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Full-Wave Analysis of a Two Slot 
Microstrip Filter Using a New Algorithm 
for Computation of the Spectral Integrals 

Ulrich V. Gothelf, Student Member, IEEE, and Allan Plstergaard, Member, IEEE 

Abstract- An integral equation is formulated in the spectral 
domain for a two slot microstrip filter using the exact Green’s 
function for the grounded dielectric substrate. Using a moment 
method (MM) procedure, the integral equation has been dis- 
cretized. The elements of the impedance matrix and the excitation 
vector are given by two dimensional Sommerfeld type integrals 
in closed form. An efficient and accurate numerical integration 
scheme for computation of the elements is presented. The S 
parameters obtained from the MM procedure have been found 
to be in excellent agreement with measurements. 

I. INTRODUCTION 
N THE PRESENT communication we consider the mi- I crostrip filter problem shown in Fig. l .  An integral equation 

for the filter problem is derived using the exact Green’s 
function for the geometry. Hence, both free space radiation 
and surface waves are included in the solution. Using basis 
functions modeling the incident, reflected and transmitted 
currents on the filter [l],  the integral equation is solved 
numerically for the scattering parameters using a Galerkin 
type MM procedure. 

The elements of the impedance matrix and source vector ob- 
tained from the MM procedure are given by two dimensional 
integrals over the spectral coordinates IC,  and IC,. 

Instead of integrating these integrals in the polar coordinate 
system [l], an efficient and accurate scheme is applied in 
which the integrals are integrated in the Cartesian kz and 
k, coordinates using a deformation technique in which the 
integration contour follows a path parallel to the imaginary 
axis in the complex plane for one of the integration variables 
[2] while the other integration variable is integrated along the 
real axis using the weighted average algorithm [3]. In this 
communication no approximation for the Green’s function is 
used nor are the integration limits truncated. 

In order to test the integration algorithm, the microstrip 
filter problem was chosen since the space radiation and surface 
wave radiation at resonance were expected to be substantial, 
hence the transfer function of the filter would be suited 
for testing against precision measurements using a HP8510 
network analyzer. 
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Fig. 1. Geometry of microstrip filter. 

11. THEORY 

In Fig. 1, the outline of the microstrip filter is shown. The 
filter is in the form of an infinite microstrip line in which two 
narrow gaps are cut. The substrate has thickness d, relative 
permittivity E ,  and is assumed to be infinitely wide in the 2 
and y directions. The filter lines are assumed to be infinitely 
thin and perfectly conducting. Since the width of the filter 
lines are narrow in terms of wavelength, we consider only 2- 
directed surface currents. [4] 

Green’s Function for the Grounded Dielectric Slab: 
Using the spectral domain Green’s function, we obtain the 

x-directed electric field at (2: y,  d )  from an 2-directed current 
distribution [5], [6]: 

03 1 
= 11, Gzx(ICz, ky)Kz(kx ,  k y ) e ~ k x x e ~ k ~ y d k x d k y  

where 

0018-9480/93$03.00 0 1993 IEEE 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:49 from IEEE Xplore.  Restrictions apply. 



102 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 1 .  JANUARY 1993 

K,(z, y, d) is the 2-directed electric surface current distribu- 
tion on the microstrip filter lines. 

G,, = - jv - 

Because of the z-dependence of the x-directed current distri- 
bution ( 1 )  is reduced to (12), [I]: 

~,,(x,y, d)  = 11 G,, (ke ,  ky)R,(ky)ejkyyd~,. (12) 
00 

IC0 47r2 --M 

Infinite Microstrip Line 

An accurate solution of the microstrip filter problem requires 
that the effective propagation constant I C ,  for the current 
distribution on the half infinite microstrip lines is computed 
accurately. The effective propagation constant is computed 
from the corresponding infinite microstrip line problem where 
we have assumed the traveling-wave form e - j k e X  [l] for the 
z-dependence of the 2- directed current distribution. 

Since the main computational effort is spent computing 
the impedance matrix elements obtained from the Galerkin 
procedure, a judicious choice of basis functions is important 
to obtain a convergent solution using a minimal number of 
basis functions. The y-dependence of the current distribution is 
expanded in a set of entire domain Maxwellian basis functions 
(10) which are also used as test functions [7, p. 3421. The 
Maxwellian functions satisfy the proper edge condition for 
the surface current and are even functions in the transverse 
coordinate y, as required by the symmetry of the geometry. 

The method of solution involves formulating an integral 

Applying Galerkin’s method of moments on (12) yields 

where 

Since IC,  is found to be larger than the surface wave poles in 
the Green’s function, all elements in (14) are pure imaginary 
[ 11, [8]. Hence (13) can be converted to a real matrix equation. 
For the proper value of IC,, the determinant of the 2 matrix in 
(13) is zero. Starting with an assumed value of k, ,  the secant 
root seeking method is used for obtaining the true value of k,. 
When IC,  is determined, the C, coefficients are obtained as an 
eigenvector to the Z-matrix in (13) [7, p. 3421. 

The C, coefficients given by the eigenvector (C, = 1) are 
subsequently used for the incident, reflected and transmitted 
waves on the half infinite microstrip lines. 

Microstrip Filter 

Having determined the effective propagation constant and 
the C, coefficients for the y-dependence of the current distri- 
bution on the infinite microstrip line, we define an incident, a 
reflected and a transmitted electric current. Using R and T for 
the reflection and transmission coefficients respectively, the 
2- and y-dependence of the incident, reflected and transmitted 
currents [I]  may be written in the form (17): 

equation for the 2-directed electric field on the microstrip line 
which is discretized using the Galerkin’s method of moment 
procedure. The linear system obtained is subsequently solved 

( 9 4  

K,,, + K r e f  = ((1 - R) f s l ( z )  -j(l +R)f,z(z))f(y) (17) 

where 
for the unknown expansion coefficients: fsl(2) = fs ( k e ~  + t) , f s 2 ( 2 )  = f s ( k e 2 )  (18) 

sinu 
fs(u) = { 0 otherwise 

-MT < u < 0 

In the spectral domain, the basis functions are given by 

+ Jo ( I C ,  ; - ( q  - 1 I T ) )  ; q = 1,2,  . . . . 

(11) 

sinu O < u < M r  
0 otherwise 
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Fig. 2. Expansion modes on the microstrip filter. 

Whether M in (19) and (22) is an integer value or not is of no 
consequence for the numerical convergence of the correspond- 
ing integrals obtained later from the Galerkin procedure when 
computed by the integration scheme described in this paper. 
However, M is chosen as an integer since this yields a simpler 
expression in the spectral domain. Numerical tests indicate 
that the solution to the filter problem is almost independent 
of M when the traveling wave modes are longer than five 
wavelengths ( M  = 10). For the computations in the present 
paper, we have used M = 15. 

Subsectional piecewise sinusoidal (PWS) modes have been 
used for modeling the x-dependence of the current in the 
vicinity of the gaps as shown in Fig. 2. The PWS modes 
are defined 

where 2hn is the width and xn is the position of the 
centre of the nth PWS function. The y-dependence of the 
N , / ,  x-directed PWS modes are expanded into a sum of N y  
Maxwellian modes (10). 

Substituting the true current with an expansion using the 
basis functions described, the x-directed E-field at the upper 
surface of the dielectric layer may be written in the form of 

an integral equation (25): 

103 

Equation (25) is tested with ( N ,  + 2)Ny PWS test functions 
( lo) ,  (24). Since the traveling wave modes are obtained 
from the solution of the infinite microstrip line problem, 
the boundary condition for the tangential electric field is 
automatically satisfied away from the gaps. Hence, it is only 
necessary to test (25) in the gap regions. 

The PWS test functions are located as the PWS basis func- 
tions are, except for the two additional test functions necessary 
to obtain the same number of equations as unknowns. The two 
additional test PWS functions are located immediately after 
the last PWS basis function at each side of the two gaps. The 
y-dependence K, (9) of these two test functions are assumed 
identical to the traveling wave modes. 

The impedance matrix elements can then be defined using 
the following indices: 

n Index of PWS basis functions x-dependent part 
q Index of PWS basis functions y-dependent part 
m Index of PWS test functions z-dependent part 
p Index of PWS test functions y-dependent part 
tl  Additional test functions on the left microstrip line 
t 2  Additional test functions on the right microstrip line. 
The testing procedure results in a matrix equation for the 

unknown coefficients R, T ,  K11, . . . , Knq, . . . KN,  N ,  . 
A simple example with two PWS modes on the centre strip 

(and none on each of the half infinite lines), each expanded 
in two Maxwellian modes for the y-dependence, yields matrix 
equation (31), which is shown at the bottom of the next page. 
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- -z11s1 + j Z l l S 2  - 
-21291 + j z 1 2 s 2  

- z 2 1 s 1  + jZ2h-2  

- 222Sl  + j z 2 2 s 2  

- Z t l s l  + j Z t l S 2  

- - 2 t 2 s 1  + j z t 2 s 2  - 

- - 
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(31) . 

111. COMPUTATION OF THE z AND THE v ELEMENTS 

The main computational effort when solving the filter prob- 
lem is the numerical computation of the individual elements 
in the impedance matrix Z and the excitation vector V. The 
elements are given by two dimensional Sommerfeld type 
integrals given in closed form in (26) to (30), which is shown at 
the bottom of the previous page. The integrands contain poles 
corresponding to the generation of surface waves. Further- 
more, the integrands are rapidly oscillating as k-2 + k; + co3 
especially as the distance between basis and test functions 
increases. 

Usually, the spectral domain integration intervals in (26) to 
(30) are transformed into finite and semi-infinite intervals by 
changing the Cartesian integration variables (k,, Icy) into the 
polar integration variables (A, 4) [3], @I, [91. 

One difficulty when using the polar integration scheme is 
to compute the 4 integration accurately since the oscillation 
frequency of the integrand is directly proportional to the 
integration variable A. Attempting to truncate the semi-infinite 
integration interval for X in order to set an upper bound for the 
oscillations in 4 reduces the obtainable numerical accuracy of 
the integral which is slowly convergent. 

In this work, the numerical computation of the integrals is 
made in the Cartesian coordinates (k,. Icy) without truncation 
of the infinite intc-vals. 

Since f a  and f b  are real functions and G,, is an even 
function of k,  and of k ,  the integrals in (26) to (30) can 
be written as in (32): 

E 

2 = s_, s ( ~ y ) f a a ( ~ y ) f ; b * ( ~ , ) d ~ y  

= .lnm 
S ( k y )  = 1, Gzz(&. k y ) s a ( ~ z ) f b * ( ~ , ) d k ,  

= Lm 

S(kY 1 ( f a  (IC, ) sb* ( kY ) + f:  ( k ,  1 f b  (ky 1) d k ,  (32) 

where 
00 

Gzz ( k ,  3 Icy) ( f a  ( k z ) f ;  (kz ) f f l  (kz) f b  (ks )) d k z .  

(33) 

The singularities of the Green’s function are located in the 
range tk; < kf + k i  < t T k ;  [ 111 and correspond to transverse 
magnetic surface waves T,(X) = 0 and/or transverse electric 
surface waves T,(X) = 0. In the (k,> ICy) plane, the poles are 
located on concentric circles. Hence, when integrating along 
a contour parallel to the ky axis, the position of singular 
points (if any) depends on the value of k,. In order to 
avoid the difficulty of I C ,  (Icy)-dependent singular points when 

. 

1’ Im(kx) 

- K 1 1  

K 1 2  

K 2 1  

K 2 2  
R 

- T  

A Re(kx) 

Fig. 3. Integration contour used in the complex k ,  and E ; ,  planes. 

integrating parallel to the ky(kz) axis, the integration path has 
been deformed into the complex ky(k,)  plane in the range 
from 0 to (1 + &)ko using the Cauchy integration theorem 
[12]. The deformed integration path used for both the k ,  and 
the k ,  integration variables is shown in Fig. 3. 

Altemative integration contours have been investigated. 
Rexberg [9] uses the upper half of an ellipse for the integration 
path in the X plane. In [2a], a triangle is used for the integration 
contour in both the k ,  and the k ,  planes. 

The integration path cannot be arbitrarily deformed into the 
first quadrant for the IC,  variable when using the approach 
described in the present paper since the integration contour 
chosen later for the k, variable introduces branch cuts in this 
quadrant. Furthermore, care must be taken when choosing the 
path for numerical reasons. If the path is too close to the 
singular points on the real axis, the values of the integrand 
become too large for accurate numerical computation. On the 
other hand, if the integration path is too far from the real axis, 
the integrand increases exponentially in amplitude. 

It is necessary to integrate the three linear parts of which 
the deformed contour is composed independently since the 
path itself is not differentiable. In spite of this, we found from 
numerical experiments that the integration contour in Fig. 3 
was more efficient in terms of integration points for a given 
accuracy than the elliptic path in the complex k ,  and k ,  planes. 
Furthermore, we found that the optimum values for Im(k,) 
and Im(ky) to be about O . l k 0 ,  which is similar to the value 
choose by Newman and Forrai [lo] for the deformation into 
the complex X plane. 
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It is important to note that the integrand must be analytical 
when the Cauchy integration theorem is used. Hence, the 
complex conjugated terms in (32) and (33) must be computed 
as if kx and I;, where pure real because the k: and k; terms 
are not analytical. 

The k ,  integration of (32) in the interval from (&+ l ) k ,  
to kasymp = 45/W is made using the Gauss-Legendre 
integration algorithm. For k ,  larger than the product 
between the basis and test functions in (32) is written as a 
sum of functions (34) each composed of an oscillating and 
a nonoscillating part given in closed form using the Jacobi 
asymptotic expansion [ 131 for the zero order Bessel functions. 

. fa (ky) . f l (ky)  + .f:(ky).f6(kv) = Az(ky) cos(wzk,). (34) 
a 

For the Maxwellian basis and test functions used for the 
transverse dependence of the microstrip line current, the right 
hand side of (34) contains two terms. One term has twice 
the oscillation frequency of the Bessel functions while the 
other term becomes nonoscillating. The integration of the 
nonoscillating part is made using the Gauss-Legendre inte- 
gration algorithm after applying the variable transformation 

(35) 

(35): 
1 1 

V =  - d k ,  = --dv 
k ,  v2 

= L1la4 G x ,  (k,, i) Ai (:) $dv:  for wi = 0 

(36) 

Distribution of Integration Points: Integration of the oscil- 
lating part is made using Mosig’s weighted average algorithm 
[3]. We have used 25k, integration points for each of the 
sections of the integration contour above the branch point 
and surface wave poles. In the interval from (6 + 1)ko to 
kasympr look, integration points have been used. Twelve inte- 
gration points have been used for the nonoscillating integral in 
(36) while 24 point have been used with the weighted average 
algorithm (4 half periods each determined using 6 integration 
points) for the oscillating part. 

The (25 + 25 + 25 + 100 + 12 + 24) = 211 integration 
points used for the k ,  integration determines S ( k z )  with 6 
significant digits. 

S(k,) in (33) is tabulated for all the values of k,  used later 
with the numerical integration in the k ,  direction. The integral 
(32) is calculated using an identical integration contour for the 
k ,  integration above the branch point and surface wave poles. 

The I;, integration from k, = (6 + l )ko  to infinity 
is determined using deformation of the integration contour 
parallel to the imaginary axis [12]. 

Yang [2a] has applied this technique for rooftop basis 
functions and an asymptotic approximation for the Green’s 
function. 

In this work no approximations with respect to the Green’s 
functions are used. Furthermore, our approach is general in the 
sense that the impedance matrix elements can be computed 
regardless of the basis and test functions chosen. 

The weighted average algorithm is less efficient for the k ,  
integration when compared to the deformation technique since 
the contribution from each of the oscillating terms in (34) must 
be computed independently. 

The combination of basis and test functions is rewritten 
into a sum of amplitude functions multiplied by exponential 
functions with pure imaginary arguments: 

.f,(k,).f;(~c,) + . f ; ( k x ) f b ( k x )  = C A , ( k , ) e 3 ~ ~ k ~ ; w 2  E R. 
2 

(37) 
From (32) and (37) we obtain 

E + l P o  - 
z = S(kz)(ja(kx)jl*(kz> + ~l(kz)fb(kz))dkz 

+p2 (38) 
2 

oc 
where 

S( k.,.)A, ( k x ) e 3 d %  IC, dk ,  . (39) 

It is important that all the integrands are analytical and that 
the integration contours do not cross any branch cuts. These 
conditions are met for the integrand in (39). In Fig. 4, it is 
shown how the deformation and the transformation is made 
for w, > 0. 

We have proved that the integration contour along C& does 
not contribute to 2, (39). Hence the integrals along CT and 
C$ are identical. 

zz = i6+1)ko 

We define 

F;(k , )  = S(k , )A&) .  (41) 

The path C$ is given by 
dk, 
d t  k , = A + j t  - = j  

t E  [0,30] whereA= (&+l)k0 .  

From (40), (41) and (42) we obtain 
30 

2, = 1 F,(A + j t ) e J ( A + 3 t ) d ‘  3 . d t  

- - je3Ad2 Lm F,(A + j t )eCdZtd t  w, > 0.  (43) 

Since the integrand in (43) is decreasing exponentially, the 
variable transformation (44) yielding a finite integration inter- 
val can be applied without introducing numerial difficulties. 

Using (44) upon (43) we obtain 

For wi < 0 a similar procedure is used. For w, = 0 the variable 
transformation (35) is applied for the k ,  variable. 
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Im(ki/ko) 

Oa20 I 

Re(ki/ko) 

Fig. 4. Deformation of integration contour. 

In summary, see (46), which is at the bottom of this page. In 
(44) we have introduced a constant g > 0. The value of (46) 
is independent of g. However, the location and the number 
of integration points necessary for the numerical computation 
of the integral in (46), given a certain accuracy, is dependent 
upon the actual value of g. Hence, the optimum, in terms 
of the computational effort, is to minimize the sum of the 
number of integration points used with the selected values of 
9. 

In all the integrals for the filter, we only use G,, from 
the dyadic Green's function, however the integration scheme 
described in this paper can be applied for any of the remaining 
elements in the dyadic Green's function. 

Since G,, is an even function of k z l ,  one may ignore the 
branch cut due to k,l = d m .  The branch cut 

due to k,z = ,,/- which applies for G,, is shown 
in Fig. 5. From Fig. 5 we appreciate that either the k, or the 
k, integration must be performed along a contour parallel to 
the real axis. 

For the I C ,  integration, (25 + 25 + 25 + 12 + 2.50) = 187 
integrations points are used. The first 75 points are used for 
the deformation contours above the surface wave poles. The 
12 integration points are used for the nonoscillating part in 
(46). The remaining 2*50 points are used for the deformation 
into the first and fourth quadrants of the complex plane. 

The accuracy obtained for the elements of 2 and V are 4 
to 5 significant digits regardless of the distance between the 
basis and test functions. The accuracy of the current vector 
(31) is also 4 to 5 digit. 

2.0 

1.5 

1 .o 
0.5 

Im(kx/ko) 

No branch cuts 

YI 

1.2 

No branch cuts 

0.0 1 .o 2.0 3.0 4.0 
Re( ky/ko) 
(b) 

Fig. 5.  Branch cuts. (a) In the complex k r .  (b) In the complex k ,  plane. 

In order to minimize the computational effort, the basis and 
test functions are divided into a k,-dependent part and a IC,- 
dependent part. These parts are calculated once per k , ( k y )  
integration point. G,, (IC, ,  Icy) is calculated once per ( I C z .  ky ). 
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Fig. 6 .  Current distribution at first resonance. Input parameters: Substrate: 
RT/duroid 5870. d = 0.7874 mm, e, = 2.33 Dimension of the filter: 
11. = 2.30 mm, G = 0.3  mm, L = 10 mm. Frequency = 9.66 GHz. 
Basis functions: (41, 41. 41)*3. 

Fig. 7. Current distribution at second resonance. Input parameters are the 
same as used in Fig. 6 except for the frequency. Frequency = 19.32 GHz. 

IV. RESULTS 

Using the described procedure for computation of the ele- 
ments in (31), the current distribution on the filter has been 
determined from solving the linear equations. In Fig. 5 ,  6 and 
7, the current distribution at the first and second resonance 
frequency are shown. The value of the current distributions 
at the edges are not shown due to the edge singularity. 
The number of basis functions used for modeling the filter 
currents are written using the notation (z, y, z)*’u. The x, y 
and z denote the number of PWS basis functions used for 
modeling the current on the input, centre and output microstrip 
line respectively. ‘u denotes the number of Maxwellian basis 
function used for the y-dependence. Regardless of the number 
of PWS basis functions, their base covers the area indicated 
in Fig. 2. 

In Figs. 6 and 7, a standing wave at the semi-infinite input 
microstrip line and a transmitted wave at the semi-infinite 
output microstrip line can be observed. The excited currents 
on the centre microstrip line demonstrates the first and second 
resonance. Since the z directed current is singular at the edges 
parallel to the x axis (IO),  the current shown in Figs. 5, 6 and 
7 does not include the current value at the edges. 

0 

-5 

-10 
dB 

-15 

-20 

-25 

__ 

107 

-30 1 -~ 

9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 
Freq/GHz 

Fig. 8. Amplitude of the Sll and S21 parameters for the microstrip filter. 
Input parameters: Substrate: RT/duroid 5870, d = 0.7874 mm, f r  = 2.33 
Dimension of microstrip filter: b1. = 2.30 mm, G = 0.3 mm, L = 10mm.  

In Fig. 8, the amplitude of Sll and Sal are shown. Four 
sets of curves corresponding to (9, 9, 9)*3, (27, 27, 27)*3, 
(41, 41, 41)*3 and (71, 71, 71)*3 PWS basis functions are 
shown. From Fig. 8 it is seen that the convergence of the S 
parameters is dependent of the number of PWS basis functions 
used for the computations. 

This dependence is due to the slope of the current expansion 
functions at the gaps being limited by the PWS functions used 
for the expansion. Clearly, increasing the number of PWS 
modes increases the possible slope of the current at the gaps, 
resulting in a better approximation to the true current. 

The computations are shown together with measurements 
in Fig. 9. The 15’11 I and ISzll parameters have been measured 
using a HP8510 network analyzer from which the power lost 
to surface waves, radiation and losses in the dielectric and 
conductors are computed. We observe a 0.85% deviation of 
the computed resonance frequency and a maximum deviation 
of 0.6 dB of the (5’111 and lSzll parameters at resonance. 

To obtain improved numerical results without increasing the 
number of basis functions, it is necessary to use a new type 
of basis function in proximity to the gaps which allows for 
the true slope of the current at the gap edge. Investigations of 
this type are underway. 

V. CONCLUSION 

A full-wave analysis has been presented for the problem of 
microstrip gap discontinuities. The S11 and Szl parameters of 
the two gap microstrip filter have been computed numerically 
and compared with measurements. The agreement is excellent. 
Plots of the current distribution and the parameters have been 
presented. The spectral integral has been computed using a 
new integration algorithm which is both fast and accurate. 
The method is efficient in terms of the number of integration 
points needed for convergence. The basis and test functions are 
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-30 
9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 

Freq/GHz 

- Measured 
Calculated (7 1,7 1,7 1).3 

(b) 

Fig. 9. Measured and computed amplitude of the SI] and S21 parameters. 
(a) Amplitude plot of the measured and computed S-parameters and power 
loss. (b) Measured and computed S-parameters in Smith chart. Input param- 
eters: Substrate: RT/duroid 5870. d = 0.7874 mm, t7. = 2 .33  Dimension of 
the filter: CV = 2.30 mm, G = 0.3  mm, L = 10 mm. Frequency sweep: 
9.2 GHz to 10.6 GHz. 

divided into a I C ,  and a ,&-dependent part which are calculated 
once per k z ( k y )  value. The Green’s functions are calculated 
once per ( I C z .  /cy) value. Using this procedure, the ,911 and S21 
parameters of the two gap microstrip filter have been computed 
using 641 basis functions. 
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