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Abstract:  A nonlinear index- guiding silica PCF is optimized for efficient second- harmonic 
generation through dispersion calculations.  Z ero group- velocity mismatch is possible for any 
pump wavelength above 7 80 nm.  Very high conversion efficiencies and bandwidths are found.  
©2006  Optical Society of America 
OCIS codes: 06 0. 2280 Fiber design and fabrication; 06 0. 2400 Fiber properties; 06 0. 437 0 Nonlinear optics,  fibers.   

Relying on quadratic nonlinearities,  second- harmonic generation (SHG) is widely used for efficient wavelength 
conversion devices in order to extend the spectral range of laser sources and to do all- optical wavelength 
multiplexing.  Efficient conversion from the fundamental to the second- harmonic (SH) mode requires a small phase 
mismatch between them.  Phase matching to the lowest order is typically achieved through a quasi- phase matching 
(QPM) technique [1],  whereby the group- velocity mismatch (GVM) sets the limits to device length and bandwidth 
for pulsed SHG.  In conventional fibers,  SHG with near- zero GVM was found for restricted wavelengths [2] while 
zero GVM was predicted using mode- matching [3].  For bulk media zero GVM was found for restricted wavelengths 
by spectrally noncritical phase matching [4] and by combining non- collinear QPM with a pulse- front tilt [5].  

Here we investigate efficient pulsed SHG in a poled silica photonic crystal fiber (PCF),  having a standard 
index- guiding triangular design with a single rod defect in the center.  The main design parameters of the PCF are the 
pitch Λ and the relative hole- diameter D=d/  .  The nonlinearity is induced,  e. g. ,  by thermal poling as has recently 
been demonstrated in PCFs [6 ].  We tune the phase- matching properties of SHG by exploiting the flexibility that 
PCFs offer in designing the dispersion properties [7 ].  Previous investigations [8] of SHG in PCFs considered the 
scalar case and found large bandwidths and strong modal overlaps for selected parameter values.  Instead,  we 
perform a detailed vectorial analysis over a continuous parameter space,  and show zero GVM for any fundamental 
wavelength 1>7 80 nm by merely adjusting  and D .  This is a much simpler way of removing GVM compared to 
previous methods [3- 5],  it promises very large bandwidths due to its flexibility,  and it is very efficient.   

A fiber mode can be described by an effective index neff=c / vph,  i. e. ,  the ratio of the speed of light c to the phase 
velocity of the mode vph=/ ,  with  the propagation constant of the mode.  The dispersive character of  gives a 
phase- velocity mismatch between the fundamental (1) and SH (2=21) modes,  which we classify through the 
index mismatch n=c[1/ vph(1)- 1/ vph(2)]=c(1/ 1- 2/ 2),  related to the phase mismatch =21- 2 as n=1/ 4 .  
The group velocity is instead defined as 1/ vg=/ ,  giving a GVM (walk- off) parameter d12=1/ vg(1)- 1/ vg(2).  

 
Fig.  1.  (a) GVM and (b) index mismatch in D and 1 space keeping =1. 6  m fixed.  The solid contour in (a) indicates zero GVM.  (c) shows zero 

GVM contours for different s (upper),  and the corresponding index mismatch along the zero GVM contour (lower).  (d) shows the D value as 
function of  that gives zero GVM for some selected pump wavelengths,  as well as the corresponding SHG bandwidth for a 10 cm fiber.   

We calculated the dispersion with the MIT Photonic- Bands (MPB) package [9].  A perturbative approach [10] 
was used to introduce chromatic dispersion,  allowing us to calculate data once over a large parameter space for  
unity,  and perturbatively calculate the changes as  was varied.  The result of the dispersion calculations is shown in 
Fig.  1.  The GVM and index mismatch are shown in Fig.  1(a, b) in the (D, 1) parameter space,  keeping the pitch fixed 
at =1. 6  m.  Along the the solid contour d12=0: thus,  zero GVM is possible for any 1>1 m by choosing a proper 
D.  Fig.  1(c) underlines that this is a general trend: there the zero- GVM contour is shown for selected pitches,  and we 
found d12=0 can be achieved for any 1>7 80 nm.  Figure 1(b) shows that zero index mismatch can never be achieved,  
even with non- zero GVM.  This holds also for other pitches,  so efficient SHG will require additional phase- matching 
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such as QPM (typical QPM grating periods,  2|lcoh|=2 / ||=1/ 2|n|,  range from 5- 100 m).  Figure 1 (c) shows the 
values of the index mismatch as the zero- GVM contour is traversed.   For =0. 7 0,  1. 0 and 1. 6  m a cusp appears 
around 1~,  after which |n| increases with 1.  This is because the fundamental mode is no longer well- confined in 
the core while the SH,  having a smaller wavelength,  is still well confined.  Conversely,  for the considered 
wavelengths the modes are always well confined for larger pitches,  explaining why a small |n| is observed there.   

Focusing on the telecom,  Nd:Y AG,  and Ti:Sapphire operating wavelengths (1=1. 55,  1. 06 ,  and 0. 8 m,  
respectively) Fig.  1 (d) shows the D - value required to get zero GVM as  is changed.  For 1=0. 80 m zero GVM 
requires very large D- values,  e. g. ,  D=0. 96  for =0. 7 0 m.  For such D - values deviations from the ideal circular 
holes must be expected,  which might influence the results.  We still highlight the results because SHG with zero 
GVM for 1=0. 80 m is not obtainable in standard nonlinear materials.  For 1=1. 06  m the lowest required D- values 
are in a range where the ideal round holes should be preserved.  The curves stop for larger  because it is no longer 
possible to get d12=0 (it would require D>1,  which is unphysical. )  For 1=1. 55 m a large D can be found for both 
large and small pitches,  but <2 m is preferred because the core is smaller leading to higher intensities.  In Fig.  1(d) 
we calculate the SHG bandwidth  by expanding  around 1 up to third order and assuming that a QPM grating 
compensates the lowest order term (as in conventional fibers [2]).  Since we have d12=0,  the 2.  order dispersion 
dominates yielding very large bandwidths.  Moreover,  because d12=0 the bandwidth of a fiber with length lF scales 
as 2/1−∝∆ Flλ (instead of 1−∝∆ Flλ  when |d12|>0),  so a longer device can be created without loosing too much 
bandwidth.  Note also in Fig.  1(a) the turn of the zero- GVM contour around D=0. 43 and 1=1. 55 m,  implying that 
the 2.  order contributions to the bandwidth term vanish,  giving an increasing bandwidth as observed in Fig.  1(d).   

Using the reductive perturbation method [11],  and assuming that the dimensionless (DL) propagating fields 
uj(z,t) can be decoupled from the DL transverse MPB modes e(x),  the DL nonlinear equations for SHG are 
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z is scaled to lF,  t to the input pulse length  ,  and x=(x , y) to the pitch  .  Integrating |uj(z , t)|2 over time gives the 
photon number of the mode.  The DL nonlinear coefficient  was found to scale as Λ∝ /Dσ : a large D gives a 
better mode confinement and a large overlap integral ρ∝ and decreasing  gives a smaller core and thus a larger .  
Integrating Eqs.  (1) under assumption of a continuous wave and undepleted fundamental,  the SHG efficiency is 

)2/(sinc2/)2/(sinc/ 222
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112 FFF llPlPPP βρωβτση ∆∝∆==  ,  where Pj=j|uj|2/  is the mode power.  In Table 1 

some designs are then shown for selected 1- values assuming a realistic poling strength of 1 pm/ V in the main 
direction of the (2)- tensor (the xxx - direction. ).  We find bandwidths large enough to convert down to lim=21 fs 
pulses,  and very high relative efficiencies '=/ P1lF

2 ranging from 5- 250 %/ (W·cm2).   
Table 1.  Efficient SHG with zero GVM.  Input pulse length =1 ps,  lF=10 cm,  main component of (2)- tensor 1 pm/ V.  
1 [m]  [m] D  [nm] lim [fs] |lcoh| [m]  ·10- 4 / P1 [%/ mW] '=/ P1lF

2 [%/ (W·cm2)] 

0. 80 0. 7 0 0. 96  13 7 3 2. 1 112 25 250 
1. 06  0. 85 0. 7 2 7 7  21 3. 7  49. 8 6 . 3 6 3 
1. 55 1. 6 0 0. 43 17 0 21 14. 4 11. 5 0. 5 5. 0 

Summarizing,  silica index guiding PCFs can be designed for efficient SHG with zero GVM for any fundamental 
wavelength above 7 80 nm,  simply by tuning the pitch and relative diameter of the air holes.  The design examples 
focused on important wavelengths of optical components: we found very high bandwidths (large enough for 21 fs 
pulse conversion) and very high efficiencies [5- 250 %/ (W·cm2)],  giving great promise for frequency conversion of 
short pulses with fibers.  Poling of PCFs have already been demonstrated [6 ],  so such fibers can readily be made 
once the QPM grating techniques have been successfully transferred from standard fibers to PCFs.  
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