

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Specifying and verifying requirements of real-time systems

Ravn, Anders P.; Rischel, Hans; Hansen, Kirsten Mark

Published in:
I E E E Transactions on Software Engineering

Link to article, DOI:
10.1109/32.210306

Publication date:
1993

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ravn, A. P., Rischel, H., & Hansen, K. M. (1993). Specifying and verifying requirements of real-time systems. I E
E E Transactions on Software Engineering, 19(1), 41-55. DOI: 10.1109/32.210306

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13723715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/32.210306
http://orbit.dtu.dk/en/publications/specifying-and-verifying-requirements-of-realtime-systems(233519fb-fbc3-4666-aff1-631f0ecbb5fa).html

IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993 41

Specifying and Verifying
Requirements of Real-Time Systems

Anders P. Ravn, Member, IEEE, Hans Rischel, Member, IEEE, and Kirsten Mark Hansen

Abstracf- An approach to specification of requirements and
verification of design for real-time systems is presented. A system
is defined by a conventional mathematical model for a dynamic
system where application specific states denote functions of real
time. Specifications are formulas in duration calculus, a real-
time interval logic, where predicates define durations of states.
Requirements define safety and functionality constraints on the
system or a component. A top-level design is given by a con-
trol law: a predicate that defines an automaton controlling the
transition between phases of operation. Each phase maintains
certain relations among the system states; this is analogous to
the control functions known from conventional control theory.
The top-level design is decomposed into an architecture for a
distributed system with specifications for sensor, actuator, and
program components. Programs control the distributed compu-
tation through synchronous events. Sensors and actuators relate
events with system states. Verification i s a deduction showing that
a design implies requirements.

Zndex Terms- Real-time systems, requirements engineering,
specification, verification.

I. INTRODUCTION
N engineer who is designing an embedded computer A system must have a deep insight in the properties of

the controlled physical processes. When the system is safety
critical, it becomes particularly important that this insight
be made explicit and forms the basis for design. This was
already observed by Heninger [12] in connection with the A7
flight program, and the viewpoint is pursued in later work by
Parnas, for example [32]-[34] and appears also in [18]. It has
led to increased focus on requirements engineering [4]. The
challenge, however, is to find suitable mathematical theories
and notations that allow a designer to record such insight.
It is also crucial, but often neglected, that the theory shall
make it practical for a designer to use mathematical reasoning
when checking that a design conforms to the requirements.
In our work with case studies within the Provably Correct
Systems (ProCoS) project [3] we have studied the problem
of specifying and verifying total system requirements [131,
[36], [37]. This paper describes the resulting approach to

Manuscript received August 1, 1992. This work was partially supported
by the Commission of the European Communities (CEC) under the ESPRIT
program in the field of Basic Research Action, project 3104: “ProCoS:
Provably Correct Systems,” and by the Danish Technical Research Council
under the “RapID program. A previous version of this paper was presented
at the ACM Sigsoft ’91 Conference on Software for Critical Systems, New
Orleans, LA, December 1991. Recommended by N. G. Leveson and P. G.
Neumann.

The authors are with the Department of Computer Science, Technical
University of Denmark, DK 2800 Lyngby, Denmark.

IEEE Log Number 920.5026.

requirements engineering, design, and verification for real-time
control systems.

A central property of such systems is that they can be
modeled by states changing over time. The theory of dynamic
systems, see, e.g., [23], or more specifically control theory,
see, e.g., [7], [22], are rather specialized, however. They
concentrate on systems that can be described by a single
invariant or control law in the form of a differential equation,
or in the discrete case a difference equation with a fixed
time step. In order to be really tractable, the equations are
restricted to be linear, although some results have been reached
for nonlinear systems, e.g., [17]. Dynamic systems theory
is thus not readily applicable to systems with varying time
steps, nondeterministic state changes, or with control laws that
depend on modes of operation. Furthermore, the notations are
not well suited for composition of interacting systems, see
e.g., part XI1 of [46].

Composition seems the only way of dealing with the com-
plex state spaces that arise whenever programming is involved,
thus we were led to investigate logic where the intimate rela-
tionship between conjunction and composition of concurrently
active systems [16] can be used as a composition principle.
The logic should also be able to specify real-time constraints,
and not just partial ordering of actions. There are many real-
time logics, but they seem to fall into two broad classes:
explicit time or implicit time. With explicit time formalisms,
time is an ordinary variable, represented by event occurrence
symbols as in RTL [19]. The time variable may also represent
a time interval, see, e.g., [43], or it may be a variable in a
temporal logic [35]. In explicit time logic, timing constraints
are encoded as inequations over arithmetic expressions in time
variables. Through some experiments we found this approach
to be less satisfactory because there is no clear relationship
between a natural language formulation of constraints and the
resulting inequations. We observed that the timing constraints
seem to be formulated as constraints on the duration of critical
states. Implicit time logic, e.g., metric temporal logic [21],
[35] or ISL [SI recognize this by using temporal operators
that constrain the extent of a state. It is, however, not possible
to express critical durations of the following form: “Within
any period of length T, the critical state S must only occur c
% of the time.” Such formulations describe a constraint on
the sum of an arbitrary number of extents and leads to a
duration concept, i.e., a logic where time is observed through
the accumulated presence of a state. It was through joint work
in the ProCoS project that duration calculus emerged [47].
It is based on interval temporal logic [l], [2], [lo], [29],

0098-5.589/93$03.00 0 1993 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

[42] and the duration concept. Duration calculus gives us
the means to describe critical durations, progress from state
to state, and stability of a state. Furthermore, it has a set
of rules that have been useful when reasoning about timing
properties.

Concurrently with development of duration calculus, we
experimented with ways of applying the theory in a systematic
manner to requirements specification, design, and verification.
Through many iterations the following approach has emerged:

1) Top-level requirements are specified by constraints on a
set of entities X representing the relevant physical states
as a function of real time. The constraints are typically a
conjunction of formulas. One class of formulas constrain
the duration of critical states. Another class of formulas
specify progress properties: within a certain time the
system should move from one state to another.

2) A top-level design is given by some assumptions and a
control law. The assumptions record the intrinsic design
of the physical system (the Nut relation in [34]). They
are requirements that the system imposes on the envi-
ronment, for instance, that certain states are considered
physically impossible or that certain progress properties
are ensured by physical processes. The control law
consists of two parts:

and the Statechart formalism [15]. The decomposition into an
architecture is primarily inspired by Roscoe and Reed’s work
on timed CSP [38], [41], and He Jifeng’s work on real-time
semantics [20].

Section I1 summarizes duration calculus. Section 111 presents
the running example and the (informal) requirements. Section
IV formalizes system requirements. Section V introduces a
top-level design with a control law. The top-level design is
verified in section VI. Section VI1 specifies the architecture.
Verification is in Section VIII, followed by the conclusion in
Section IX.

11. SPECIFICATION LANGUAGE

We use the well-known time-domain model of systems and
control theory [7], [22], [23] for modeling systems. A system is
described by a collection of states (often called state variables)
that are functions of time, modeled by the real numbers.

Properties of systems are expressed by constraining the
states over time. We wish to express requirements and design
without explicit mentioning of particular time instants, and
introduce a notation that is a real-time interval logic based on
state durations [14], [47].

a) A finite state machine or automaton describing how
control progresses through a number of phases. This

P.

A. syntar

together with (notation for) their value domains Typex,
is specified by a formula Over a phase control state we (Upper case) X 7 ‘7 . . . for the states

_.

b) A set of phase requirements that for each phase de-
fine progress and stability constraints to be satisfied
during that phase. A phase requirement determines
also whether the phase is stable or control shall
enter a new phase.

3) An architecture is defined. It consists of specifications
for a set of concurrently operating sensor, actuator and
program components that synchronize through events.
This distributed system is controlled by a scheduler.
The scheduler maintains a trace state tr, recording the
sequence of events passed between components. In order
to ensure that a conjunction of component specifications
remain consistent, we cannot allow upper bounds on
the duration of a phase (this reflects that a set of
synchronized state machines can only move when all are
ready). Upper bounds are thus rewritten as readiness to
progress, using a private state Ref (cf. [16]) for each
component. The scheduler ensures progress when all
components indicate that they are ready to proceed. The
system state X is also distributed as private states for
components.

This is an outline of the approach; but we hasten to add that
there are still many points that need investigation; we return to
some of these points in the conclusion. A similar approach to
Requirements Capture and top-level design is found in Parnas’
work [34]. Use of finite state automatons to specify designs
for safety-critical systems are also investigated in [18] and
as a paradigm for fault-tolerant systems in [40]. It is also
the basis for the ProCoS program specification language [31]

Typelr, . . . , given in a suitable specification language, such
as Z (cf. [44]) or VDM (cf. [5]). This language must comprise
a number of standard data types with operators and constants,
including the type R of real numbers and the type Bool of
Boolean. We denote the Boolean constants by tt and ff (the
names true and false are reserved for duration formulas). We
use lower-case names a, b, . . ., x, y , . . ., to denote constants
and variables of any type. As usual in mathematical logic, a
variable is an arbitrary value that may be bound by a quantifier,
whereas a constant is fixed in each interpretation.

State Expressions and State Assertions. A state expression
may be of any type and is generated by

1) Any state, constant and variable is a state expression.
2) Any well-formed expression formed from an n-ary oper-

ator symbol and state expressions SI, . . . , S, is a state
expression.

A state assertion is a state expression of type Bool .
Durations and Duration Terms. For any state assertion P,

J P is a duration and of type R. A duration term is also of
type R and generated by

1) Durations, real constants, and real variables are duration
terms.

2) Any well-formed expression formed from an n-ary op-
erator symbol of type R and duration terms T I , . . . , T,

is a duration term.
The symbol l is used as an abbreviation for Jtt.

Duration Formulas. Any expression formed from an n-ary
predicate symbol on R and duration terms r1, . . . , T, is an
atomic duration formula. A duration formula is of type Bool

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

RAVN et al.: SPEClFYING AND VERlFYlNG REQUIREMENTS OF REAL-TIME SYSTEMS 43

and generated by
1) Atomic duration formulas and the special symbols true

and false are duration formulas.
2) If V I and V2 are duration formulas, so are the ex-

pressions (T V ~) , (VI V V2) and (Vx)V1, where z is
a variable.

3) If V I and V2 are duration formulas, so is the expression
P I ; V2).

B. Semantics

An interpretation Z of our formal system corresponds to a
particular execution (run) of the system, where each state X
denotes a function

Z(X) : [O, m) 4 T y p e x

giving the state as function of time from the start t = 0,
and where each constant a is interpreted as a value Z(a) of
appropriate type. For given interpretation Z, a valuation v
asigns a value V (z) to each variable. By evaluating expres-
sions for each point of time, the interpretation extends to state
expressions, which denote functions of time. A constant a or
variable z is hereby interpreted as the function with constant
value Z(a) or U(z).

An observation interval (or interval for short) is a closed
and bounded interval [b, e] C [0, 00). For given interval [b, e] ,
the duration J P of a state assertion P denotes the real number 1

le X P (t) dt

where

1 for Z(P) (t) = tt
X P (t) = { 0 for Z (P) (t) = ff

which is the measure of the set of points in [b,e] where
the interpretation of P has value tt. It is assumed that
all state assertions denote integrable functions of time. The
interpretation then extends to duration terms and duration
formulas on each interval: the interpretation of duration terms
and atomic duration formulas is defined on each interval [b, e]
by evaluating expressions using the values of subterms on
the same interval. The formulas true and false as well as
composite duration formulas TV, VI V V2 and (Vz)V are
interpreted on each interval [b,e] in the same way as usual
logical formulas in predicate logic, cf. [ll].

The interpretation of a “chop” formula V1;V2 on an
interval [b,e] use interpretations of the subformulas V I and
V2 on subintervals of [b, e]. It has the value tt iff a “chop”
point m (b 5 m 5 e) can be found such that VI is tt on
[b,m] and D2 is tt on [m,e] .

Validity. A duration formula V holds on the interval [b, e]
in the interpretation Z iff V has value tt on [b,e] for any
valuation U for 2.

The formula V holdsfrom start for the interpretation Z iff it
holds on any interval of the form [0, T] for the interpretation Z.

A duration formula V is valid (a tautology) iff it holds
for every interval [b,e] in any interpretation Z. (Note that
the validity of a chop formula on an interval VI; Vz

[b,e] may depend on different chop points m for different
interpretations.)

It is sufficient for a formula to be valid that it holds from
start for every interpretation Z (this uses that shifting all
functions in an interpretation Z a fixed amount of time b yields
another interpretation Z‘, such that V holds on [b, e] for Z
exactly when V holds on [0, e - b] for 2’).

Finite Variability. Interpretation of states has been confined
to integrable functions in order to make the concept of duration
well defined. In order to have a well-founded induction, we
require that interpretation of any state assertion P has finite
variability: any interval [b, e] can be divided into finitely many
subintervals with 2(P) constant on each open subinterval.

C. Specifications and Refinement

A specification for a system is a duration formula V. An
interpretation Z is said to satisfi, the specification if V holds
from start for 2. For specifications V I and V2 we say, that
V2 is a refinement of VI if any interpretation satisfying V2
also satisfy VI, It follows that V2 is a refinement of Vl if the
duration formula

v2 * Dl

is valid.

D. Deductions

A primary goal of using mathematical modeling is the
ability to calculate properties of the model. The calculations
for our notation are deductions, verifying that the validity of
some formulas implies the validity of others.

It is a goal for the work on duration calculus to formal-
ize deductions such that verification is done by calculations
without any reference to a semantical model. The work has
not yet reached that stage, but a number of useful axioms
and deduction rules have been found. They are listed in the
Appendix at the end of the paper. It has been proved (cf.
[14]) that this formalization of the duration logic is a relative
complete extension of real-valued interval temporal logic.

Most verifications for a real-time system consist of case
analysis for a moderate number of cases. The individual
cases have deductions that are mostly simple calculations.
We give manually developed deduction outlines by necessity.
The calculations, however, are simple and stereotypic, so there
is reasonable hope for assistance from mechanical deduction
asistants.

E. Abbreviations

We use standard abbreviations A, +, e, 3, and we intro-
duce abbreviations for commonly used duration formulas, with
a state assertion P, duration formulas V, VI, and V2, and a
positive time constant t as shown in Table I. The abbreviations
have the following semantics:

holds on point intervals [b,b]
holds on [b, e] if P has value tt almost every-
where in [b,e] and if b < e
holds on [b, e] if V holds on some subinterval

r i
cpi

02)
of [b, el

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

TABLE I
ABBREVIATIONS

Abbreviation Formula Legend

r i C = O Point

ur = E) A (t > 0) Almost
everywhere P

vi

O D true: v: true Somewhere V

P14P2 (P I : t rue) 3 ’02 follows Dl
(Dl v

(P1:Dz; t r u e))

02,

’Dl 4 V2

holds on [b,e] if V holds on any subinterval

holds on an interval with V I holding on
an initial subinterval if 232 holds on some
subinterval from the point. (if any) where Vl
ceases to hold

V I 4- 372 holds on an interval with V I holding on an
initial subinterval if V2 starts holding within
time t.

of [b, el

The following rules of precedence are used:
first: 1, 0, 0
second: V , A, ;
third: a, - + , - t -

The logical operators are overloaded: they are used for state

GM supply 0 Ignition transformer --ws Flame

U Flame detector
Heatreq signal

Fig. 1. Gas bumer.

happens when gas does not ignite after 0.5 s. The flame
fails if it disappears while gas is supplied.

The same timing constant has been used in 2) and 3) in order
to allow a simple design.

Iv. SYSTEM MODEL AND REQUIREMENTS

In order to formalize the requirements to the gas burner we
introduce the following Boolean valued states:

Heatreq, Flame, Gas, Ignition : Boo1

They express the physical state of the thermostat, the flame,
the gas supply, and the ignition transformer as depicted in Fig.
1. The informal requirements for the gas burner can then be
formalized using duration formulas on the system model.

1) For safety, gas must never leak for more than 4 s in any
period of at most 30 s

Reql G f? 5 30 + (Gas A TFlame) 5 4 s
This is a critical duration constraint.

60 s
2) Heat request off shall result in the flame being off after

assertions as well as duration formulas, but the meaning can
be inferred from the type of the operands, e.g., “V” denotes
disjunction for state assertions in “[PI V P4” and disjunction
for duration formulas in “[PI] V [P z l . ”

This is a guarded progress constraint. The guard is
[THeatreql and the progress is from an initial point
[l to [TFlame] within 60 s.

3) Heat request shall, after 60 s, result in gas burning,

111. A GAS BURNER SYSTEM

Our example is a simplified version of a computer controlled
(on-off) gas burner described in [45]. This is a safety-critical
system as an accident may occur if an excesive amount of
unburned gas leaks to the environment. Small gas leaks cannot
be avoided during ignition. A burning flame may also be blown
out causing some gas to leak before the failure is detected.
The gas bumer is controlled by a thermostat and the gas is
ignited by an ignition transformer, cf. Fig. 1. The informal
requirements are as follows:

1) For safety, gas must never leak for more than 4 s1 in
any period of 30 s at most.

2) Heat request off shall result in the flame being off after
60 s.

3) Heat request shall after 60 s result in gas burning unless
an ignite or flame failure has occurred. A n ignite failure

We use seconds as the time unit.

unless an ignite or flame failure has occurred

Reqs e [Heatreq] +
(11 -60- [Flamel)
v 0 IgniteFail v 0 FlameFail

An ignite failure happens when gas does not ignite
within 0.5 s:

IgniteFail e i([Gas A Ignition1
+ ([I -0.5- [F lame]))

The flame fails if it disappears while gas is supplied

FlameFail e
T([Gas] + 10 ([F l a m e] ; ~ 1 F l a m e l))

A formula -0 ([P I ; [,PI) means stability of P: P
cannot change to 1 P .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

, , , /

RAVN et al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS 45

The total system requirements is the conjunction of the
critical duration constraint Reg1 and the guarded progress
constraints Req2 and Req3

ReqAll 2 Reg1 A Req2 A Reqs

The requirements should hold for any interval

Rep g 0 ReqAll

V. CONTROL MODEL AND CONTROL LAW
A control law expresses a top-level design of the system.

It consists of a control function and assumptions about the
behavior of the environment. The control function defines
interaction between the control system and the environment.
The assumptions define preconditions for the control law. In
order to formalize the control law, the control model is formed.
It is the system model with an additional state P that records
the phase of operation of the controller.

A. Gas Burner Phases
We use a simple version of the control law in [45] (espe-

cially simplified with respect to error recovery) for the gas
burner. It has the following phases:
Idle: Awaits heat request; no gas and ignition. It

enters the Purge phase on heat request.
Purge: Pauses for 30 s, and then Ignitel is entered.
Ignitel: Starts ignition and gas supply; enters the Ig-

nite2 phase after 1 s.
Ignite2: Monitors the flame and enters the Burn phase

if flame is sensed within 1 s.
Burn: Ignition is switched off, but gas is still supplied.

The Burn phase is stable until heat request
goes off. The Idle phase is then entered and
the gas is turned off.

We use the simple error recovery procedure of returning
to Idle. If a flame is not sensed within 1 s in Ignite2
(ignite failure), or if the flame disappears during the Burn
phase (flame failure), then the Idle phase is entered and the
gas is turned off. The 30 s Purge pause ensures a sufficient
distance between periods with leaking gas.

B. Control Automaton

We describe the possible phase transitions by means of a
finite state automaton with states corresponding to the phases.
The automaton is shown in Fig. 2. The automaton is defined
in the control model using the state P giving the current phase
of the system.

P : {idle ,purge, i g n i t e l , i gn i t e2 , burn}

Its value domain is the finite set of phase names, and the
following state assertions describe the individual phases

I d l e e P = i d l e
Purge 2 P =purge

I g n i t e 1 g P = i g n i t e 1
Ign i t e2 P = i g n i t e 2

Burn P = burn

Purge

Ignite2 Ignitel

Fig. 2. Phase transitions for the gas burner.

The automaton is defined by untimed progresss constraints

Phases Ini t A Trans

where Inzt expressses that the automaton starts in the Idle
phase

Inzt 2 [] -+ [Idle]

and Trans defines the phase transitions

Trans 2 U(

([Idle] -+ [Purge])

A ([Purge1 -, [Ign i t e i))
A ([I g n i t e i l + lIgnite21)

A ([Ignite21 -+ ([Burn] V [Idle]))

A ([Burn] -+ [Idle]))

i.e. Idle is followed by Purge, Purge is followed by
Ignitel, etc., cf. Fig. 2.

Phase Requirements. The predicate PhaseReq specifies
the monitoring and control of system states for each phase

PhaseReq 2 O(Id1eReq A PurgeReq
A IgnitelReq
A Ignite2Req A BurnReq)

In the formulas, the constant € 1 denotes an upper bound
on progress. Any move will be performed within time ~ 1 .

The constant € 2 gives, on the other hand, a lower bound on
stability. The system will not move before time € 2 . We assume
that 0 < €2 < ~ 1 .

The Idle phase is stable at least € 2 beyond -Heatreg.
The Idle phase is left before Heatreq has lasted ~ 1 . During
the Idle phase Gas and Ignition are turned off within ~1

IdleReq 2

(rlHeatreq1; e 5 €2 3 10 ([Idle]; [d d l e]))

A ([Idle1 A [Heatreg] + e 5 E ~)

A ([Idle] =+ ([I ~ € 1 v+ [i G a s A i l g n z t i o n]))

Notice that e 5 €1 in the second clause can be rewritten to
the progress constraint

[l - E ~ v+ false

In conjunction with the untimed phase constraint, it will give
a next phase within ~ 1 .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

1

A completed Purge phase lasts approximately 30 s, and
Gas and Ignition are off within € 1

PurgeReq 2
([-Purge] ; C 5 30 + -0 ([Purge] ; [-Purge]))

A ([Purge] + C 5 30 + E ~)

A ([Purge] + ([I ~ € 1 .c) [-Gas A TIgni t ionl))

The first clause denotes an unconditional stability of Purge
for at least 30 s.

A completed Ignitel phase lasts approximately 1 s, and
Gas and Ignition are on within € 1

IgnitelReq 2
([- Igni te l] ; C 5 1 + -0 ([Igni te i] ; [l I g n i t e l]))

A ([Ign i t e l] + 5 1 + ~ 1)

A ([Ignite11 + ([I NE^ .c) [Gas A Igni t ion]))

The Ignite2 phase does not enter I d l e after less than
1 s and it does not enter Burn after less than € 2 of Flame.
It lasts at most 1 + € 1 and it is left within € 1 if the Flame
comes on. The Ignite2 phase maintains Gas and Ignition

Ignite2Req

A (flame] ; 5 € 2 + -0 (burn] ; [Burn]))
A ([Ignite21 + C 5 1 + € 1)

A ([Ignite21 A [Flame] + C 5 € 1)

A ([Ignite21 + [Gas A Ignitionl)

([-Ignite2];! 5 1 + -0 (rIgnite21; [Idle]))

Note, that Trans implies that Burn can only be entered
from Igni te2. Hence [-Burn] in the second clause could
be replaced by [Igni tea l .

The Burn phase persists € 2 beyond Heatreq and Flame.
It is left within € 1 if Heatreq or Flame goes off. During the
Burn phase Gas is maintained, but Ignition is switched off
within € 1

BurnReq
([Heatreq A Flame] ; C 5 € 2

+ -0 ([Burn] ; [-Burn]))
A ([Burn] A [-Heatreg V -Flame] + C 5 € 1)

A ([Burn] + [Gas])
A ([Burn] + ([] N € 1 .c) [-Ignition]))

C. Assumptions

The control law also needs assumptions about the physical
processes in the system. For the gas burner we have the
following assumptions:

No gas results in no flame within 0.1 s.

Asml G [-Gas1 + ([I -0.l.c) [TFlame])

Gas does not ignite when the ignition transformer is not
operating.

Asm2 G

[-Ignition] + -0 ([-Flame]; [Flame])

which should hold on any interval

A s m 2 0 (A s m l A Asmn)

VI. CORRECTNESS OF CONTROL LAW
A control law is correct if it implements the requirements

under the given assumptions. The formalized requirements,
assumptions and control function allow correctness to be
expressed formally as the implication

A s m A Phases A PhaseReq + Req

We have Phases = Ini t A Trans, where In i t decomposes
into [] or [Idle]; true. It is easy to see that requirements
hold for the point interval, thus [] + Req. For [Idle] ; true,
we use that the automaton returns to Id l e , such that this case
is subsumed by

A s m A Trans A PhaseReq + Req

We now consider separate cases for each requirement:
1) A s m A Trans A PhaseReq + Reql
2) A s m A Trans A PhaseReq + Reqz
3) A s m A Trans A PhaseReq + Reqs

A. Verification of Reg1
We first use PhaseReq to estimate the duration of the

critical state

Leak G Gas A -Flame

for each phase.

estimates
We define Limits to be the following

Limits
([Idle] + JGas 5 € 1)

A ([Purge] + $Gas 5 € 1)

A ([Ignite11 + C 5 1 + € 1)

A ([Ignite21 + 5 1 + € 1)

A ([Burn] + JTFlame 5 2

The deduction of

conjunction of

El)

A s m A Trans A PhaseReq + Limits

can be split into simple cases for each conjunct. We take the
first one in great detail

IdleReq A [Idle]

+ r] NE^ .c) [-Gas1
+ JGas 5 ~1 V (JGas 5 ~ 1 ; J G a s = 0)
+ SGas 5 E I V JGas 5 E I + 0

+ r] NE^ .c) [-Gas A -Ignition]

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

41 RAVN er al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS

and omit the deductions for the next three cases. The last case
is

The case analysis shows that an interval beginning in a
Purge phase is most critical, and that Reg1 will be satisfied
as long as €1 5 2/7.

B. Verification of Reg2

[7 BurnReq A 0 Asm2 A [Burn]

+ 0 ([+lamel + C 5 E ~) A 0 Asm2
A ([] NE^ -+ [dgn i t ion])

+ 0 ([TFlamel +

3 1 5 €1 V (C 5 €1; [Flame])
v (C 5 E ~ ; ([+'lame] A C 5 c l))
v (C 5 €1; [Flame]

5 c1)A
([I ~ € 1 .cy -0 ([-Flame] ; [Flame]))

; ([+ ' lamel A t 5 c1))
+ $-Flame 5 2 . €1

where we have used

-0 ([+lame]; [Flame])
+ [Flame] v [iF l ame l v ([F lamel ; [TFlame])

The second step in the verification is also a case analysis.
The cases are defined by the initial phase of an arbitrary
interval. The premise is

P r e l e Trans A 0 Limits A 1 5 30

in
1) P r e l A ([Idle] ; true) =$ $Leak 5 2 . €1

2) P r e l A ([Purge]; true) + $Leak 5 2 + 7 . €1

3) P r e l A ([I g n i t e l] ; true) + $Leak 5 2 + 6 . €1

4) P r e l A (r Igni te21; true) =$ $Leak 5 1 + 5 . €1
5) P r e l A ([Burn] ; true) + $Leak 5 4 . €1

The calculations follow a pattern, where previous results
are used

P r e l A ([Idle] ; true)
3 PTelA

([Idle1

We start by proving that 1Heat req maintains the I d l e

IdleReq A [d l e a t r e q l A ([Idle] ; true)

A ([Idle1 V 0 ([Idle] ; [-Idle]))

phase

+ -0 ([Idle]; [4 d l e])

+ [Idle]

The deduction of Regz is a case analysis, depending on the
initial phase of the interval. The premise Pre2 is defined

Prep e [lHeat req] A 0 Asml A 0 Trans
A PhaseReq

and the cases are
1) P r e 2 A ([I d l e l ; true) A C > 2

+ (C 5 0.1 + E ~ ; [4 ' l a m e l)

+ (C 5 0.1 + 2 . € 1 ; [-+lame])

+ (C 5 1.1 + 3 . €1; [+lame])

+ (C 5 2.1 + 4 . €1; [+lame])

+ (C 5 32.1 + 5 . €1; [TFlame])

2) Pre2 A ([Burn] ; true) A

3) Prez A (r Igni te21; true) A > 5

4) Pre2 A ([I g n i t e l] ; t r u e) A C > 7

> 3

5) P r e 2 A ([Purge] ; true) A C > 38

The individual calculations are of the usual form:
Pre2 A ([Idle] ; true) A > 2

+ 0 (Asml A IdleReq) A [Idle] A

+ 0.1; [+'lame]

> 2
+ 0 Asmi A (C 5 €1; [-Gas])

+ C 5
where we have used that -Heatreg maintains I d l e . The other
cases are similar and the deductions are omitted.

V ([Idle] ; (([Purge] ; true) A C 5 30))) C. Verification of Re93

Assuming c1 < 0.5, which is compatible with €1 5 2/7,
we deduce that Ignite2 only leads to Idle in case of
an IgniteFail .

+ Limits A ([Id l e] V ([Id l e] ; [Purge]))
+ $Gas 5 €1 V ($Gas 5 ~ 1 ; J G a s 5 €1)

+ $GUS 5 2 . ~ 1
0 Ignite2Req A ([I g n i t e l] ; rIgnite21; [Idle])

P r e l A ([Burn] ; true) + true; ([Gas A Ignition] A C 2 1

+ 0 ([Gas A Ignition] A i (C 5 0.5; [Flame]))
+ 0 Igni teFai l

+ P r e l A ([Burn] V ([Burn] ; [Idle] ; t rue))
+ Limits

A 0 ([Flame] + C 5 0.5)); true

A ([Burn] V ([Burn]; JLeak 5 2 . E ~))

+ $Leak 5 4 ' € 1 and that a Burn phase is preceded by Flame. This is shown
by contradiction

The cases for I g n i t e l and I g n i t e 2 are similar, and so is
U Ignite2Req

P r e l A ([Purge] ; true) A ([TFlame A Igni te21; [Burnl)
3 (0 (rlBurn1; [Burn])

+ false

3 P r e l A ([Purge]

+ $Leak 5 2 + 7 . €1

v ([Purge]; [I g n i t e l] ; true)) A -0 ([-Burn]; [Burn])); true

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

48 IEEE TRANSA(TI0NS ON SOFlWARE ENGINEERING. VOL. 19, NO. I , JANUARY 1993

We also deduce that Burn maintains the Flame unless there
is a FlameFail result:

The second case can, as usual, be reduced using the previous

BurnReq A ([Flame A Gas]; [Burn]) Pres A ([Purge] : true) A e > 36

3 [Gas] A ([Flame] ; true)
+ [Flame] ~ (f 1 3 0 + ~ ~ ; (([1 g n i t e i] ; t r u e) ~ e > 5))

=+ [Flame] V FlameFail

3 Pre3

V ([Gas] A 0 ([F l a m e] : [-Flame])) =+ f 5 32 + 3 . €1; [F ~ ~ v w]

and the third follows the pattern

and finally that Heatreq without Flam.eFai1 maintains a
Burn phase with Flame

0 (BwnReq A -FlameFail) A [Heatreq]
A ([Gas A Flame] : [Burn] ; true)

=+ 0 (BurnReq A TFlameFail) A [Heatreq]
A (([Gas A Flame] : [Burn])

V ([Gas A Flame]: [Burn]
; [TBurn] : t r u e))

j ([F l a m e] ; [Flame A Burn])
V 0 (BurnReq

A (([Burn] A [Heatreq A Flame])

; I-Burnl))
=+ ([Flame] ; [Flame A Burn])

We can now proceed to the main deduction. This is also a
case analysis, depending on the initial phase of the interval.
We assume that € 1 5 1. The premise Pre3 is defined

Pre3 [Heatreq] A Trans A PhaseReq
A 0 4 g n i t e F a i l A 0 TFlameFail

and the cases are
1) Pres A ([I g n i t e l] ; true) A e > 5

=+ (l 5 2 + 2 . €1; IFlame])
2) Pres A ([Purge] : true) A

+ (e 5 32 + 3 . € 1 : [Flame])
3) Pre3 A ([Id l e] ; true) A f > 37

+ (e 5 32 + 4 . €1; [Flame])
4) Pres A ([Burn] ; true) A l' > 38

+ (a 5 32 + 5 . €1: [Flame])
5) Pres A ([Igni te21 ; true) A e > 40

3 (l 5 33 + 6 . €1; [Flame])

> 36

The individual calculations are

Pres A ([I g n i t e l] : true) A .! > 5
+ Pre3 A ((e 5 1 + €1 A [I g n i t e l])

: (e 5 1 + €1 A rIgnite21)
; ([Burn] V [Id l e]) ; true)

Pres A (
(l 5 2 + 2 . €1 A (true; [Flame A G a s]))

; [Burn] ; true)
=+ l 5 2 + 2 . c1; [Flame]

where we have used the above results about I g n i t e 2 and
Burn.

Pres A ([Id l e] ; t rue) A e > 37

A ([I d l e A Heofrrq] : f 5 32 + 3 . € 1

3 0 IdleReq A P > 37

: [F l a m e])
3 f 5 32 + 4 . €1: [F l a m e])

The last cases have a surprise, because the observation may
start just after a FlameFazl in the Burn phase

Pres A ([Burn] : true) A > 38

=+ Pre3 A ([Burn] ; true) A f > 38

A (([TFlame] ; true) V ([Flame] ; t rue))

A ([-Flame] : t r u e)) v [Flame]

A (e 5 € 1 : [Idle] : t rue)) V [Flame]

3 (Pre3 A ([Burn] ; true)

=+ (Pres A f > 38

e 5 32 + 5 . z l ; [Flame]

and

Pre3 A (r Igni te21: t rue) A e > 40
3 Pres A e > 40 A (e 5 1 + €1; [Burn]; t rue)
3 f 5 33 + 6 . €1: [Flame]

In summary: the control law specifies a correct design if the
constants €1 and € 2 are chosen such that

< 217 and 0 < € 2 < € 1

Notice that the latency €2 can be arbitrarily small.
The control law can almost directly be used to implement

the system with a processor that accesses sensor and actuator
states. The progress constraints map to assignments, whereas
stability constraints map to delays, either unconditionally or
in a sensor-reading loop.

There is, hovewer, an element of parallel processing in
sensor readings. This indicates that a further decomposition
of the design is useful.

VII. ARCHITECTURE

An architecture specifies a collection of selected compo-
nents together with an interconnection scheme. A component
is either a subsystem or an elementary component: a program,
a sensor, an actuator or a timer. A program implements a state
machine that takes the system through specified phases. In the
general case, state transitions may depend on values computed
from data collected in previous phases. A sensor monitors
a physical system state, and it is ready to communicate the

l ' r r - - 1

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

RAVN et al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS 49

TABLE I I
GAS BURNER ARCHITECTURE

~~ ~

Component Alphabet Private States

Heat request {HeatOn. HeatOff} RefHS : P n H S
sensor HS H r c r t r ~ q : Bool

Flame sensor { FlOn. FlOf f } R e f F S : P < \ F S
F S F I O J I I ~ : Bool

Gas actuator { GasOn. GasOf f } RefGA : POGA
GA G o s : Bool

Ignition { Ignon. IgnOf f } R e f I A : P<r I A
actuator I A I g u / f r o i i : Bool

1 s timer T 1 { S e t l . Out l} R e f T l : $/IT1

30 s timer T30 iset.30. Out30) R e f ~ 3 0 : P n T 3 0

Program P Event R e f p : POP

state value to a program when requested to do so. An actuator
controls a physical system state, and it is ready to change
the state to a communicated value from a program when so
requested. A timer implements delays giving lower bounds on
the duration of phases.

The interconnection scheme that we propose aims at a dis-
tributed system, where the components execute concurrently
and synchronize through instantaneous, shared events. The
synchronous communication paradigm is inspired by CSP [161.

The interconnection scheme uses a set of events, Event,
called the system alphabet. Each component C synchronizes
on a subset nC

Each component has a designated state Ref c, which records
the subset of NC that is refused at a given time. Events that
are not in NC are never refused.

A scheduler observes the refusal states for all components
and allows the components to move whenever no one refuses
an event. Whenever such a move occurs, it is recorded in a
history or truce of events

Event called the C-component alphabet.

tr : Event*

It is the only shared state in the architecture and it is only read
by components. Refusal states are private for components, and
the system states are distributed among sensors and actuators.

A. Architecture of the Gas Burner

For the gas burner we use the architecture shown in Table 11.
In this case, where there is only one program component,
system and program have the same alphabet

Event = aHS U aFS U NGA U aIA U nT1 U aT30

The events have the informal meaning: heat request on, heat
request off, . . ., set 30 s timer, expiration of 30 s timer.

We let e range over Event and s over Event* in the
following, and we denote the projection of t r on a component
alphabet aC by t r c

trc g t r n C

B. General Properties

Trace t r accumulates the history of events for the system,
i.e., an event occurring at time t is appended to the previous
value of tr. The trace is empty initially

Init tr [l 4 [tr = 01; true

and t r is an increasing function of time (in the prefix ordering
of sequences of events)

This constraint allows a finite set of events to happen at one
time.

Event e is not appended to trace if it is refused by any
component C

W f Ref e [v e E Refcl * stable (tr 1 {e})
CEComp

where Comp is the finite set of components and where

stable(tr 1 A) 3 s : A * 0 [tr r A = s1

expresses stability for the projection t r 1 A of the trace t r
on a subset A & Event.

Constraints W f R e f and TrIn,cr allow a finite set of
events to occur instantaneously and does not force anything
to happen. The actual occurrence of events is controlled by
a Scheduler.

The general properties of trace and refusals are collected in
the formula

General Init tr A 0 (TrIncr A W f Re f)

C. Scheduler
The scheduler is the synchronization agent for the dis-

tributed system

Scheduler 2 0 (TrOne A TrStep A Progress)

Progress is ensured by insisting that the the trace t r remains
stable at most SI when some event e is not refused by all
components

Progress 2 stable (tr) A r A e 6 Refc] l < 51
CtComp

It follows that if an event e is accepted by all components
for time 61 then the trace becomes extended with some event
(which may be different from e).

We shall not use true concurrency,2 so we introduce special
constraints that force events to happen one at a time and with
a minimal distance 52

TrOne [tr = SI]; [tr = s 2 1

[#s2 I #Sl + 11
21f we allow true concurrency, the refusal shall distinguish between e.g.,

willingness to participate in each of two events and willingness to participate
in both events simultaneously. This distinction is possible with a more
complicated definition of the refusal.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

and
TrStep 2 [tr # SI]; [tr = SI]; [tr # s11

=.e>s2
where # denotes the length of a sequence. Consistency
dictates, that 62 < 61.

D. Program

In order to specify the program for the gas burner we
introduce the following regular expression over the alphabet
Event

cyc le = IgnOf f .GasOf f .HeatOnSet30.
Out30.Set 1.IgnOn.GasOn.
Out 1.Set I.
(F10n.IgnOf f .(Heatof f + FlOf f)
+out 1)

p t r a c e = pref (cyc le*)

where “pref’ denotes the prefix closure operation on a regular
expression.

The program is specified by a refusal constraint: the program
refuses an event e if and only if the event does not extend the
program trace t r p (= t r) to a member of p t r a c e

Program [e E Refp] [t r - (e) 61 p t race l

It can be verified that trace t r always belongs to ptrace

Scheduler A General A Program =+ PTrace

where

Ptrace U([] v [tr E p t r a c e l)

In order to express the phase in terms of the trace, we
introduce the projection trIn = t r 1 I n of trace t r onto
the subalphabet

I n 2 {FlOn, FlOf f , HeatOn,
HeatOff,Out1,0ut30}

It is obvious that trIn will have the projected property of
Ptrace

P InTrace 0 (11 V [trIn E inp t r ace])

where the regular expressions

incyc le = HeatOn.Out30.0utl.
(FlOn.(HeatOff + FlOff) + Outl)

i n p t r a c e = pref (incycle’)

are the projections of cyc le and p t r a c e on In .
The phases are now described by

I d l e e trIn E i ncyc le*
Purge @ trIn E incycle*.HeatOn

I g n i t e 1 trIn E incycle*.HeatOn.Out30
I g n i t e 2 @ trIn E incycle*.HeatOn.Out3O.Out 1

Burn @ t r I n E incycle*.HeatOn.Out3O.Outl.FlOn

1

Fig. 3. Phase transitions and in-events.

It follows that the phase changes correspond to occurences of
the in-event as shown in Fig. 3, i.e.,

General A Scheduler A Program =+ Phases

E. Sensors
The heat request sensor (HS) is specified as a conjunction

HeatReqSensor O (H S R e f A HSReady)

of a stability constraint: The HeatOn event is refused if
Heatreq has been on for less than time 62 and the HeatOff
event is refused if Heatreq has been off for less than time 62

HSRef 2

A (r H e a t r e q l ; l < 62

([iHeatreq]; e 5 62 3 [HeatOn E RefHsl)
[HeatOff E RefHs])

and a progress constraint: The HeatOn event is not refused
when has Heatreq been on for time 61 and the HeatOff
event is not refused when Heatreq has been off for time 61

HSReady
([Heatreq] + ([I -61 --+ [HeatOn 61 RefHs]))

A ([THeatreql + (r] -61- [HeatOff 61 Ref~s]))

Flame sensor (FS) has a similar specification

F lamesensor O (F S R e f A FSReady)

where

FSRef g
([iF l ame] ; e 5 62 3 [FlOn E RefFs])

A ([Flame] ; e < 62 * [FlOf f E Ref FS])

and

FSReady 2

([Flame] (11 - 61 - (61 Ref F S l))

A ([TFlamel 3 ([I - 61 y-t ([FlOf f 61 Ref Fs]))

F. Actuators

The gas actuator (GA) is specified as a conjunction

GasActuator g Q G A R e a d y A GAAct)

of two progress constraints: the gas actuator never refuses
GasOn or GasOff events

GAReady e [RefcA = {}] v []

- 1 - r ---

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

RAVN er al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS 51

and, for an empty trace, the gas is off. Otherwise, the value
stabilizes 61 after the latest GasOn or GasOff event

GAAct

([t r ~ ~ = 01 * [~ G a s l)
A ([last(trGA) = GasOff]

A ([last(trcA) = GasOn]
a (r 1 - s1 y-) w s i))

+ (r l w 6 1 + [Gas l))

where last(s) denotes the last element in the (nonempty)
sequence s.

The ignition actuator (IA) has a similar specification

IgnztzonActuator U(IAReady A IAAc t)

where

IAReady g [Ref IA = {}] V

and

IAAct 2

(f t r 1 A = 01
+ [l lgn i t i on l)

+ ([I - S1 U* r-Ignition]))
A ([last(trIA) = IgnOff]

A (rlast(tr1A) = IgnOn]
+ ([1 - SI - [Ignition]))

G. Timers

The 1-s timer (T i) is specified as a conjunction

Timer1 g O(T1Ready A T l R e f)

of two progress constraints: the timer never refuses the set-
timer event Se t 1, and accepts the time-out event Out 1 at most
1 s after the last set-timer event.

TlReady

(r i v rsetl e ~ e f ~ ~ 1)
A [last (trT1) = S e t l] A stable(trT1)

-1- [Out1 eRefT11)

where
T3OReady

A [last (t rTBO) = Set301 A stable(tr~30)
(11 v [Set30 # R e f ~ 3 0 1)

+ ([] ~ 3 0 + [Out30 $! Ref~sol)

and
T30Ref

[trTsO = 51; [t r T B O = s-(set30)]
; [Out30 e Ref~301
+ e > 3 0

H. Composition
The composite system is specified by the conjunction of the

component specifications, the scheduler specification and the
general properties

System 2

Program A HeatReqSensor A Flamesensor
A GasActuator A IgnataonActuator A Timer1
A Timer30 A Scheduler A General

VIII. CORRECTNESS OF ARCHITECTURE

We have already argued that the program implements the
automaton

General A Scheduler A Program * Phases

It remains to verify that the architecture refines the Phase
requirements.

Here we use that Program is the only component that delays
output events, i.e., events in the set

Out 2 Event\In

The scheduler ensures that the delay is, at most, 61. Thus we
have

System + Outprogress

where

Outprogress 2 0 ([t r = s A nextout (s)] + c < 61)

and a refusal constraint: The time-out event Out1 is only
accepted 1 s after a set timer event S e t l .

and

nextOut(s) g 3e : Out 0 .-(e) E p t r a c e

From Outprogress it follows that a sequence of n out-events
will take at most n . 61 time units to complete.

Each phase is defined by a sequence of out-events and is
terminated by a single in-event or a choice between in-events,
cf. the definition of p t r a c e and inp t r ace . The transition to
a next phase will only happen when both the program and the
sensor or timer are ready.

Using these facts about the trace and the results about
Outprogress we have the following:

T l R e f
[t r T l = s]; [trTl = s - (Se t l)] ; [Out1 # RefT1]
+ e > i

From the timer specification it is easy to deduce

rtrT1 = s]; [trTl = s-(SetI) l
; [t r T l = s-(SetI ,Outl) l

* l > l

The other timer has a similar specification

Timer30 2 O(T30Ready A T30Re f)

System +
0 (LIdle A LPurge A LIgnitel A Lignite:! A LBurn)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

where the lemmas for the phases are

LIdle e
([Ignite11 ([I - 3 . SI -rt

(stable(tr) A [lastn(tr) = (IgnOff, GasOff)]
A [HeatOn # Refp])))

A ([Id l e] ; [TIdle] 0 [HeatOn # RefHs A Id l e])

LPurge e
([Purge] + [last2(trGAuIA) = (IgnOff,GasOff)l)
r\([Purge] + ([] - 2 . 6 1 - 4

(stable(tr) A [last(tr) = Set301
A [Out30 # Refp])))

+ 0 rout30 # RefT3o A Purgel)
A ([Purge] ; [TPurge]

LIgnitel 2

([Idle] + ([I -4. 61 -rt
(stable(tr) A [lasts(tr) = (S e t l , IgnOn, GasOn)]

A r O u t l e Refpl)))
A ([I g n i t e l l ; [T I g n i t e l l

0 [Outl $! RefTl A Ignitell)

LIgnite2
([Igni te21 + [lastz(trGAUIA) = (IgnOn, Gason)])
([1gnite2] ([I - 3 . S1 -4

(stable(tr) A [last(tr) = Set11
A [FlOn # Ref A Out 1 # Ref

A (r Igni te21; [Idle]

A (r Igni te21; [Burn]
+ 0 [Out 1 # Ref A Igni te21)

3 0 [FlOn # RefFs A Igni teZ])

L B u r n
([Burn1 + [last(trcr) = GasOnl)
/\([Burn] + ([] - 2 . 6 1 -

(stable(tr) A [last(tr) = IgnOff]
A [FlOf f # Ref A HeatOf f # Ref p])))

A ([Burn] ; [TBurn] +
0 [(FlOff g! RefFs V HeatOff # RefHs)

A Burn])

We have used las t , (s) , n 2 1 to denote the subsequence
formed by the last n elements of s (last,(s) s only defined
when #s 2 n).

We can now illustrate the verification of phase contraints by

System + IdleReq.

Stability under THeatreg is verified by deduction to a con-
tradiction. We assume that €2 < 62

H S R e f A 0 LIdle A ([THeatreq]; C < € 2)

A 0 ([Idle] ; [T Id le l)

A 0 ([Idle] ; [-Idle]
a O L I d l e A [HeatOn E RefHs]

+U ([HeatOn E RefHsl A [HeatOn # RefHsl)
+false.

Progress to Purge is shown by a similar deduction where
we assume that 4 . 61 < € 1

Scheduler A 0 LIdle A HSReady
A [Idle] A [Heatreql A 1 > € 1

([I -3 .61- ([HeatOn # Refp] A stable(tr))
A ([I -d1 -rt [Heaton # RefHs]) A C > ~1

+ScheduleTA

j false.

Progress to -Gas and -Ignition follows from

U LIdle A GAAct A IAAct A [Idle]

A (r 1 - 4 . -rt [-Ignition])
+(r 1 - 4 . v+ [TGas])

Stability of Purge is verified as follows:

0 T30Re f A 0 LPurge A ([-Purge] ; f! 5 30)

A U ([Purge] ; [+urge1)
+U (C 5 30

A ([tr = s]; [tr = s-(Set30)]

A T30Re f)
; rout30 R @ f ~ 3 0 1)

j false.

Verification of progress in Ignite1 requires 3 .61 < € 1 .

For Ignite2 we have a new kind of deduction in order
to verify [Gas A Ignition] throughout the phase. We look for
a contradiction of

0 [T(Gas A Ignition) A Ignite21

First, we have, from the properties of ptrace,
System A (true; rIgnite21)

3 true; [Purge]; [I g n i t e l] ; [Igni te21

System A 0 [-(Gas A Ignition) A Igni te21
a O (L I g n i t e 1 A Llgnite2 A GAAct A AAAct)

We can now deduce

A 0 ([Purge]; [I g n i t e l]
; ([Ignite21 A 0 [l (G a s A Igni t ion)]))

+U (GAAct A I A d c t) ~
O (C > 1 - 3 . 6 1

A [last2 (t r G A U I A) = (IgnOn, GasOn)]
A (true; [-(Gas A Igni t ion)]))

3 false.

1 -r -~---

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

RAVN er al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS 53

provided that 61 5 1 - 3 . 61; i.e., 4 . S1 5 1 or 61 < 1/4.
Maintenance of Gas in the Burn phase requires a similar

argument.
In summary: whenever 61 is chosen such that 5.61 < € 1 <

2/7 the distributed system will work. Notice that the minimal
latency 62 can be arbitrarily small because €2 has no lower
bound. In other words: a faster computer will not invalidate
the architecture. This is achieved by using explicit timers to
implement delays.

IX. CONCLUSION

We have illustrated an approach to requirements engineering
and design of real-time systems using mathematical specifi-
cations of system requirements and system design. We have
demonstrated how mathematical reasoning is used in verifying
that designs satisfy requirements and in proving that a more
detailed distributed design satisfies an abstract centralized
design.

Duration calculus has been our tool. This logic combines
central properties of integral calculus with the serial compo-
sition ability of interval logic and the parallel composition
properties of usual logic. Furthermore, it has a conventional
dynamic system as model, which gives a strong link to well
established mathematical theories used in control engineering.

The approach is still developing as we gain more under-
standing of the abilities of duration calculus, and as we see
how good design principles are reflected in the formulas. We
now discuss some issues in the three stages of the approach.

A. System Model and Requirements
As presented here, the requirements are straightforward

formalizations of user expectations. It would be useful to have
a more systematic approach for eliciting these expectations.
One possibility that we would like to investigate is to derive
the safety requirements from the results of a systematic safety
analysis of the system. This could, for instance, be done by
formalizing the results of fault tree analysis, cf. the approach
in the British Ministry of Defence draft standard for software
in safety critical systems [27], [28] or the approach suggested
in [39].

B. Control Model and Law
The use of a finite state machine to give the control

structure is not new, but we see it as a strength that the
paradigm is used by other researchers (see the introduction).
Our main reason for chosing such a restricted structure is
that we would like a design to be consistent. It is fairly
obvious that the specification of the automaton Phases has
a model. We have taken some pains to give the phase-state
constraints PhaseReq a form that ensures consistency. The
system states HeatReq and Flame occurs only in the premise
of the individual phase requirements, and only in the form of
single occurrences of mutually exclusive state assertions, e.g.
THeatReq and Heatreq. These states are thus free to vary in
a model. The controlled states Ignition and Gas occur in the
same form, but in the consequence for the individual phase
requirements. It is thus posible to assign consistent values

for each phase. We can also check that upper bounds on
the duration of a single phase are higher than the possible
lower bounds. For example, for Ignite2 we have an upper
bound of 1 + c1 and lower bounds of 0 or 1. Thus the
Phases and PhaseReq constraints have-a reasonable model.
The assumptions A s m might spoil this, but we have used a
form where premisses contain mutually disjoint assertions on
the controlled states, and consequences are constraints on the
free state Flame. This leaves Heatreq unconstrained, as we
expect it to be.

We are less concerned with consistency of top-level require-
ments. In fact, we expect them to be inconsistent at the start
of a development-user expectations are generally too high.
They will be relaxed during the design verification activity
because it would be impossible to find a consistent design that
satisfies all of them.

The control law specification could be used directly for
development of a program with shared variables, linking to
such approaches as [6], [8], and [24]. We might add that
a control law can be refined by expanding a phase into
subphases, e.g., the division of the Ignite phase. We do
not foresee problems with such serial refinements. They are
analogous to refinement of sequential programs.

The present formulation of control laws would also aid in a
generalization to hybrid systems [25], [26], and [30] , where
continuous physical states can be constrained by differential
equations in the individual phases or in the assumptions. This
requires an extension of the duration concept to properties of
continuous states and a notation for initial values in an interval
for such states. Such an extension was introduced in [37].

C. Verification
With the restricted form of predicates used in the verifica-

tion, there is some indication that these might be decidable.
This would allow mechanical support for the tedious parts
of the calculations. If a finite state machine is inadequate or
inconvenient, it is possible to add further control state variables
and thus get the full power of a Turing machine. This will,
however, make verification more difficult because the phases
may be interrelated in nonobvious ways. It would also make
mechanized verification support difficult.

D. Architecture, Components, and Scheduling
We have not pursued the state machine approach for a dis-

tributed architecture because of the involved proof obligations
for shared variables. We have also refrained from pursuing
an asynchronous event approach because timing constraints
would have to be formulated as constraints on arrival and
departure time for elements in unbounded buffers. We have
seen dynamic buffer systems in practice, and they have not
convinced us that arguments for timeliness are assisted by
having global buffer pools. In the presentation, we have tried
to build on the fundamental work by Reed on Timed CSP [38].
We have, however, yet to fully clearify the relations between
our model and his hierarchy, The concept of a scheduler as an
explicit component is elaborated in [48].

I T - __
I

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993

APPENDIX
DEDUCTION SYSTEM, VERIFICATION

General duration calculus is undecidable, and hence we
cannot expect to find a complete set of axioms and deduction
rules. The deductions in this paper may, hovewer, be based on
the set of axioms and deduction rules given as follows.

A suitably decorated P, r or V in the formulas denotes
a state assertion, a nonnegative real number or a formula in
duration calculus. Symbols ff and tt are the truth values for
state assertions. Note that general laws of the propositional
and predicate calculus are not included, whereas some laws of
interval temporal logic are.

Axiom I : Iff = 0
Axiom 2: J P 2 0
Axiom 3: + JP2 = V P2) + A P2)
Axiom 4: If r1 2 0 and r2 2 0, then

Axiom 5: If PI e P2 is a valid state assertion, then
JP1 = JP2 is an axiom.
The following induction rule is sound due to the finite

Induction Rule: If V([I) is deduced, and
V (X V (X; [PI) V (X; [+I)) is deducible from V (X) ,

It has a dual backward induction rule.
The following are rules of interval logic used in calculations.
Interval Law 1: Monotonic: If V1 + Vi and V2 + V;
Interval Law 2: Associative:

Interval Law 3: False-Zero:
false V ; false H fa1se;V
Interval Law 4: Point-Unit: V e V ; n e n ; V
Interval Law 5: Chop-And:

(J P = r1); (J P = r2) * J P = (7-1 + T P)

variability of states.

then V (t r u e) is deduced.

then V1;V2 =+ Vi;V;.

(2 1 ; 2) 2) ; 2) 3 * vl; (%;v3)

(vl; (v3 A c = r)) A (v ~ ; (D ~ A e = r))
=+ (Dl A V2); (D3 A 0 4)

=+ (Dl A V3); P 2 A 0 4)

(V1 v Vz);V3 * n;v3 v n;v3

((Dl A t = .) ;&)A ((v3 A ! = r) ; 0 4)

Interval Law 6: Chop-Or:

vli(V2 v v3) * vl;V2 v vl;V3
Interval Law 7: Chop-Neg:

* (true; (lV2 A f? = T)) V (-VI; 1 = T-) V C < r

((-Dl A e = r) ; true) V (c = r ; -v2) V e < r

-(vi; (v2 A e = T))

-((vi A t = ~) ; v ,)
Interval Law 8: Exists-Chop:
(3.1 : T VI); V2 * 3v : T V I ; 232 provided v does not

VI; (3v : T 0 V2) e 3v : T D1; V2 provided v does not

The following derived laws have been useful:
Law I : Dur-Range: 0 5 J P 5 C
Law 2: Dur-Negation: J-P = C e J P = 0
Law 3: Dur-Chop-Add: Given a predicate over reals

R(r1,. . . ,r,), which is preserved under addition, i.e.,
R(r1,. . . , r,) A R (r { , . . . , T A) + R(r1 + r i , . . . , r , + TI),

occur free in V2.

occur free in VI.

we have
R(JP1,. . ., JPm); R(JP1,. . . 1 JPm)
=+ R(JP1,. . . > JPm)
Law 4: State-Variation: n v ([P I ; true) v ([-P1; true)
n v (true; [PI) v (true; [+I)
Law 5: State-And: [PI A Pz] * [PI] A rPz1
Law 6: State-Or: [PI] V [Pzl + [PI V P21
Law 7: State-Negation: [l P l =+ l [P 1
Law 8: State-Imply: [PI + Pz] =+ ([P I] + [Pzl)
Law 9: State-Always: [PI + U([PI v n)
Law I O : State-Chop-And:

Law 11: State-Chop: [PI; [PI H [PI
[PI A (IP11; IP21) * ([PI A [Pllh ([Pl A rP21)

ACKNOWLEDGMENT

We wish to express our sincere gratitude to our ProCoS
colleagues, especially Prof. D. Bjarner and Prof. C. A. R.
Hoare, for encouragement, support and useful discusions, and
to Prof. Z. Chaochen for his continuing efforts to develop and
adapt duration calculus to our use. Furthermore we have had
useful discussions with Prof. J. Madey about the approach.

REFERENCES

J. F. Allen, “Maintaining knowledge about temporal intervals,” Com-
mun. Ass. Comput. Mach., vol. 26, pp. 832-843, 1983. -. “Towards a neneral theory of action and time,” Artificial Intell.,
vol. 23, pp. 12>16, 1984.
D. B i ~ m e r , “A ProCoS Droiect description,” ESPRIT BRA 3104, EATCS

.

Bull.; no. 39, Oct. 1989.
A. M. Davis and P. A. Freeman, “Guest editors’ introduction: Re-
quirements engineering,” ZEEE Trans. Sofrware Eng., vol. SE-17, 3, pp.
210-211, 1991.
J. Dawes, The VDM-SL reference guide.
M. Degl’Innocenti, G. L. Ferrari, G. Pacini, and F. Turini, “RSF:
A formalism for executable requirement specifications,” IEEE Trans.
Sofrware Eng., vol. 16, no. 11, pp. 1235-1246, 1990.
R. C. Dorf, Modern Control Systems, Addison- Wesley Series in Electrical
Engineering, 3rd ed.
C. Ghezzi, D. Mandrioli, and A. Morzenti, “TRIO, a logic language for
executable specifications of real-time systems,” .I. Syst. Sofrware, vol.
12, no. 2, 1990.
A. Goswami, M. Bell, and M. Joseph, “ISL An interval logic for
the specification of real-time programs,” in Proc. 2. Znt. Symp. Formal
Techniques in Real-Time and Fault-Tolerant Systems, J. Vytopil, Ed.,
LNCS 571.
R. Hale, “Temporal logic programming,” in Temporal Logic and Their
Applications, A. Galton, Ed. New York: Academic, 1987, pp. 91-119.
A. G. Hamilton, Logic for Mathematicians, rev. ed. New York Cam-
bridge University Press, 1988.
K. L. Heninger, “Specifying software Rrequirements for complex sys-
tems: New techniques and their application, IEEE Trans. Sofrware Eng.,

K. M. Hansen, A. P. Ravn, and H. Rischel, “Specifying and verifying
requirements of real-time systems,” in Proc. ACM SZGSOFT ’91 Con&
On Sofrware for Critical Systems, New Orleans, LA, Dec. 4-6, 1991;
ACM Sofrware Engineering Notes, vol. 15, no. 5 , pp. 4&54, 1991.
M. R. Hansen and Z. Chaochen, “Semantics and Completeness of dura-
tion calculus,” in Proc. Real-Time: Theory in Practice, REX Workshop,
Mook, The Netherlands, June 1991, LNCS 600, 1992, pp. 209-225.
D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comp. Prog., vol. 8, pp. 231-274, 1987.
C. A. R. Hoare, Communicating Sequential processes. Englewood
Cliffs, NJ: Prentice-Hall, 1985.
A. Isidori, Nonlinear Control Systems, Communications and Control
Engineering Series.
M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart,
“Software requirements analysis for real-time process-control systems,’’
IEEE Trans. Sofrware Eng., vol. SE-17, no. 3, pp. 241-258, 1991.

Pitmann, 1991.

Reading, MA: Addison-Wesley, 1980.

New York: Springer-Verlag, 1991, pp. 1-20.

vol. SE-6, 1, pp. 2-13, 1980.

New York: Springer-Verlag, 1989.

‘-1 lr -----

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

RAVN et al.: SPECIFYING AND VERIFYING REQUIREMENTS OF REAL-TIME SYSTEMS 55

[19] F. Jahanian and A. K.-L. Mok, “Safety analysis of timing properties
in real-time systems,’’ IEEE Trans. Software Eng., vol. SE-12, 9, pp.
890-904, 1986.

[20] He Jifeng and J. Bowen, “Time interval semantics of a real-time
programming Language, in Proc. 4th Euromicro Workshop on Real-Time
Systems, Athens, Greece, June 3-5, 1992, pp. 110-115.

[21] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255-299, 1990.

[22] L. Ljung, System Identijication. Theory for the User. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

[23] D. G. Luenberger, Introduction to Dynamic Systems. Theory, Models &
Applications. New York: Wiley, 1979.

[24] Luqui, V. Berzins, and R. T. Yeh, “A prototyping language for real-time
software,” IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1409-1423,
1988.

[25] K. Marzullo, “Tolerating failures of continuous-valued sensors,” Tech.
Reo. TR90-1156. Dent. of Comouter Science, Cornell University,
I thka, NY, Sept. 1990.

1261 0. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid systems,”
L 1

in Proc. Real-Time: Theory in Practice, REX Workshop, Mook, The
Netherlands, June 1991, LNCS 600, 1992, pp. 447-484.

[27] “The procurement of safety critical software in defence equipment;
Part 1: Requirements, The procurement of safety critical software in
defence equipment; Part 2: Guidance,” Tech. Rep. INT DEF STAN
00-55, Ministry of Defence, Directorate of Standardization, Glasgow,
Scotland, Apr. 1991.

[28] “Hazard analysis and safety classification of the computer and pro-
grammable electronic system elements of defence equipment,” Tech.
Rep. INT DEF STAN W.56, Ministry of Defence, Directorate of
Standardization, Glasgow, Scotland, Apr. 1991.

[29] B. Moszkowski, “A temporal logic for multilevel reasoning about
hardware,” IEEE Trans. Comput., vol. C-18, 2, pp. 10-19, 1985.

[30] X. Nicollin, J . Sifakis, and S. Yovine, “From atp to timed graphs and
hybrid systems,’’ Draft Tech. Rep., June 1991.

[31] E.-R. Olderog, “Toward a design calculus for communicating programs,”
Concur ’91, 2nd International Conference on Concurrency Theory,
Amsterdam, The Netherlands, Aug. 1991, LNCS 527, 1991, pp. 61-77.

[32] D. L. Parnas and P. C. Clements, “A rational design process: How
and why to fake it, “IEEE Trans. Software Eng., vol. SE-12, no. 2, pp.
251-257. 1986. - - ~ -- , ~ -~
D. L. Parnas, G. J. K. Asmis, and J. Madey, “Assessment of safety-
critical software,” Tech. Rep. 90-295, TRIO, Queen’s University,
Kingston, Ontario, Canada, Dec. 1990.
D. L. Parnas and J. Madey, “Functional documentation for computer
system engineering” (version 2), CSL Rep. 237, TRIO, McMaster
University, Hamilton, Ontario, Canada, Sept. 1991.
A. Pnueli and E. Harel, “Applications of temporal logic to the spec-
ification of real-time systems” (extended abstract), in Proc. Symp. on
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 331,
M. Joseph, Ed.
A. P. Ravn, H. Rischel, and V. Stavridou, “Provably correct safety
critical software,” in Proc. IFAC SAFECOMP’90, London, England,
Oct. 1990, pp. 13-29.
A. P. Ravn and H. Rischel, “Requirements capture for embedded real-
time Systems, in Proc. IMACS-MCTS’91 Symp. Modeling and Control
of Technological Systems, vol. 2, Villeneuve d’Ascq, France, 1991, pp.
147-152.
G. M. Reed and V. W. Roscoe, “Metric spaces as models for real-time
concurrency,” Mathematical Foundations of Programming, LNCS 298,

A. Saeed, R. de Lemos, and T. Anderson, “The role of formal methods
in the requirements analysis of safety-critical systems: A train set
example,” in Proc. 21st Symp. on Fault-Tolerant Computing, 1991, pp.
478-485.
F. B. Schneider, “The state machine approach: A tutorial,” Computing
Surveys, vol. 22, no. 3, 1990.
S. Schneider, “Correctness and communication of real-time systems,’’
Ph.D. dissertation, 1989, Tech. Monograph PRG-84, Oxford Univ.
Computer Laboratory, England, March 1990.

New York: Springer-Verlag, pp. 84-98.

pp. 331-343, 1987.

[42] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt, “An interval logic
for higher-level temporal reasoning,” in Proc. 2nd Annual ACM Symp.
on Principles of Distributed Computing, 1983, pp. 173-186.

[43] A. C. Shaw, “Reasoning about time in higher-level language software,”
IEEE Trans. SofhYare Eng., vol. 15, no. 7, pp. 875-889, 1989.

[44] J. M. Spivey, The Z Notation. Prentice-Hall International Series in
Computer Science.

[45] E. V. S~rensen, A. P. Ravn, and H. Rischel, “Control program for a gas
burner: Part 1: Informal requirements, ProCoS case study 1,” ProCoS
Rep. IDDTH EVS2, 1990.

[46] J. C. Willems, “Paradigms and puzzles in the theory of dynamical
systems,” IEEE Trans. Automat. Contr., vol. 36, no. 3, pp. 25S294,
1991.

[47] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A calculus of durations,”
Information Processing Lett., vol. 40, no. 5, pp. 269-276, 1991.

[48] Z. Chaochen, M. R. Hansen, A. P. Ravn, and H. Rischel, “Duration
specifications for shared processors,” in Proc. 2nd In?. Symp. on Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 571, J.
Vytopil, Ed., 1991, pp. 21-32.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

Anders P. Ravn (M’83) received the M.S. degree
in computer science from the University of Copen-
hagen, Denmark, in 1973.

He is Associate Professor with the Department
of Computer Science, Technical University of Den-
mark, Lyngby, Denmark. His research interests are
in the areas of software engineering principles for
embedded computing systems and specification of
total systems in real-time applications.

Prof. Ravn is a member of the Association for
Computing Machinery.

Prof. Rischel is a m

Hans Rischel (M’91) received the M.S. degree in
mathematics from the University of Copenhagan,
Denmark, in 1960.

He was Assistant and Associate Professor with
the Department of Mathematics, University of
Copenhagen, from 1962 to 1970. From 1970 to
1984 he was employed in industry. Since 1985 he
has been Associate Professor with the Department
of Computer Science, Technical University of
Denmark. His research interest is in software
engineering with special focus on the use of
mathematical methods.

(ember of the Association of Computing Machinery.

Kirstes Mark Hansen received the M.S. degree in
software engineering from the Department of Com-
puter Science, Technical University of Denmark,
Lynby, Denmark, in 1989.

Since 1989, she has been with the Technical
University as a research assistant. Her research
interest is in the area of software engineering, espe-
cially design and verification of safety-critical and
embedded real-time systems.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 27, 2009 at 04:43 from IEEE Xplore. Restrictions apply.

