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An Analog CMOS Chip Set for Neural 
Networks with Arbitrary Topologies 

John A. Lansner and Torsten Lehmann 

Abstruct- An analog CMOS chip set for implementations of 
artificial neural networks (ANN’S) has been fabricated and tested. 
The chip set consists of two cascadable chips: a neuron chip and a 
synapse chip. Neurons on the neuron chips can be interconnected 
at random via synapses on the synapse chips thus implementing 
an ANN with arbitrary topology. The neuron test chip contains 
an array of 4 neurons with well defined hyperbolic tangent 
activation functions which is implemented by using “parasitic” 
lateral bipolar transistors. The synapse test chip is a cascadable 
4 x 4 matrix-vector multiplier with variable, 10 bit resolution 
matrix elements. The propagation delay of the test chips was 
measured to 2.6 ps per layer. 

I. INTRODUCTION 
EVERAL approaches on artificial neural network (ANN) S implementations in analog VLSI technology have been 

reported in the literature. Among other things flexible topology 
[3], [12], [ l l ] ,  differential capacitive weights storage [4], [lo], 
[13], inner product multipliers [l], [2], [lo] and hyperbolic 
tangent activation functions [9], [ 101 have been considered. 
In this paper, we have combined and perturbated the existing 
solutions with our own work to obtain an efficient general 
purpose ANN in analog V L S I .  A ” ’ s  are often modeled as 

T s = hT,zT] 
where y is the neuron activation vector, g is the input vector, p 
is the connection strength (synapse) matrix and g is a nonline; 
function (a squashing function) [8], [7]. Thus a Kardware ANN 
could consist of a matrix-vector multiplier (a synapse chip) 
followed by a squashing function vector (a neuron chip); it 
turns out that this splitting of the synapses and the neurons on 
separate chips provides easy expandability for fully parallel 
systems [3], [7], (121. In this paper, we present such an analog 
CMOS chip set. 

11. THE HARDWARE 

The signal representation was chosen to ensure the desired 
cascadability: the neuron chip has current inputs and voltage 
outputs and the synapse chip has voltage inputs and current 
outputs. Using this current-voltage scheme, the outputs from 
several synapse chips can be connected to one neuron input, 
and the output from one neuron can be distributed to several 
synapse chips. Thus in principal, any ANN configuration can 
be made with these chips. 
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A. The Neuron Chip 

We have chosen the hyperbolic tangent, tanh, as the ac- 
tivation function for two reasons: 1) Due to the exponential 
nature of bipolar transistors the tanh is simple to implement 
and hence well-defined; 2) it has a convenient gradient func- 
tion which will make a future implementation of a learning 
algorithm for the ANN easy (simulations on required accuracy 
can be found in [7]). 

The neuron chip contains an array of neurons. Each neu- 
ron has three stages as shown in Fig. l(a)-(c). Because of 
the variable number of connected synapses per neuron, the 
neuron has to have an adjustable gain. The adjusted signal is 
transferred by a sigmoid function, the hyperbolic tangent. 

The input current i8,J (cf. (6)) is converted to a voltage 
U’ by an opamp with feedback. The feedback is a controlled 
differential resistance, Rgaln, being the gain-term factor. The 
“Double-MOSFET” method [l], [2], [14] with four NMOS 
transistors in the non-saturation region is used. We have the 
converted voltage 

1 

K N  2 Vgain ’ 
U‘ = Rgainis,J, Rgain = 

Vgain = Vgainl - Vgain2. (2) 

K N ,  W,, and L, denote the transconductance parameter, 
the channel width, and the channel length of the four M,  
transistors, respectively. Vga,, controls the gain-term factor. 
To keep the transistors operating in the non-saturation region 
we have Vgalnl, Vgaln2 E { lV, 5V) + Vgain E {OV, 4V). The 
voltage U’ is transferred by a hyperbolic tangent function to 
the voltage wOut. The tanh function is basically obtained from 
a differential pair of transistors. Using MOSFET transistors in 
the subthreshold mode is one possibility [9] but because of 
the signal levels we have instead chosen to use the “parasitic” 
lateral bipolar transistors inherent in a CMOS process, LPNP 
[5], operated in the active region. The difference current is 
given as a function of the voltage U’, 

icl - i c 2  = IblasQ tanh(v’/(2&)) (3) 
where V, is the thermal voltage and Q = - z c / i ~ ,  where 
Z E  and ic are the emitter- and lateral collector current, 
respectively, for a single LPNP. Because of the (vertical) 
substrate collector current we have Q M 1/2. The difference 
current is converted to a voltage by an opamp with feedback: 

‘%ut = Kef f RtanhIbiasa tanh(u’/(W)) ,  
1 

Rtanh > K a n h  = &anhl  - K a n h 2 .  (4) 
KN 2 K a n h  
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(a) 

Fig. 1. (a) Input stage of a neuron, the adjustable current/voltage converter. (b) Transfer stage, the hyperbolic tangent function. (c) Output buffer. 

Fig. 2. Inner product vector multiplier. The V , , ~ ~ ~ ’ S  and v ~ , ~ ~ ’ s  are input voltages and Zs,] is the output current. In the MVM, the u w , 3 2 k ’ S  are used 
as matrix elements and the t ~ ~ , ~ k ’ s  as elements of the input vector. 

Wt and Lt are the channel width and length of the Mt’s. Vtanh 

and Ibias control the magnitude of the output range. To keep 
the transistors working in the non-saturation region we have 
K a n h  E {ov, 4v). Kef controls the center of the output range. 

The transfer function for a neuron is given by (2) and (4), 

uout = Vref + RtanhIbiasa tanh(Rgainis,j/(2Vt)) (5)  

where Rgain and Rtanh are controlled by Vgain and K a n h  as 
stated in (2) and (4). 

B. The Synapse Chip 

The synapse chip is a parallel, cascadable, analog, CMOS 
matrix-vector multiplier (MVM) which is to be used both in 
the implementations of the A ” ’ s  and in the implementations 
of learning algorithms in the future. The synaptic weights are 
stored as differential voltages on capacitors-refreshed by a 
static RAM via a D/A converter [4], [13]. 

The (m x n) MVM consists of m inner product vector 
multipliers (IPM’s) as shown in Fig. 2 [I], [2], [lo]. (The 
MOS transistors are working in the nonsaturation region.) 
It can be shown [ l ]  that the IPM output current ideally is 
given by 

n 

. ( ~ / L ) z ( % ? , j i l  - % , j i 2 ) ( u y , i l  - wy,22) (6) 
i=l 

where gj is the transconductance of the output stage. The 
(v,,jil - uW,ji2)’s and (uy,il - uY,i2)’s are the voltage repre- 
sented coordinates of the to input vectors, uc - (uc1  - uc2)  
is the control voltage for the “Double-MOSFET” feedback and 

dzf 

Kef is a reference voltage. The (W/L),’s are the width/length 
ratios of the M, transistors. Setting wy,, = wY,,l  - uY,,2 a s, 

for all the IPM’s and u,,Ja = u,,Jal - u,,Ja2 a gJ2 for the 
j th  IPM gives the matrix-vector multiplier (cf. (1)). 

To save pins, single-ended signals was selected on the chip 
(costing 1 bit of resolution); that is 0 , , ~ ~ 2  = w c 2  = 2 V 
and 1 1 ~ , ~ 2  = Vref = -2  V. To ensure good resolution and 
high noise rejection (at the cost of linearity), large input 
voltage levels were selected on the synapse chip: lu,,JZlmax - 
~wy,,~max = 1 V. The transconductor was implemented with 

inputs of the IPM’s are 
used as inputs for the matrix elements, these elements can be 
stored on the chip as charges on capacitors [4]. A differential 
sampling scheme [4] is used to write the matrix elements 
on the capacitors to reduce the effect of charge injection [6] 
and leakage currents. This way only four transistors and two 
capacitors are essentially needed for each matrix element, thus 
making the potential dimensions ( ( m  x n)max) of the matrix 
large. The matrix unit element (a synapse) is shown in Fig. 3. 
In addition to the m IPM’s, there is a row- and column-decoder 
on the synapse chip, which are used to address the synapses. 

def 

def 

- 

g3 = 100 ps. 
As the high impedance 

111. EXPERIMENTAL RESULTS 

A IC = 4 input/output neuron chip and a n = 4 input, 
m = 4 output synapse chip has been fabricated to illustrate the 
principle of operation. A neuron chip with 100 neurons and a 
synapse chip with 5 loo2 synapses should be feasible. The 
area overhead on the synapse chip caused by opamps, feed- 
backs, transconductors and address decoders is 224973 pm2 
(or presently 6 x synapsearea) per row. 
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TABLE I 
MEASURED CHIP CHARACTERISTICS 

Property Value 
~ 

Bits Notes 

Neuron size 
Neuron nonlinearity 

Neuron derivative nonlinearity 
Neuron input offset 

Neuron output offset 
Neuron propagation delay’ 

LPNP e / c  current gain 
Synapse size 
Matrix offset 

Matrix resolution 
Synapse nonlinearity 

Synapse output offset 
Synapse input offset 

Synapse propagation delay’ 

Matrix write time’ 
Matrix (weight) drift 

Weight range 
Layer propagation delay’ 

6 LSBp. 
26 LSBR 
26 LSBa 
1 LSBp. 

112 LSBs 
112 LSB1 

2 LSBn 
114 LSBp. 
21  LSBR 

14 LSBR 
1 LSBR 

112 LSBa 
112 LSBl 
118 LSB8 

0.07 LSBs/s  

(4  LSBs) 

112 LSB8 
112 LSBi 

C L  =: 16 pF 
~ n apscchip 

Reducible by Z 50%, 

Estimated 

‘Time from input change to output has settled within 1/2 LSB. 
2Necessary length of write pulse that ensures the output will settle within 118 LSBR 

Neuron function 

3 20 

- 0  

Z -25  

-50 0 50 -1 - 0 5  0 0 5  1 

Input current I-s.1 I uA Input voltage v j . 1  I V 

(4 ( b) Fig. 3. 
( 0 ~ , ~ 1  - 
and 22. 

Matrix unit element (synapse) that calculates ( t ,u ,,tl - v, J , 2 )  
and add this product as a differential current to the lines 1 1  

Fig. 4. Measurements. (a) Neuron transfer characteristics. The dotted lines 
are the desired tanh functions. (b) Synapse transfer characteristics. 

A summary of the most important properties of the chips 
is shown in Table I. 1 LSBx is one least significant bit for an 
X bit resolution of the appropriate signal. The nonlinearity, 
D of a quantity [ is defined as the maximum deviation from 
the desired value: D sf maxEIf(6) - < l / l [ l m a  where f ( . )  
is a nonlinear function. The offset errors and the nonlineari- 
ties cited in the table are caused by device mismatch (e.g., 
threshold voltage variations) and nonideal components (e.g., 
the channel mobility is field dependent) [14]. 

A measurement of the neuron transfer characteristics can 
be seen in Fig. 4(a). The maximum deviation from the desired 
tanh functions, D,, is about 2% of the output range. The gain 
is adjustable with a range of 1:30 (0.1 V < Vgain < 3 V). 
The derivative of vOut with respect to as,? has been compared 
to dtanhs/ds. The deviation ( D d g )  is less than 10% of the 
maximum value of dvout/dzs,j. 

The synapse transfer characteristics is shown in Fig. 4(b). 
The characteristics showed a good linearity (Ow, 5 3% or 
5 bits accuracy)-with the exception of the case with negative 
v,,ji values and positive wy,i  values (Dwy 5 16%). This is 

due to the fact that it was necessary to lower VSS to ensure a 
reasonable output current swing. The problem can be solved 
by improving the transconductor and the resulting nonlinearity 
is estimated to D,, 5 3%. The synapse matrix resolution 
(i.e., the smallest Avw,ji distinguishable at the output) was 
measured to V,,,, 5 2 mV or 10 bit at the least for a 2 V 
range of “matrix voltages” (note that we distinguish between 
resolution and accuracy). This should be sufficient for a range 
of ANN applications [7 ] .  

The output offset currents on the synapse chip and the input 
ofjset currents on the neuron chip are quite large. The reason 
could be that the opamps have low gains (< 60 dB), which 
together with opamp offset voltages of 2 mV would give the 
measured current offsets. This, however, is not necessarily a 
major problem (provided that the network is trained and used 
using the same chips) as the offset currents just displaces the 
neuron biases [8]. Likewise the matrix offset voltages could 
be used as small, random, initial weights when the network is 
trained. It should be noted that the offset errors are (mostly) 
nonsystematic. 
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Input voltage v y , l  I V 

(a) 

Fig. 5. Measurements. (a) Transfer characteristics for synapse plus neuron 
(corresponding to a layer in an ANN). Vgain = 0.25 V. (b) Step response 
for synapse plus neuron. 

Finally measurements on two interconnected chips were 
made. In Fig. 5(a) the combined transfer characteristics of a 
synapse followed by a neuron is shown. The step response of 
the synapse-neuron combination is shown in Fig. 5( b). The 
delay through one layer of an ANN based on our chips can be 
measured on this curve: for an 8 bit output accuracy we have 
tpd 5 2.6 ps. Experimental results on an ANN based on the 
chip set are not yet available-a PC expansion board is under 
development and results should be available in the near future. 

IV. CONCLUSIONS 

In this paper we have presented two cascadable, analog 
CMOS chips: a neuron chip and a synapse chip. The chips 
have been tested and have shown excellent properties with 
respect to ANN applications: 

The neuron function is well-defined, and the derivative 
can be calculated directly from the output voltage. LPNP- 
transistors work well as a differential pair. The adjustable gain 
ensures that the numbers of connected synapse inputs can be 
variable within a wide range. 

The synapse matrix resolution is about 10 bits and the 
leakage currents in the capacitors holding the matrix elements 
are extremely small. The multiplication nonlinearities are 
probably of magnitudes that can be tolerated in some ANN 
applications, though it is a problem that must be solved. 

The propagation time through the synapse and neuron chips 
is &her small (2.6 ps), even though the opamps are quite 
slow. And as the propagation time is essentially independent 
of the number of devices cascaded, it is possible to get a very 
high throughput using these chips. The offset errors on the 
chip set are rather large but it should be possible to reduce 
them somewhat. 

In a conclusion, large, fast, accurate, analog neural networks 
with arbitrary topologies can be implemented by using full 
size neuron chips (with 100 neurons) and synapse chips (with 
loo2 synapses). 
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