 100 % 
throughput. Furthermore, in [6] it was shown that a speedup of 
2 is sufficient to deliver 100 % throughput for all types of 
work-conserving schedulers. Also, algorithms exist that can 
make buffered and bufferless crossbars emulate an output 
queued switch, requiring a speedup of 2 and 2-1/N,
respectively [7][8]. Here, the special case of round robin 
scheduling [10] is examined. The main contribution of this 
paper is to examine a specific scheduling implementation 
(RR) and to derive a specific result which is a lower speedup 
than the general result in [6]. In the following section, a 
specific traffic scenario will be utilized to derive a necessary 
speedup value, 2-1/N. Later, it will be shown by fluid model 
techniques, that this speedup value is also sufficient. 

III. MINIMUM SPEEDUP

 The maximum number of timeslots required for a Head of 
Line cell in a specific VOQ buffer to be transmitted out of the 
switch card is composed of a delay in the VOQ scheduler in 
the port card and the output column scheduler in the switch 
card.  Assume that a cell is in head of line position in timeslot 
T=1. The VOQ scheduler will transmit the cell no later than in 
timeslot N, that is, (N-1) timeslots later due to Round robin 
scheduling. The output column scheduler will schedule the 
packet after (N-1) timeslots at maximum, which is timeslot 
T=2N-1. The next VOQ cell can be considered for scheduling 
in timeslot 2N.

The worst case departure rate for a specific VOQ is thus 1/T 
= 1/(2N-1). It is furthermore possible to find arrival 
distributions that reach this worst-case throughput.  Consider 
the following NxN traffic matrix that specifies arrival rates to 

ijVOQ :

µλλλ

λ

λ

λ

000
000
000

NNVOQ is assumed to contain more than one cell, and the 
arrival rates is given by )12(1 −= Nλ . Now, the matrix 
below shows the arrival timeslots to the VOQs: 
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− NN
N
N
N

121
000
000
000

The timeslots of departure is given in the matrix below: 

−−

+

+

12121
2000
1000

000

NN
N
N

N

In this case, the cell in crosspoint (N,N) will be scheduled in 
timeslot 2N-1, and in timeslot 2N, the above arrival pattern is 
repeated. This example shows that the departure rate from 
crosspoint (N,N) is limited to )12(1 −= Nµ .
If the traffic matrix elements fulfill the following condition 

Nij
1≤λ  ,  Nji ,...,1, =

then the switch will deliver 100 % throughput with a speedup 
of: 

NS 12max −==
µ

λ .

At this point, it has been shown that a speedup of S = 2 -1/N 
is necessary. In the following section, it will be shown that this 
speedup is also sufficient to deliver 100 % throughput for a 
very wide range of admissible traffic. 

IV. FLUID MODEL

Fluid models have previous been utilized to prove stability 
of various switch systems. The basic fluid theory is very 
comprehensive, and will not be derived here.  The contribution 
of this paper is an application of fluid models to show stability 
of a specific switch/scheduling architecture. The reader should 
consult [3] and its references for a full theory of fluid models, 
however, a very brief description of fluid limits is given in 
section V. 

The number of packets in ijVOQ in the beginning of 

timeslot n is denoted )(nZij . The cumulative number of 
arrivals and departures at the beginning of timeslot n are 
denoted )(nAij and )(nDij , respectively. Thus, the following 
relation holds: 

)()()0()( nDnAZnZ ijijijij −+= , 0≥n , Nji ,....,1, = .
It is assumed that the arrival process obeys the strong law of 
large numbers, that is: 

ij
ij

n n
nA

λ=
∞>−

)(
lim , Nji ,...,1, = ,

where ijλ is the arrival rate to ijVOQ . The switch is, by 
definition, rate stable if: 

ij
ij

n n
nD

λ=
∞>−

)(
lim , Nji ,...,1, = .

If the switch is rate stable for an admissible traffic matrix, i.e. 
traffic that fulfills: 

1≤

i
ijλ ,     1≤

j
ijλ ,

then the switch is said to deliver 100 % throughput. 
The fluid model of the switch is given by:  

)()0()( tDtZtZ ijijijij −+= λ ,   0≥t
The fluid equation is established by a limiting procedure as 
illustrated in [3]. This is discussed in sec V.A. 
 Now, the fluid model of a switch is said to be weakly stable, 
if for every fluid model solution ),( ZD , with 0)0( =Z ,

0)( =tZ  for 0≥t . The switch is rate stable if the 
corresponding fluid model is weakly stable. This result is 
shown in [3]. Note that all quantities will be fluid limits in the 
remainder of this section, therefore, no specific indication 
(bar) is given. 
As shown in the previous section, if Nij

1≤λ

and NS 12 −≥ , then 0)( =tZij for 0≥t , which implies that 

VOQ(i,j) is rate stable.  This result is actually based on 
specific knowledge of the scheduling algorithm that is, Round 
Robin both among Virtual Output Queues in port cards and 
among crosspoint buffers in output columns.
Now, if on the other hand Nij

1≥λ , the fluid model must be 

shown to be weakly stable. To prove this result, the following 
fact shown in [3] is used: Let f be a non-negative, absolutely 
continuous function with f(0)=0. Assume that for almost every 
t such that f(t)>0, f’(t)≤ 0. Then f(t)=0 for almost every t≥0. In 
order to find the function f(t), a matrix )(tCij will be 
introduced: 

Assume that Nij
1≥λ  and 0)( >tZij . Then, it can be 

derived that (see section V.B): 
−−+≤++

≠≠ ' '
''

'
'

'
' )(')(')('

i j
ijijjiij

jj
ij

ii
ji StZtZtZ λλλ

.
Now define: 

)()()()(
'

'
'

' tZtZtZtC ij
jj

ij
ii

jiij ++=

≠≠

,

thus 
−−+≤′

' '
'')(

i j
ijijjiij StC λλλ .

Since the traffic is assumed to be admissible, then 
0)(' ≤tC ij for 0)( >tZij , Nij

1≥λ  and NS 12 −≥ . The 

function f is now defined as: 
)()()(

,
tCtZtf ij

ji
ij ⋅= .

Note that if f(t)=0 then also 0)( =tZij for all i,j, and the switch 
is thus rate stable. The goal is therefore to prove that f(t)
equals zero. It is proven in section V.C that: 

)(')(2)('
,

tCtZtf ij
ji

ij ⋅= .
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Since 0)( ≥tijZ and 0)(' ≤tijC  it follows that f’(t)≤ 0 for 

f(t)>0, f(t)=0 for almost every  t≥0. As stated previously, this 
implies that 0)( =tZij for all i,j. Hence, the switch is rate 
stable (delivers 100 % throughput). It has now been proven 
that a speedup of 2-1/N is sufficient to deliver 100 % 
throughput for a wide range of admissible traffic patterns. 
 At this point it is interesting to note, that by having no 
assumptions on the scheduling algorithm, except that it is 
work-conserving, then the switch would be stable for 0≥ijλ

and 2≥S . This general result is, as stated previously, 
derived in [6] by using fluid models.  
 For large switch systems, the term 1/N is insignificant, and 
the required speedup for the 1-cell crosspoint buffered switch 
approaches 2, which is also the speedup required for bufferless 
crossbars with maximal matching schedulers, e.g. iSLIP.  The 
performance analysis in [2] shows by simulation that buffered 
crossbars with round robin scheduling performs significantly 
better than bufferless crossbars with iSLIP. However, in the 
general case, the worst case performance is quite similar, as 
indicated by the results in this paper.  

V. PROOFS AND THEORY

This section presents proofs of results from previous 
sections and sketches theoretical background for fluid models. 
[3] and its references contains a full theory of fluid models. 
Here, the fluid models and the fluid limits are only briefly 
covered in section A. The following section B derives an 
inequality which is a central part of the stability proof given in 
the previous section.  Finally, section C shows  

A. Fluid Limits 
The fluid model of a switch is determined by a limiting 

procedure, as illustrated in the following. First, continuous 
functions for the cumulative number of arrivals and departures 
(A(n) and D(n)) and  are defined for [ )1, +∈ nnt :

))()1()(()()(
)()(

nDnDntnDtD
nAtA

ijijíjij

ijij

−+−+=

=

Based on the continuous functions (Z,A,D), three new 
functions are defined: 

),(),(

),(),(

),(),(

1

1

1

ωω

ωω

ωω

rtZrtZ

rtDrtD

rtArtA

ij
r
ij

ij
r

ij

ij
r

ij

−

−

−

=

=

=

Note the explicit indication of the sample path ω. It can be 
shown [3] that for a fixed ω and any sequence }{ nr  with 

∞→nr for ∞→n , there exists a subsequence }{
knr and 

continuous functions ),,( ZDA such that for any t≥0 as 
∞→k :

))(),(),(()),(),,(),,(( tZtDtAtZtDtA knknkn rrr
→ωωω .

Any functions ),,( ZDA obtained through this limiting 
procedure is said to be a fluid limit, and it is easy to see, that 
fluid limits are solutions to the fluid equation of the switch.  

B. Inequality 
Consider crosspoint (i,j). Assume that 0)( >tZij , then by 

continuity of Z, δ∃ such that 0)'( >tZij for ∈'t [ δ+tt, ]. Set 

[ ]
)'(min

,'
tZa ijttt δ+∈

= . Thus, for large enough k,

2/)'( atZ knr
ij ≥ for [ ]δ+∈ ttt ,' and for large enough k,

12 ≥ar
kn . Thus, 1)'( ≥tZ for ∈'t [ )(, δ+trtr

kk nn ], which 
means that VOQ(i,j) holds at least one cell in the long interval 
[ )(, δ+trtr

kk nn ]. 
Now, the number of departures from VOQ(i,j) in the long time 
interval [ trtr

kk nn ′, ], ∈'t [ δ+tt, ] fulfills: 

KtrDtrD

trDtrDttSrtrDtrD

jj
nijnij

ii
njinjinnijnij

kk

kkkkk

−−−

−−−≥−

≠

≠

'
''

'
''

))()'((

))()'(()'()()'(

The equation states that there will be a departure from 
VOQ(i,j) in each timeslot except for the number of timeslots 
corresponding to the number of departures from VOQs
belonging to the same row or column as VOQ(i,j) (worst-
case).The equation above is valid for all types of work-
conserving scheduling disciplines, and is not restricted to 
round robin. Note that a small constant K is subtracted to 
compensate for e.g. truncations; however, it is not significant 
in the fluid limit. 

Dividing this equation with 
knr and letting ∞→k , fluid 

limits are obtained. Furthermore, by dividing with tt −' and 
letting tt →' , the inequality is expressed by the derivative of 
the fluid limit: 

≠≠

−−≥

jj
ij

ii
jiij tDtDStD

'
'

'
' )(')(')('

Now since )(')(' tZtD ijijij −= λ according to the switch fluid 
model, the following inequality is finally obtained: 

−−+≤++

≠≠ ' '
''

'
'

'
' )(')(')('

i j
ijijjiij

jj
ij

ii
ji StZtZtZ λλλ ,

when 0)( >tZij .

C. Derivative of f(t) 
The function f(t) defined in sec. IV is given by: 

406

Authorized licensed use limited to: D anmarks Tekniske Informationscenter. D ownloaded on N ovember 28 , 2009 at 15:50  from IE E E  X plore .  R estrictions apply. 



( )+

+

=−+

=++

=⋅=

′

′

′

≠≠

ji
ijij

ji j
jiij

ji i
jiij

ij
j

ij
i

ji
ji

ij

ij
jj

ij
ii

ji
ji

ij

ij
ji

ij

tZtZ

tZtZtZtZ

tZtZtZtZ

tZtZtZtZ

tCtZtf

,

, ',

'
'

'
'

,

'
'

'
'

,

,

)()(

)()()()(

)()()()(

)()()()(

)()()(

Consider the first part of the function f given by: 
==

',,
'

'
'

,
1 )()()()()(

iji
jiij

i
ji

ji
ij tZtZtZtZtf .

Thus, 
+=

',, ',,
''1 )(')()()(')('

iji iji
jiijjiij tZtZtZtZtf .

The two sums above yield the same result because the index 
ranges and products are identical. Hence, 

==

',, '
'

,
'1 )(')(2)(')(2)('

iji i
ji

ji
ijjiij tZtZtZtZtf .

Identical results hold for the remaining parts of f, thus 

′−′+′=′ )()()()(2)(
'

'
'

'
,

tZtZtZtZtf ij
j

ij
i

ji
ji

ij

and it is finally concluded that the derivative of f is given by: 
)(')(2)('

,
tCtZtf ij

ji
ij ⋅= .

VI. CONCLUSIONS

Buffered crossbars have several advantages compared to 
non-buffered crossbars including simpler arbitration, 
synchronisation relaxation and better performance. In this 
paper, it has been shown through fluid model techniques that a 
buffered crossbar with 1-cell crosspoint buffers delivers 100% 
throughput with a speedup of 2-1/N when Round Robin 
scheduling is assumed. The only assumption on the arrival 
process is that it obeys the strong law of large numbers.  The 
contribution of this paper is an application of fluid models to 
show stability of a specific scheduling mechanism. It has 
previously been shown that a speedup of 2 is sufficient to 
deliver 100 % throughput for any work conserving scheduler, 
however, by utilizing specific properties of the scheduling 
algorithm, a lower bound of 2-1/N could be obtained.   In a 
practical switch system, a larger crosspoint buffer size is 
typically required, due to backpressure latency. Therefore, it 
will be interesting to extend this work to cover more than one 
buffer position in the crosspoints.  

It was previously believed that the performance of a 1-cell 
crosspoint buffered switch would be significantly better than 
the performance of a buffless crossbar with iSLIP arbitration. 
However, since the -1/N is insignificant for large switch sizes, 
it is concluded that the worst case performance of the two 

switch systems in terms of throughput is quite similar, 
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