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Abstract We present a new algorithm for maximum likelihood convolutive

ICA (cICA) in which sources are unmixed using stable IIR filters determined

implicitly by estimating an FIR filter model of the mixing process. By intro-

ducing a FIR model for the sources we show how the order of the filters in the

convolutive model can be correctly detected using Bayesian model selection. We

demonstrate a framework for deconvolving an EEG ICA subspace. Initial results

suggest that in some cases convolutive mixing may be a more realistic model for

EEG signals than the instantaneous ICA model.

1 Introduction

Motivated by the EEG signal’s complex temporal dynamics we are interested

in convolutive independent component analysis (cICA), which in its most basic

form concerns reconstruction of L + 1 mixing matrices Aτ and N source signal

vectors (’innovations’), st, of dimension K, combining to form an observed D-

dimensional linear convolutive mixture

xt =
L∑

τ=0

Aτst−τ (1)
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That is, cICA models the observed data x as produced by K source processes

whose time courses are first convolved with fixed, finite-length time filters and

then summed in the D sensors. This allows a single source signal to be expressed

in the different sensors with variable delays and frequency characteristics.

One common application for this model is the acoustic blind source separation

problem in which sound sources are mixed in a reverberant environment. Simple

ICA methods not taking signal delays into account fail to produce satisfactory

results for this problem, which has thus been the focus of much cICA research

(e.g., [Lee et al., 1997a; Parra et al., 1998; Sun and Douglas, 2001; Mitianoudis

and Davies, 2003; Anemüller and Kollmeier, 2003]).

For analysis of human electroencephalographic (EEG) signals recorded from

the scalp, ICA has already proven to be a valuable tool for detecting and enhanc-

ing relevant ’source’ subspace brain signals while suppressing irrelevant ’noise’

and artifacts such as those produced by muscle activity and eye blinks [Makeig

et al., 1996; Jung et al., 2000; Delorme and Makeig, 2004]. In conventional ICA

each independent component (IC) is represented as a spatially static projection

of cortical source activity to the sensors. Results of static ICA decomposition

are generally compatible with a view of EEG source signals as originating in sin-

gle (or occasionally pairs of) cortical domains, most likely patches of unknown

size, within which local field potential fluctuations are partially synchronized.

Modelling EEG data as consisting of convolutive as well as static independent

processes allow a richer palette for source modeling, possibly leading to more

complete signal independence.

One goal of applying cICA to EEG data is to explore the data for convo-

lutional component ’source’ processes having spatially dynamic or fluid spatial

projections to the sensors, for example accounting for possible patterns of cur-

rent flow within or across each cortical source patch or larger swath. Other

processes detectable with cICA might be spatially fluid non-brain processes, for
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instance the blood flow artifacts that often contaminate EEG recorded in a strong

magnetic field. A third potentially important class of convolutive EEG source

models might capture repeated and stereotyped mutual and delayed ’reverbera-

tive’ interactions between the near-independent coherent activities within sepa-

rate cortical source patches mediated for example by generally sparse long-range

cortical-cortical connections, and/or by extensive but little observed corticotha-

lamic loops.

In this paper we present a new cICA decomposition method that, unlike most

previous work in the area, operates entirely in the time-domain. One advantage

of the time-domain approach is that it avoids the need to window the data and

hence avoids the need for manual tuning of window length and tapering. Al-

though tuning a wavelet or DFT (discrete fourier transform) domain approach is

possible in many acoustic situations in which ’gold standard’ performance mea-

sures (e.g., listening tests) are available, no such ’gold standard’ of success is

available in the case of human EEG. Also, time domain deconvolution is not re-

stricted to one frequency band at a time, and thus can avoid the difficult process

of piecing together deconvolutions computed separately at different frequencies

[Anemüller et al., 2003].

The new scheme also makes no assumptions about ’non-stationarity’ of the

source signals, a key assumption in several successful cICA methods (see e.g.

[Parra and Spence, 2000; Rahbar et al., 2002]) whose relevance to EEG is unclear.

Previous time-domain and DFT-domain methods have formulated the problem

as one of finding a finite impulse response (FIR) filter that unmixes as in (2)

below [Belouchrani et al., 1997; Choi and Cichocki, 1997; Moulines et al., 1997;

Lee et al., 1997b; Attias and Schreiner, 1998; Parra et al., 1998; Deligne and

Gopinath, 2002; Douglas et al., 1999; Comon et al., 2001; Sun and Douglas, 2001;

Rahbar and Reilly, 2001; Rahbar et al., 2002; Baumann et al., 2001; Anemüller
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and Kollmeier, 2003]

ŝt =
∑

λ

Wλxt−λ (2)

However, the inverse of the mixing FIR filter modeled in (1) is, in general, an

infinite impulse response (IIR) filter. We thus expect that FIR based unmixing

will require estimation of extended or potentially infinite length unmixing filters.

Our method, by contrast, finds such an unmixing IIR filter implicitly in terms

of the mixing model parameters, i.e. the Aτ ’s in (1), isolating st in (1) as

ŝt = A#
0

(
xt −

L∑
τ=1

Aτ ŝt−τ

)
(3)

where A#
0 denotes Moore-Penrose inverse of A0. Another advantage of this

parametrization is that the Aτ ’s allow a separated source signal to be easily back-

projected into the original sensor domain. Other proposed IIR unmixing filter

representations, e.g. those of [Torkkola, 1996; Choi and Cichocki, 1997], used

parameterizations unlike (3), the essential difference being that our parametriza-

tion generalizes to include ’overdetermined’ cases in which the number of sensors

exceeds the number of sources. As we will show, solving (3) allows for a deriva-

tion of model likelihood in both well-determined and overdetermined cases.

2 Learning the mixing model parameters

Statistically motivated maximum likelihood approaches for cICA have been pro-

posed ([Torkkola, 1996; Pearlmutter and Parra, 1997; Parra et al., 1997; Moulines

et al., 1997; Attias and Schreiner, 1998; Deligne and Gopinath, 2002; Choi et al.,

1999]) and are attractive for a number of reasons. First, they force a declaration

of statistical assumptions—in particular the assumed distribution of the source

signals. Secondly, a maximum likelihood solution is asymptotically optimal given

the assumed observation model and the prior choices for the ‘hidden’ variables.

Assuming independent and identically distributed (i.i.d.) sources and no
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noise, the likelihood of the parameters in (1) given the data is

p(X|{Aτ}) =

∫ N∏
t=1

δ(et) p(st) d{st} (4)

where

et = xt −
L∑

τ=0

Aτst−τ (5)

and δ(et) is the Dirac delta function.

In the following derivation, we assume that the number of convolutive source

processes K does not exceed the dimension D of the data. First, we note that

only the N ’th term under the product operator in (4) is a function of sN . Hence,

the sN -integral may be evaluated first, yielding

p(X|{Aτ}) = |AT
0 A0|−1/2

∫
p(ŝN)

N−1∏
t=1

δ(et) p(st) d{st}\sN (6)

where
∫

d{st}\sN integrates over all sources except sN , and

ŝN = A#
0

(
xt −

L∑
τ=1

Aτst−τ

)
(7)

Now, as before, only one of the factors under the product operator in (6) is a

function of sN−1. Hence, the sN−1-integral can now be evaluated, yielding

p(X|{Aτ}) = |AT
0 A0|−1

∫
p(ŝN) p(ŝN−1)

N−2∏
t=1

δ(et) p(st) d{st}\{sN , sN−1} (8)

where
∫

d{st}\{sN , sN−1} integrates over all sources except sN and sN−1, and

ŝt = A#
0

(
xt −

L∑
τ=1

Aτut−τ

)
, un =





sn for n < N − 1

ŝn for n ≥ N − 1

(9)

By induction, and assuming sn is zero for n < 1, we get

p(X|{Aτ}) = |AT
0 A0|−N/2

N∏
t=1

p(ŝt) (10)

where

ŝt = A#
0

(
xt −

L∑
τ=1

Aτ ŝt−τ

)
(11)
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Thus, the likelihood is calculated by first unmixing the sources using (11), then

measuring (10). It is clear that the algorithm reduces to standard Infomax ICA

[Bell and Sejnowski, 1995] when the length of the convolutional filters L is set

to zero and D = K; in that case (10) can be estimated using ŝt = A−1
0 xt.

2.1 Model source declaration ensures stable un-mixing

Because of inherent instability concerns, the use of IIR filters for unmixing has

often been discouraged [Lee et al., 1997b]. Using FIR unmixing filters could cer-

tainly ensure stability but would not solve the fundamental problem of inverting

a linear system in cases in which it is not invertible. Invertibility of a linear

system is related to the phase characteristic of the system transfer function. A

SISO (single input / single output) system is invertible if and only if the com-

plex zeros of its transfer function are all situated within the unit circle. Such

a system is characterized as ’minimum phase’. If the system is not minimum

phase, only an approximate, ’regularized’ inverse can be sought. (See [Hansen,

2002] on techniques for regularizing a system with known coefficients).

For MIMO (multiple input / multiple output) systems, the matter is more

involved. The stability of (11), and hence the invertibility of (1), is related to

the eigenvalues λm of the matrix

Ã =




−A#
0 A1 −A#

0 A2 . . . −A#
0 AL

I 0

. . .
...

I 0




(12)

For K = D, a necessary and sufficient condition is that all eigenvalues λm of

Ã are situated within the unit circle, |λm| < 1 [Neumaier and Schneider, 2001].

We can generalize the ’minimum phase’ concept to MIMO systems if we think of

the λm’s as quasi ’poles’ of the inverse MIMO transfer function. A SISO system

being minimum phase implies that no system with the same frequency response
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can have a smaller phase shift and system delay.

Generalizing that concept to MIMO systems, we can get a feeling for what a

quasi ’minimum phase’ MIMO system must look like. In particular, most energy

must occur at the beginning of each filter, and less towards the end. However,

not all SISO source-to-sensor paths in the MIMO system need be minimum phase

for the MIMO system as a whole to be quasi ’minimum phase’.

Certainly, unmixing data using FIR filters is regularized in the sense that

their joint impulse response is of finite duration, whereas IIR filter impulse re-

sponses may potentially become unstable. Fortunately, the maximum likelihood

approach has a built-in regularization that avoids this problem. This can be seen

in the likelihood equation (10) by noting that although an unstable IIR filter will

lead to a divergent source estimate, ŝt, such large amplitude signals are expo-

nentially penalized under most reasonable source probability density functions

(pdf’s), e.g. for EEG data p(s) = sech(s)/π, ensuring that unstable solutions

are avoided in the evolved solution.

If so, it may prove safe to use an unconstrained iterative learning scheme

to unmix EEG data. Once the unmixing process has been stably initialized,

each learning step will produce model refinements that are stable in the sense of

equation (11). Even if the system (1) we are trying to unmix is not invertible,

meaning no exact stable inverse exists, the maximum-likelihood approach will

give a regularized and stable quasi ’minimum phase’ solution.

2.2 Gradients and optimization

The partial derivatives of the likelihood are presented here in two steps. Step

one reveals the gradient of the source estimates while step two uses the step

one results in a chain rule to compute the gradient of the likelihood (see also

[Dyrholm and Hansen, 2004])
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Step one — Gradient of the unmixed source estimates

∂(ŝt)k

∂(A#
0 )ij

= δ(i− k)

(
xt −

L∑
τ=1

Aτ ŝt−τ

)

j

−
(

A#
0

L∑
τ=1

Aτ
∂ŝt−τ

∂(A#
0 )ij

)

k

(13)

and ( ψψψt )k = p′( (ŝt)k )/p( (̂st)k ).

∂(ŝt)k

∂(Aτ )ij

= −(A#
0 )ki(ŝt−τ )j −

(
A#

0

L∑

τ ′=1

Aτ ′
∂ŝt−τ ′

∂(Aτ )ij

)

k

(14)

Step two — Gradient of the likelihood The gradient of the negative log

likelihood with respect to A#
0 is given by

∂L({Aτ})
∂(A#

0 )ij

= −N(AT
0 )ij −

N∑
t=1

ψψψT
t

∂ŝt

∂(A#
0 )ij

(15)

and the gradient with respect to to the other mixing matrices is

∂L({A})
∂(Aτ )ij

= −
N∑

t=1

ψψψT
t

∂ŝt

∂(Aτ )ij

(16)

These expressions allow use of general gradient optimization methods, a sta-

ble starting point being Aτ = 0 (for τ 6= 0) with arbitrary A0. In the experiments

reported below, we have used a BFGS algorithm for optimization. See [Cardoso

and Pham, 2004] for a relevant discussion and [Nielsen, 2000] for a reference to

the precise implementation we used.

3 Three approaches to overdetermined cICA

Current EEG experiments typically involve simultaneous recording from 30 to

100 or more electrodes, forming a high (D) dimensional signal. After signal

separation we hope to find a relatively small number (K) of independent com-

ponents. Hence we are interested in studying the so-called ’overdetermined’

problem (K << D). There are at least three different approaches to performing

overdetermined cICA:

1. (Rectangular) Perform the decomposition with D > K.
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Figure 1: A synthetic MIMO mixing system. Here, two sources were convolu-

tively mixed at three sensors. The ’poles’ of the mixture (as defined in section

2.1) are all situated within the unit circle, hence an exact and stable inverse

exists in the sense of (11).
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2. (Augmented) Perform the decomposition with K set to D, i.e. attempting

to estimate some extra sources.

3. (Diminished) Perform the decomposition with D equal to K, i.e. on a

K-dimensional subspace projection of the data.

We compared the performance of these three approaches experimentally as a

function of signal-to-noise ratio (SNR). First, we created a synthetic mixture,

two i.i.d source signals s1(t) and s2(t) (with 1 ≤ t ≤ N and N = 30000)

generated from a laplacian distribution, sk(t) ∼ p(x) = 1
2
exp(−|x|) with variance

Var{sk(t)} = 2. These signals were mixed using the filters of length L = 30

shown in Figure 1 producing an overdetermined 3-D mixture (D = 3, K = 2).

A 3-D i.i.d. Gaussian noise signal nt was added to the mixture xt = σnt +
∑L

τ=0 Aτst−τ with a controlled variance σ2.

Next, we investigated how well the three analysis approaches estimated the

two sources by measuring the correlations between each true source innovation,

sk(t), and the best-correlated estimated source, ŝk′(t).

Approach 1 (Rectangular). Here, all three data channels were decomposed

and the two true sources estimated. Figure 2 shows how well the sources were

estimated at different SNR levels. The quality of the estimation dropped dra-

matically as SNR decreased. Even though our derivation (Section 2) is valid

for the overdetermined case (D > K), the validity of the zero-noise assumption

proves vital in this case. The explanation for this can be seen in the definitions

of the likelihood (10) and unmixing filter (11).

In (10), any rotation on the columns of A0 will not influence the determinant

term of the likelihood. From (11) we note that the estimated source vectors ŝt are

found by linear mapping through A#
0 : IRD 7→ IRK . Hence, the source-prior term

in (10) alone will be responsible for determining a rotation of A0 that hides as

much variance as possible in the nullspace (IRD−K) of A#
0 in (11). In an uncon-
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Figure 2: Comparison of source separation of the system in Fig. 1 using three

cICA approaches (Rectangular, Augmented, Diminished). A: Estimates of true

source activity: correlations with the best-estimated source. B: Similar correla-

tions for the less well estimated source.

strained optimization scheme, this side-effect will be untamed and consequently

will hide source variance in the nullspace of A#
0 and achieve an artificially high

likelihood while relaxing the effort to make the sources independent.

Approach 2 (Augmented). One solution to the problem with the Rectangu-

lar approach above could be to parameterize the nullspace of A#
0 , or equivalently

the orthogonal complement space of A0. This can be seen as a special case of the

algorithm in which A0 is D-by-D and Aτ is D-by-K. With the D−K additional

columns of A0 denoted by B, the model can be written

xt = Bvt +
L∑

τ=0

Aτst−τ (17)

where vt and B constitute a low-rank approximation to the noise. Hence, we

declare a Gaussian prior p.d.f. on vt. Note that (17) is a special case of the

convolutive model (1). In this case, we attempt to estimate the third (noise)

source in addition to the two convolutive sources.
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Figure 2 shows how well the sources are estimated using this approach for

different SNR levels. For the best estimated source (Fig. 2-A), the Augmented

approach gave better estimates than the Rectangular or Diminished approaches.

This was also the case for the second source (Fig. 2-B) at low SNR, but not at

high SNR since in this case the ’true’ B was near zero and became improbable

under the likelihood model.

Approach 3 (Diminished). Finally, we investigated the possibility of ex-

tracting the two sources from a two-dimensional projection of the data. Here,

we simply excluded the third ’sensor’ from the decomposition. Figure 2 shows

that even in the presence of considerable noise, the separation achieved was not

as good as in the Augmented approach. However, the Diminished approach used

the lowest number of parameters and hence had the lowest comutational com-

plexity. Furthermore, it lacked the peculiarities of the Augmented approach at

high SNR. Finally we note that once the Diminished model has been learned,

an estimate of the Rectangular model can be obtained by solving

< xts
T
t−λ > =

∑
τ

Aτ < st−τs
T
t−λ > (18)

for Aτ by regular matrix inversion using the estimated sources and < · >=

1
N

∑N
1=1.

Summary of the three approaches. In the presence of considerable noise,

the best separation was obtained by augmenting the model and extracting, from

the D-dimensional mixture, K sources as well as a (rank D−K) approximation

of the noise. However, the Diminished approach had the advantage of lower

computational complexity, while the separation it achieved was close to that

of the Augmented approach. At very high SNR, the Diminished approach was

even slightly better than the Augmented approach. The Rectangular approach,

meanwhile, had difficulties and should not be considered for use in practice as
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the presence of some channel noise may be assumed.

4 Detecting a convolutive mixture

Model selection is a fundamental issue of interest, in particular, detecting the

order of L can tell us whether the convolutive mixing model is a better model

than the simpler instantaneous mixing model of standard ICA methods. In the

framework of Bayesian model selection, models that are immoderately complex

are penalized by the Occam factor, and will therefore only be chosen if there

is a relevant need for their complexity. However, this compelling feature can

be disrupted if fundamental assumptions are violated. One such assumption

was involved in our derivation of the likelihood, in which we assumed that the

sources are iid, i.e. not auto-correlated. The problem with this assumption is

that the likelihood will favor models based not only on achieved independence

but on source whiteness as well. A model selection scheme for L which does not

take the source auto-correlations into account will therefore be biased upwards

because models with a larger value for L can absorb more source auto-correlation

than models with lower L values. To cure this problem, we introduce a model

for each of the sources

sk(t) =
M∑

λ=0

hk(λ)zk(t− λ) (19)

where zk(t) represents an i.i.d. signal—a whitened version of the source signal.

Introducing the K source filters of order M allows us to reduce the value of L,

i.e. lowering the number of parameters in the model while achieving uniformly

better learning for limited data [Dyrholm et al., 2005].

We note that some authors of FIR unmixing methods have also used source

models, e.g. [Pearlmutter and Parra, 1997; Parra et al., 1997; Attias and Schreiner,

1998].
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4.1 Learning source auto-correlation

The negative log likelihood for the model combining (1) and (19) is given by

L = N log | detA0|+ N
∑

k

log |hk(0)| −
N∑

t=1

log p(ẑt) (20)

where ẑt is a vector of whitened source signal estimates at time t using an

operator that represents the inverse of (19), and we assume A0 to be square as

in the Diminished and Augmented approaches above. We can without loss of

generality set hk(0) = 1, then

L = N log | detA0| −
N∑

t=1

log p(ẑt) (21)

For notational convenience we introduce the following matrix notation instead

of (19), bundling all sources in one matrix equation

st =
M∑

λ=0

Hλzt−λ (22)

where the Hλ’s are diagonal matrices defined by (Hλ)ii = hi(λ).

To derive an algorithm for learning the source auto-correlations in addition

to the mixing model we modify the equations found in Section 2.2; inserting

a third, Source model step (see below) between the two steps found there, i.e.

substituting ẑt for ŝt in step two.

Source model step The inverse source coloring operator is given by

ẑt = ŝt −
M∑

λ=1

Hλẑt−λ (23)

and the partial derivatives, which we shall use in a chain-rule version of step

two, are given by

∂(ẑt)k

∂(A−1
0 )ij

=
∂(̂st)k

∂(A−1
0 )ij

−
M∑

λ=1

Hλ
∂(ẑt−λ)k

∂(A−1
0 )ij

(24)

∂(ẑt)k

∂(Aτ )ij

=
∂(̂st)k

∂(Aτ )ij

−
M∑

λ=1

Hλ
∂(ẑt−λ)k

∂(Aτ )ij

(25)
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∂(ẑt)k

∂(Hλ)ii

= −δ(k − i)(ẑt−λ)i −
(

M∑

λ′=1

Hλ′
∂ẑt−λ′

∂(Hλ)ii

)

k

(26)

4.2 Protocol for detecting L

We propose a simple protocol for determining the dimensions (L,M) of the con-

volutional and source filters. First, expand the convolution without an autofilter

(M = 0). This will model the total temporal dependency structure of the sys-

tem Lmax. The optimal dimension is found by monitoring the Bayes Information

Criterion (BIC) [Schwarz, 1978]

log p(M|X) ≈ log p(X|θθθ0,M)−dimθθθ

2
log N (27)

where M represents a specific choice of model structure (L,M), θθθ represents the

parameters in the model, and θθθ0 are the maximum likelihood parameters.

Next, keep the temporal dependency constant, (L + M) = Lmax, while ex-

panding the length of the source autofilters M , again monitoring the BIC to

determine the optimal choice of L = Lmax −M .

4.3 Example: Correctly rejecting cICA of an instanta-

neous mixture

We will now illustrate the importance of the source model and the validity of the

protocol for detecting L when dealing with the following fundamental question:

Do we learn anything by using convolutive ICA instead of instantaneous ICA?

Or, put in another way, Should L be larger than zero?

To produce an instantaneous mixture we now generate two random signals

from a Laplace distribution, filter them through filters of order 15 shown in

Figure 3, and mix the two filtered sources using an arbitrary mixing matrix.

Figure 4A shows the result of using Bayesian model selection for this mixture

without allowing for a filter (M = 0). This corresponds to model selection in a
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Figure 3: These filters are used to produce autocorrelated sources (M = 15).
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Figure 4: A: The result of using Bayesian model selection without allowing for

an autofilter (M = 0). Since the signals are non-white, the validity of L is

unquestioned even at 15 lags (L = 15). B: We fix L + M = 15, and now get the

correct answer, that model information is largest for L = 0, meaning there is no

evidence of convolutive mixing.
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conventional convolutive model. Since the signals are non-white, L is detected

and the model BIC simply increases as function of L up to the maximum, here

stopped at L = 15. Next, (Fig. 4B) we fix L + M = 15. Models with a larger L

have at least the same capability as models with lower L, though models with

lower L are preferable because they have fewer parameters. By adding the source

model, we get the correct answer in this case: These data contain no evidence

of convolutive mixing.

5 Deconvolving an EEG ICA subspace

We will now show by example how cICA can be used to separate the delayed

influences of statically defined ICA components on each other, thereby achieving

a larger degree of independence in the convolutive component time courses. The

procedure described here can be seen as a Diminished approach in which we ex-

tract K convolutive components from the D-dimensional data by deconvolving

a K-dimensional subspace projection of the data. In [Dyrholm et al., 2004] we

used a subspace from Principal Component Analysis (PCA), but as our experi-

ment will show, using ICA for that projection has the benefit that the subspace

can be chosen e.g. for physiological interest, since ICA separate processes with

distinct brain dynamic signatures from the linearly mixed signals reaching the

scalp electrodes by volume conduction.

As a first test of this approach, we applied convolutive decomposition to 20

minutes of a 71-channel human EEG recording (20 epochs of 1 minute duration),

downsampled for numeric convenience to a 50-Hz sampling rate after filtering

between 1 and 25 Hz with phase-indifferent FIR filters. First, the recorded

(channels-by-times) data matrix (X) was decomposed using extended Infomax

ICA [Bell and Sejnowski, 1995; Makeig et al., 1996; Jung et al., 2001] into 71

maximally independent components whose (’activation’) time series were con-

tained in (components-by-times) matrix SICA and whose (’scalp map’) projec-
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tions to the sensors were specified in (channels-by-components) mixing matrix

AICA, assuming instantaneous linear mixing X = AICASICA.

Five of the resulting independent components (ICs) were selected for further

analysis on the basis of event-related coherence results that showed a transient

partial collapse of component independence following the subject button presses

[Makeig et al., 2004]. Their scalp maps from the relevant five columns of AICA are

shown on the left margin of Figure 7. Next, cICA decomposition was applied to

the five component activation time series (relevant five rows of SICA), assuming

the model

sICA
t =

L∑
τ=0

Aτs
cICA
t−τ (28)

As a qualified guess of the order L, we applied the approach to estimating L

outlined in Section 4.2 above to the EEG subspace data. First, we increased the

order of the convolutive model L (keeping M = 0) while monitoring the BIC. To

produce error bars, we used jackknife resampling [Efron and Tibshirani, 1993];

i.e. for each value of L, 20 runs with the algorithm were performed, one for

each jackknifed epoch, thus the data in each run consisted of the 19 remaining

epochs. Figure 5A shows the mean jackknifed BIC. Clearly, the BIC, without an

autofilter included, was at least Lmax = 40, since some correlations in the data

extended to at least 800 ms. Next, we swept the range of possible source model

filters M , keeping L + M = 40. Figure 5B shows that L = 10, corresponding to

a filter length of 200 ms, proved optimal.

Figures 6 shows the 5 × 5 matrix of learned convolutive kernels. Before

plotting, we arranged the order of the five output CCs so that the diagonal

(CCi → ICi) kernels, shown in one-third scale in Fig. 6, were dominant.

Figure 7 shows the resulting percent of variance of the contributions from

each of the CC innovations to each of the IC activations. As the large diagonal

contributions in Figure 7 show, each convolutive CCj dominated one spatially

static IC (ICj). However, there were clearly significant off-diagonal contributions
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Figure 5: Using the protocol for detecting the order of L for EEG. A: There are

correlations over at least 40 lags in the data. This corresponds to 800ms. B: By

introducing the source model it turns out that L should only be on the order of

10 corresponding to 200 ms.

as well, indicating that spatiotemporal relationships between the static ICA

components was captured by the cICA model.

To explore the robustness of this result further, we tested for the presence of

delayed correlations, first between the static IC activations (sICA
k′ (t)) and then

between the learned CC innovations (scICA
k (t)). Figure 8 shows, for the most

predictable IC and CC, the percent of their time course variances that was

accounted for by linear prediction from the past history (of order r) of the

largest contributing remaining ICs or CCs, respectively.

As expected from the cICA results, as the prediction order (r) increased,

the predictability of the static ICA component activation also increased. For

the ICA component activation, 9% of the variance could be explained by linear

prediction from the previous 10 time points (200 ms) of another ICA component.

The static ICA component time courses were nearly ’independent’ only in the

sense of zero-order prediction (r = 0), as expected from their derivation. Their

lack of independence at other lags is compatible with the cICA results. For

the CC innovation, however, the predictability in Figure 8 remained low as r
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Figure 6: Kernels of the five derived convolutive ICA components (CCs), ar-

ranged (in columns) in order of their respectively contributions to the five static

ICA components (ICs) (rows). Each CC made a dominant contribution to one

IC; these were ordered so as to appear on the diagonal. Scaling of the diagonal

kernels is one third that of the off-diagonal kernels.
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Figure 7: Percent variance of five static ICA components (ICs) accounted for

by the five derived convolutive components (CCs). The IC scalp maps on the

left are shown for interest. Contributions arranged on the diagonal are domi-

nant. Squares represent the (rounded) percent variance of the IC activation time

series accounted for by each CC. Significant off-diagonal elements indicate the

presence of significant delayed spatiotemporal interactions between the static IC

activations.
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increased, indicating that cICA in fact deconvolved delayed correlations present

in the EEG subspace data.

Figure 9 shows the power spectral densities for each of the IC activations

(in bold traces) along with the two CCs (in thin traces) that, in accordance

with Figure 7, contributed the most to the respective IC (c.f. Figure 7). Note

that the broad alpha band spectral peak in IC1 (uppermost panel in Figure 9)

around 10Hz has been split between CC1 and CC3. In the middle panel, note

the distinct spectral contributions of CC1 and CC3 to the double alpha peak in

the IC3 spectrum. As expected, the CCs made different spectral contributions

to the IC time courses. For example, CC1 made different power spectral density

contributions to IC1, IC3 and IC4.

6 Discussion

In general, the usefulness of any blind decomposition method applied to biolog-

ical time series data is most likely relative to the fit between the assumptions

of the algorithm and the underlying physiology and biophysics. Therefore it

is important to consider the physiological basis of the delayed interactions be-

tween statically-defined independent component time courses we observed here,

and the possible physiological significance of the derived convolutive component

filters and time courses.

These results have at least two possible interpretations. First, static ICA

decomposition in this case may have found a maximally-independent basis of

a five or more dimensional subpsace of spatially fluid EEG processes involving,

e.g., traveling waves of synchronized local field potential propagating through the

cortical mantle in a five-dimensional trajectory space. This explanation could

be sensible if the five IC source areas were adjacent or overlapping, compatible

with patterns of continuous spatial current flow across a single cortical region.

However, in this case simple inverse source modeling using equivalent dipole
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modes (not shown) suggested that the five IC scalp maps used here might be asso-

ciated with source activities generated in fairly well separated cortical territories.

The physiological explanation for the observed lagged interactions between them

thus might depend on delayed influences produced by neural spike-mediated com-

munications from other cortical areas. These spike-mediated influences might

not themselves produce far-field EEG signals at the scalp, but might add to the

coherent source field oscillations occurring in the target source domain. These

influences might be promoted by distributed spike volleys through (sparsely dis-

tributed) cortico-cortical fibers and/or through (extensive) thalamacortical relay

loops.

In this model, each cICA kernel would represent a local delayed EEG response

in one ICA source area induced by cICA activity in another ICA source area.

The cICA components then represent the local oscillatory (and/or other) EEG

signal originating within each spatially separate ICA source domain, shorn of the

delayed oscillatory influences arriving from other, distant cortical EEG source

areas. Whatever the ultimate biological interpretation, the convolutional ICA

data model presented here suggests that further study of delayed interactions

between distinct EEG activities may be useful for modeling network dynamics

underlying motor planning, attentional dynamics, and other cognitive processes

that are known to involve simultaneous dynamic changes in multiple cortical

regions [Makeig et al., 2002, 2004].

Applied to these EEG data static ICA gave 15-20 components of physiologic

interest, although we were not able to practically deconvolve more than five

sources here because of numeric complexity. Open questions, therefore, are to

identify independent component subspaces of interest for cICA decomposition

and/or to explore the efficiency of performing cICA on larger computer clus-

ters. In future, convolutive ICA might also be applied usefully to other types

of biomedical time series data that involve stereotyped source movements, thus
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presenting problems for static ICA decomposition. These might include electro-

cardiographic (ECG) and brain hemodynamic measures such as diffusion tensor

imaging (DTI).
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