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Abstract 

Sampling of length and age distributions of catches is important for the assessment of 

commercially fished stocks. This paper presents a new method for statistical analyses and 

comparisons of length and age distributions based on generalised linear models of 

continuation-ratio logits. The method allows statistical testing of the effects of both 

continuous and discrete variables. Further, by utilising the smoothness of length and age 

distributions as a function of length, the method provides more accurate estimates of these 

distributions than traditional methods. The observations are assumed to be multinomial 

distributed, but cases in which the variance exceeds that of this distribution may also be 

analysed. The implementation of the method in existing statistical analysis software is 

straightforward and is demonstrated using length and age distributions of lesser sandeel, 

Ammodytes marinus Raitt.  
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Introduction 

   Length and age compositions of numerous commercially fished stocks are analysed on a 

regular basis to assess recruitment, stock biomass and other aspects of the state of the 

stock. Samples for this purpose are obtained either by commercial catch sampling, 

research surveys or both. In a typical sampling programme, catch of a species is sampled 

by recording the total number or weight caught of the species, the length distribution of a 

sub-sample of the catch and the age at length of a sub-sample of the length sample (Cotter 

1998). 

  The multinomial distribution is frequently used to describe length and age distributions 

and most authors compare these distributions by aid of the χ2-test of homogeneity (Baird 

1983; Zwanenburg and Smith 1983; Engås and Soldal 1992). However, the χ2-distribution 

has the disadvantage of being an inaccurate approximation when the expected number of 

outcomes in a category is less than five (Cramér 1946) and the variance in the collected 

data is often greater than can be described by the multinomial distribution (Smith and 

Maguire 1983, Williams and Quinn 1998). 

  The calculation of catch in numbers at age from numbers at length is usually based on an 

age-length-key. The traditional key is based on a two-way table of age and length in 

which the entries are number of fish at length and age (Fridriksson 1934). This key does 

not take the knowledge of fish growth into account. However, this relationship has been 

included in some investigations by assuming the length distribution of a particular age 

group to be normal (Schnute and Fournier 1980; Labonté 1983; Gudmundsdóttir et al. 

1988). 

   This paper presents a new method to statistically analyse and compare samples of age 

and length distributions from different geographical areas, time periods, laboratories, etc. 

The object of the analyses is to enable estimation of age and length distributions with the 
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lowest possible uncertainty. One important step on the way is the decision on whether or 

not to pool distributions from different strata. This multinomially based method provides 

a statistical tool for this decision comparable to the Anova in the case of normal 

distributed data. 

The method is based on continuation-ratio logits as presented by Agresti (1990) and 

previously applied by Kvist et al. (2000) to analyse age distributions. However, the 

method presented here has several additional advantages to previous applications. It can 

take the smoothness of length distributions into account even in cases where the length 

distribution is skewed or polymodal, and can be used in cases where the variance of the 

observations exceeds that of the multinomial distribution. The method utilises the 

knowledge of increasing mean fish age as a function of size without any assumptions on 

growth apart from that mean length of older fish is greater than that of younger. Further, it 

can easily be implemented in existing statistical analysis software, and the effect of both 

categorical and continuous variables on the distribution may be tested. Methods to obtain 

the accuracy of estimated length or age distributions are provided as well. The method is 

demonstrated using survey data on length and age composition for lesser sandeel, 

Ammodytes marinus Raitt. 

 

Analysing ordinal multinomially distributed variables by continuation-

ratio logits 

   Generalised linear models are a convenient tool for statistical analysis of variables 

following distributions in the exponential family (McCullaugh and Nelder 1989). 

Applying these to multinomial data enable model selection, estimation and testing 

techniques developed for generalised linear models to be employed. It is thus possible to 

simultaneously analyse several different length or age distributions. This implies that the 
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small sample problems can be reduced. Further, the ordinal nature of length and age 

measurements makes the application of the continuation-ratio logits as presented by 

Agresti (1990) possible. This has several advantages when analysing length and age 

distributions as shall be shown in the following.  

   Continuation-ratio logits can be used for any multinomial variable for which the 

outcomes are ordinally scaled. Assume that we have observations in ordinally scaled 

groups i and let pi be the probability of the outcome falling in group i. The continuation-

ratio logits are then defined as (Agresti 1990): 
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for i=1,…,n-1. That is, πi is the probability of the outcome being of index i conditioned 

on the outcome being of index i or greater.  

   The continuation-ratio logits can be modelled separately or simultaneously in a 

generalised linear model of a binomially distributed variable, as the likelihood of a 

multinomial trial can be expressed as [ ]∏
−=

=
+

11
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i
iii nnb π  where ni is the number of outcomes 

in category i, ni+ is the number of outcomes in category i or greater, πi is the conditional 

probability described above, and k is the number of outcome categories (Agresti 1990). 

Maximising the multinomial likelihood is thus equal to maximising the product of 

likelihoods of the conditional binomial distributions of each index. As shown by Agresti 

(1990), this implies that the continuation-ratio logit of each index may be modelled 

separately. 

   The continuation-ratio logits of the different outcomes are not independent 

observations. However, due to the relationship between the multinomial likelihood and 

the likelihood of the conditional binomial distributions, maximising the multinomial 

likelihood is equivalent to maximising the product of the conditional binomial trials 

simultaneously. Thus, any software implementing maximum likelihood techniques to 

analyse binomial data may be used to analyse ordinal multinomial data. This includes 

software designed for analyses of generalised linear models such as SAS and S-Plus 

(McCullaugh and Nelder 1989; SAS Institute Inc. 1996; Mathsoft Inc. 1997). However, 

the original multinomial data must first be transformed into a data-set containing the 

conditional binomial observations and the index of the outcome. For instance, if the 

multinomial data are as seen in the first two columns of Table 1, the data-set to be 
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analysed in the binomial model contains the index i, the number of outcomes in this 

category, ni and the number of outcomes of this order or greater, ni+ (columns 1, 2 and 4). 

   If the data show greater variance than can be accounted for by the binomial variance, 

this may be incorporated in the generalised linear model by estimating a dispersion 

parameter (McCullaugh and Nelder 1989). The only constraint imposed by this method is 

that the dispersion parameter must be the same for all the observations included in the 

model and thus for all conditional distributions when multinomial data are analysed as 

described above. 

Including the conditional probabilities of all indices simultaneously in one generalised 

linear model, it is possible to use the index as a continuous explanatory variable. The 

value of the conditional logit of group i can then be expressed by 
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where λ(i) is a smooth function of i. The function λ(i) can e.g. be modelled by a local 

non-parametric smoother or a polynomial in i. Alternatively, one model may be estimated 

for each ordinal group separately, if one does not wish to include the smooth relationship 

between the conditional probability and the index of the group. The effect of categorical 

factors on the conditional probability of group i may also be estimated by generalised 

linear models.  
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   The model provides estimates of the conditional probabilities, iπ̂ , as well as the 

variances of these estimates. The estimated unconditional probabilities, ip̂ , can be 

calculated from the conditional probabilities by applying the formula: 
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Approximations of the variance of ip̂  are easily obtained if the variance of iπ̂  has been 

estimated and if the conditional probabilities, iπ̂ , are modelled independently of each 

other. In this case the estimates are uncorrelated and the variance of these can be 

approximated by the first order Taylor approximation: 
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Correspondingly, the covariance between the unconditional probabilities, )ˆ,ˆ( ji ppCOV , 

can be calculated. 

   If the conditional probabilities of all groups are analysed simultaneously and one or 

more parameters are common to all groups, the predicted conditional probabilities, iπ̂ , are 

correlated. This complicates derivation of analytical approximations to the variance of ip̂ . 

In this case simulation studies provide a convenient method for estimating the variance. 

A simulation procedure which can be used for this purpose is the parametric bootstrap 

(Davison and Hinkley 1997). In this type of analysis, observations are simulated from the 

parameter estimates obtained from the fitted model. The simulated observations are then 

used to re-estimate the parameters. This is done by repeating the entire procedure of 

model fitting on a number of simulated data sets. The parameter estimates obtained 

provide estimates of the simulated variance and mean of these parameters.  

Estimation of the probabilities and their variance in the multinomial distribution 

   The estimated probabilities obtained by the traditional multinomial approach, ip
~

, are 

calculated as 
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where ni is the number of outcomes in category i and k is the number of outcome 

categories. This probability does thus not take the overdispersion potentially present in the 

data into account. The variance of the estimate is calculated as 
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These estimates are referred to as the multinomial estimates in the following. 

 

Application of the method 

Data analysed 

   The data used for demonstration of the method consist of catches of lesser sandeel from 

three surveys conducted in the Firth of Forth east of Scotland in 1997 and 1998 (Fig. 1). 

Positions were initially chosen according to prior knowledge of sandeel distribution in the 

area and the same positions were dredged in both years. A modified scallop dredge was 

used each year to catch the sandeel while they were buried in the sediment (Winslade 

1974). In 1998, the third survey was conducted using a van Ven grab to collect additional 

sandeel for ageing. This survey was performed at positions 2, 5, 7 and 8 within a week of 

the dredge survey. 

   At each station, an average of five dredge hauls of 15 min. durations were carried out in 

both years. The total content of sandeel of all hauls were weighed separately. If time 
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permitted, the entire content was counted and length measured to nearest semicentimetre 

below. Otherwise, a random subsample was counted, measured and weighed.  

   In 1997, a random subsample of ten sandeel was taken from each semicentimetre group 

of the dredge catch at each position (provided that the catch exceeded ten sandeel), and 

the otoliths of these fish were age determined at the Danish Institute of Fisheries 

Research. In 1998, only a small number of sandeel from the scallop dredge catches were 

age determined by the Danish Institute. To supplement these samples, sandeels collected 

in the grab survey were also used in the calculation of the age-length relationship. These 

samples were age determined by the Institute of Fisheries Research Services, Marine 

Laboratory, UK, Scotland, and kindly supplied by S. Greenstreet. 

Analysing length distribution of catch using continuation-ratio logits 

   The observations analysed in this model were the observed length distributions 

measured in 1 cm groups for each of the hauls taken. Thus, there were five length 

distributions at each position on average. The number of fish in each length group were 

assumed to be multinomially distributed. The object of the model developed was to 

examine whether the length distribution of the catch varied from year to year and/or from 

position to position. As these length categories are ordinal, the conditional probabilities 

can be modelled as described above. 

   Initially, the original multinomial data set was transformed into a data set containing the 

index of the outcome (length in this case), the number of outcomes in the category in trial 

j, the number of outcomes of this index or greater in trial j and the additional variables 

year and position. This is equivalent to the transformation illustrated in Table 1. If no fish 

of index i or greater were recorded in trial j, the conditional probabilities of index i and 

greater was missing in trial. The length dependent continuation-ratio logits were analysed 

in a generalised linear model of this binomial data set.  
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   The minimum length observed was 7 cm, and the maximum length for which 

conditional probabilities were calculated was 19 cm. The model of the continuation-ratio 

logits included a 7th degree polynomial in length and categorical parameters describing 

effects of year and position: 
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and l indicates length in group l, y indicates year, pos indicates position and b indicate 

parameters to be estimated in the model. The 7th degree polynomial was chosen as the 

highest order polynomial for which no convergence problems arose. These problems are 

due to lack of contrast in the data, which makes it difficult or impossible to find a global 

minimum of the deviance. The model was fitted using the SAS GENMOD-procedure 

(SAS version 6.12 for Windows, SAS Institute 1996). The dispersion parameter was 

estimated by the Pearson X2 statistic divided by the degrees of freedom. This parameter 

measures the deviation between the variance between samples (hauls) measured and the 

variance between samples expected in the multinomial distribution. A value of one 
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indicates that the between haul variation is completely described by random variation 

within five samples from a multinomial distribution. The model was reduced by 

eliminating insignificant factors from the model (F-test, 5% level). r2 values were 

calculated as the deviance explained by a particular factor divided by the total deviance. 

   The length proportions, posylp ,,

∧

, estimated from the reduced generalised linear model 

(including the significant effects of year and position) were used to perform a parametric 

bootstrap analysis. The number of replicates was 1000, that is, 1000 independent 

multinomially distributed length composition data sets for all hauls were generated by 

simulation, using the estimated length distribution at the given year and position as well 

as the total number of fish length measured in the particular haul as input. For each of 

these 1000 equivalent data sets, a generalised linear model of the conditional probabilities 

was used to estimate the length proportions, posylsim ,,,

∧

ρ . The dispersion parameter in these 

models was fixed at one (no overdispersion). From the 1000 replicates, the mean, posyl ,,

∧

ρ  

and the variance of the estimates were calculated. 

   The original data were slightly overdispersed as data showed greater variance around 

the model than could be accounted for by the multinomial variance. The estimation of the 

length distributions from the original data included this problem by introducing a 

dispersion parameter (McCullaugh and Nelder 1989). However, this overdispersion was 

not taken into account when simulating data, or when building generalised linear models 

of the simulated data. Therefore the resulting variances estimated from the simulated data 

may be somewhat lower than the variances in the original data. However, the comparison 

between the variance calculated from the simulations and the multinomial variance is not 

affected by this as the dispersion parameter is assumed to be one in both cases.   



 14 

   The approximated analytically derived value of the variance of each length proportion, 

posylp ,,

∧

, was calculated using equation (1). These variances were compared with the 

simulated variances. Further, the estimated probabilities and the variances of these 

obtained by the traditional multinomial approach were calculated as well. These last two 

estimates do not take the variance between hauls (the overdispersion) into account. 

Analysing age distributions for given length using continuation-ratio logits 

   As the number-at-age in a sample also is an ordinal multinomial variable, the model 

may equally well be applied to age distributions. In this case, the observations in the 

conditional binomial distribution are the number of fish of age a, given the age is a or 

greater. The relationship between the length of the fish and the continuation-ratio logit of 

the probability of being of a given age in a length group has been shown analytically by 

Kvist (1999) to be simple in certain cases (results are summarised by the authors in the 

Appendix). Thus, if the length distribution of an age group follows a normal distribution, 

the relationship between length and the continuation-ratio logits can be approximated by a 

second-degree polynomial. A skewed length distribution such as a gamma distribution 

will lead to an approximately linear relationship between the continuation-ratio logits and 

length.  

   As the survey took place in early spring before the 0-group settled in the area, only the 

age groups 1, 2 and 3+ were considered in the analyses. The primary aim of this model 

was to smooth the age distribution over lengths and not the age distribution at a given 

length. It was, therefore, considered to facilitate interpretation of the results to model age 

groups separately and thus not smooth over multinomial orders as described in the section 

on length distributions. 

   As the age determination of the two different laboratories may differ and slight changes 

in age structure may have taken place in the two weeks between the surveys, a laboratory 
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effect was included in the model. We assumed that this effect is independent of length, 

resulting in the full model 
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where a denotes age, l denotes length, la|π denotes the conditional proportion of age a for 

given length, l, and lab denotes the laboratory at which the otoliths were read while c, d, g 

and h are parameters to be estimated in the model.  

   Estimation of parameters in the model is performed by minimising the deviance. 

However, when length groups in either end of the length spectre with an observed 

probability of 0 or 1 were included, convergence problems occurred due to the inability of 

the minimisation routine (SAS GENMOD (SAS Institute 1996)) to detect a global 

minimum in deviance (McCullaugh and Nelder 1989). Therefore, these length groups 

were excluded from the data. This had virtually no effect on the estimated parameters and 

conditional probabilities while eliminating the problems in the minimisation procedure. 

This meant that fish smaller than 8 cm or greater than 16 cm were excluded from 

calculations in analysis of the probability of being age 1. Fish smaller than 11 cm were 

excluded in the analysis of the continuation-ratio logits of the 2-group. 

Estimation of the length distribution by age 

   The estimated length distribution for a given age group, alp |

∧

, can be estimated by  
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where lap |

∧

 denotes the estimated probability of being a year old for a given length l, and 

lp
∧

 denotes the estimated probability of being length l.  As the length distribution may 

differ with year and position, a length distribution was estimated for each of the 

year/position combinations where more than 100 sandeel were measured. The average 

length distribution over positions of an age group in a given year was calculated as a 

weighted average, using the mean number caught at each position as weights. 

Results 

Length distributions  

   Observed length distributions, estimated multinomial length distribution and 95% 

confidence limits of this at two positions are displayed in Figure 2. The results of testing 

of the significance of the parameters in the full model of length distribution (equation (3)) 

show that the parameters bn(y,pos) for n equal 6 and 7 were not significantly different 

from zero, which means that the continuation-ratio logit could be described by a fifth 

degree polynomial in length (Table 2). The fifth degree parameter, b5, does not vary with 

year and position. The part of the polynomial which is of fourth degree or less varies with 

year, position or their crossed effect, indicating that the length distribution is not simply 
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changed towards larger or smaller fish at all positions from one year to the next. Note that 

the polynomial parameters estimated are not of particular interest but are merely tools 

used to model the fact that length distributions are usually smooth functions of length. 

The predicted length distributions for different positions are correlated and, therefore, 

there is a gain in precision of the predictions from incorporating this into the model as 

opposed to examining each position separately. The proportion of the total deviance 

explained by the model is high (93%). The rather high number of parameters estimated 

(91) should be compared with the multinomial alternative of estimating 271 probabilities 

(one for each length group at each year and position). The deviation between positions is 

greater than the deviation between years (15% as opposed to 8.8% of total deviance). It is 

interesting to note that the greater part of the variation between positions can be explained 

by a greater proportion of smaller or larger fish at some positions in both years, rather 

than a general trend towards larger fish in one of the years. The data were slightly 

overdispersed (dispersion parameter = 1.45).  

   The estimated conditional probabilities, posyl ,,

∧

π , the corresponding observed values and 

the 95% confidence limits of the estimates are plotted against length in Figure 3 for the 

two positions for which the multinomial length distribution is seen in Figure 2. 

Correspondingly, the unconditional length distributions predicted by the model for the 

same two positions are shown in Figure 4 along with the simulated confidence limits of 

this prediction. The confidence limits obtained by the suggested model are clearly smaller 

than the confidence limits of the multinomial probability usually employed (Fig. 2). 

Comparison of simulated and approximated variance 

   The length distributions estimated by applying the model to the simulated data did not 

differ significantly from the input length distributions from which the simulations were 

derived  (the probability of difference in no case exceeded 0.50), indicating that the 
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method provides unbiased estimates of the length proportions. The relative difference 

between the standard deviation of the predicted length distribution approximated by 

equation (1) and the standard deviation calculated from the simulations is shown in Figure 

5a. If the covariances assumed in equation (1) to be zero are in fact negative, then the 

approximated standard deviation will be an overestimate compared to the true value for 

all groups but the smallest. The relative difference between the variances is below 0.5 for 

the length groups 7 cm and 8 cm, but increases rapidly with length, indicating substantial 

negative correlation between the estimated conditional probabilities. 

   Comparing the simulated standard deviation of the model predictions with the standard 

deviation of the unsmoothed multinomial probabilities (Fig. 5b), the traditional method 

consistently provides estimates with higher standard deviation. The reduction in standard 

deviation ranges from a minimum of 29% on average for the smallest length group to a 

maximum of 118% on average for the 14 cm lengthgroup, indicating the advantage of 

utilising the knowledge of the smoothness of the catch as a function of length. 

Age distribution for given length 

   Leaving out insignificant effects, the model of the conditional probability of being age 1 

became 
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There was thus no significant effect of length squared or laboratory. The reduced model 

describes the data well, explaining 91% of the total deviation (Table 3, Fig. 6). The 
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number of sandeel aged in each length group varies, with a mean of 16 for the lengths 8 to 

12 and a mean of 3 for the lengths 13 to 16. The observed value of p = 1 in Figure 6a at 

14 cm is derived on the basis of 1 aged fish. Further, the logit of 0 and 1 are not defined, 

and these can therefore not be plotted in Figure 6b. However, these values are included in 

the model fitting process and the slope of the line therefore appears somewhat high. 

   By far the most important factor influencing the conditional probability is length (67%), 

demonstrating the importance of including this information in the model. The year effect 

is the second most important factor (20%). The same age length key should therefore not 

be applied in the two years. The lack of evidence of a second-degree effect of length 

indicates that the length distribution by age is either skewed (resembling a gamma 

distribution) or that the variances of the length distributions of age groups 1 and 2 are 

similar (Appendix). The percentage reduction in standard deviation obtained by using the 

model ranges from 53% (at 12 cm) to 247% (at 14 cm). 

   For age group 2, length once again explains more than half the variation in the 

probability (r2 = 0.517, P < 0.0001). As for the 1-group, year effect is the second most 

important parameter with an r2 of 0.139. In contrast to the model of the conditional 

probability of being age 1, the reduced model showed significant lab effects (r2 = 0.018, P 

< 0.0002), perhaps due to the increased difficulty in determining age of older fish. 

Including a significant crossed effect between year and length as well (r2 = 0.010, P < 

0.0068), the proportion of the total deviation explained is somewhat less than in the model 

of age 1. 

Length distribution by age 

   The length distributions estimated by equation (4) for 1- and 2-group sandeel in 1997 

and 1998 are unimodal and smooth, and the distribution of the 2-year olds is slightly 

broader than the distribution of 1-group (Fig. 7). The distributions of the 1-group in both 
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years and the 2-group in 1997 are symmetrical and may be approximated by normal 

distributions. The distributions of 2-group in 1998 and the 3+-groups in both years are 

very skewed, but the distributions of the 2- and 3+-group in 1998 also show a tendency to 

bimodality. Whether this is caused by the actual length distribution or sampling problems 

such as problems with the accuracy of the age determinations this year is not possible to 

determine from this study.  

Discussion 

   The method suggested here has three main advantages compared to the standard use of 

the multinomial distribution. One is that entire multinomial distributions such as length 

distributions or age distributions by length may be modelled using generalised linear 

models in existing software. The theory of model selection, testing of hypotheses, 

estimation and prediction developed for these models may be used directly. Further, it is 

likely that the 2χ distribution is a better approximation to the distribution of the deviance 

than the usual test in the multinomial distribution and that the power of the test of the new 

method is greater than the multinomial 2χ test as the new method utilises the ordinal 

nature of the outcomes by simultaneously utilising data for all length groups contrary to 

the multinomial approach. However, the actual improvement in the example shown here 

has not been tested. Secondly, including the smoothness of the length distribution and the 

age-distribution as a function of length is straight-forward and improves the precision of 

the estimates. The suggested method therefore provides more accurate estimates of the 

length and age distribution than the multinomial approach. Estimates are furthermore 

unbiased. Thirdly, overdispersion is easily incorporated in the analyses allowing the data 

to vary more than expected in a traditional multinomial distribution. If the variance in the 

collected data is greater than expected in the multinomial case, this may alternatively be 

addressed by analysing compound multinomial distributions in which the probabilities of 
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the different outcomes are assumed to vary between samples (Smith and Maguire 1983) 

or by assuming the probabilities of the outcomes to be dirichlet distributed (Williams and 

Quinn 1998). However, neither of these methods incorporate the smoothness of the 

distributions, and they are both sensitive to the inadequacy of the 2χ distribution in the 

small sample case. 

   We have not been able to find other examples in which generalised linear models and 

continuation-ratio logit analyses have been used simultaneously for all outcomes of a 

multinomial distribution thus enabling the relationship between the index of the group and 

the probability to be modelled as smooth. However, separate fitting for each index group 

as suggested by Agresti (1990) has been used in analyses of age distributions (Kvist et al. 

2000). 

   The results of a model of the continuation-ratio logits are often more easily interpreted 

than a model of the corresponding multinomial distribution, as a positive factor in the 

continuation-ratio logit model may simply be interpreted as i. e. ‘increasing the 

probability of young fish’ in the case of analyses of age distributions. This was 

demonstrated in the reduced model of the conditional probability of being age 2, where 

one laboratory consistently aged a higher proportion of the fish as 2-group than the other 

laboratory. An additional advantage of the present approach compared to the traditional 

multinomial method is the ability to predict or interpolate length distributions or age 

compositions by length as well as the variances associated. This is particularly useful in 

cases where in a particular intermediate length group either no fish were caught, all fish 

were of a particular age or no fish were aged. Traditional methods are unable to estimate 

the proportion of a given age at this length. These problems may alternatively be 

approached by assuming the length distribution of the age groups to be normal (Labonté 

1983; Gudmundsdóttir et al. 1988) or some other known distribution (Martin and Cook 
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1990). However, the method presented in this paper has the advantage of being able to 

describe unknown skewed or bimodal as well as normal length distributions by fitting the 

best possible polynomial in length to the logit, thereby letting the data dictate the age 

specific length distribution. When estimates from the models of length and age 

distribution are combined, they provide smooth length distributions of the age groups. 

The data are not smoothed to the extent where problems in the input data become 

invisible as is the case when length distributions at age are assumed to be normal. Further, 

length at age in the catch sample is sometimes known to deviate from normality, e.g. if 

catchability increases with length. The youngest age groups in a trawl survey catch will 

then have a skewed length distribution. Catchability problems, ageing problems, bimodal 

size at age distributions etc. are still detected when applying the method. In the simple 

case where length distributions of fish of age a and age a+2 do not overlap, the 

relationship between the length distribution of the age group and the continuation-ratio 

logit model is simple as shown analytically by Kvist (1999) and summarised in the 

Appendix. In the data analysed here, the overlap between age group 1 and 3+ is indeed 

limited, and so the approximation is reasonable. However, slower growing species or 

species with large variations in growth rate may exhibit overlap between the length 

distributions of several age groups. The validity of the approximation of the continuation-

ratio logit to a second degree polynomial in length in this case remains to be examined. 

Nevertheless, even if the approximation is not valid, a polynomial in length may still 

provide the best practical description of the continuation-ratio logit as a function of 

length. 

   When separate models of the continuation-ratio logit of the proportion at age by length 

are fitted, analytical calculation of the variance of the untransformed age proportions is 

simple. However, for length distributions in which the length dependent logits have been 
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analysed simultaneously, it is only possible to obtain poor approximations of the variance 

of the untransformed length proportions. The approximations may be appropriate for a 

small number of length groups, but Monte Carlo methods are needed to obtain reliable 

variance estimates for all length groups. Overdispersion should furthermore be taken into 

account when performing the simulations, if the dispersion parameter differs from 1. 

Thus, comparing mean lengths in one or more broader length groups by the χ2–test of 

homogeneity (Baird 1983; Zwanenburg and Smith 1983; Engås and Soldal 1992) may in 

many cases provide adequate estimates for which variances are more easily calculated. 

   The method presented here provides estimates of age composition in a sample with a 

higher precision than the traditional methods. The model further provides opportunities to 

test for the effect of factors such as time or area, which will enable the analyst to decide 

when to join length distributions or age-length keys and when to apply them separately to 

obtain the greatest accuracy in the results. In the past, extensive research has been 

designated to obtaining age-length keys with the highest precision at the lowest possible 

cost (Kimura 1977; Baird 1983; Lai 1993). Analysing data in the way suggested here may 

alter the optimal sampling strategy and may even allow the same precision to be obtained 

with fewer samples and thus lower cost. The implication of this for the optimal sampling 

strategy remains to be determined. 
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Appendix 

   The relationship between the length and the continuation-ratio logit of the probability of 

being a particular age in the catch given the length can analytically be shown to be simple 

(Kvist 1999). A brief summary of the derivation of the relationship is given in the 

following. 

   The probability of a fish in the sample being age a, given the fish is of length l, pa|l, can 

be expressed by 
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where pl|a is the probability of a fish in the catch being length l given the age of the fish is 

a and pa is the probability of a fish in the catch being age a. Note that this relationship is 

not affected by stratifying age-sampling by length, as long as age-samples are taken at 

random within each length group. The probability, pa|l, is thus proportional to the length 

distribution at age a and the probability of being at age a. 

   The continuation-ratio logit for pa|l is then 
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If the length distribution at age, pl|a, can be described by a normal distribution, equation 

(A1) can be written as 
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where µa and σa are mean and standard deviation of the length distribution of age group 

a. 

 

This is unfortunately not a simple function of l. However, if age group a can be assumed 

to overlap only with age group a+1 and not with age group a+2, the expression may be 

approximated by: 
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Thus, the continuation-ratio logit may be approximated by a second-degree polynomial in 

length, provided age group a does not overlap with age group a+2. Furthermore, if the 

standard deviations of age group a and age group a+1 are equal,  the continuation-ratio 

logit may be expressed by a first-degree polynomial in length. 
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The approximation is equally simple if the length distribution of the age groups is 

assumed to be gamma distributed with mean kaβa and variance kaβa2, as the expression 

then becomes 
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and overlap between age group a and a+2 is still assumed to zero. This expression is 

linear in log(l) and is approximately linear in l in the range considered in the present 

paper. 
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Table 1. A multinomial data set with the ordinally scaled outcomes, i, and the 

corresponding data set for analysis in a generalised linear model of a binomially 

distributed variable with the explaining variable i and the observed conditional 

probabilities πi. 
Outcome 

(i) 

Number of 

observations of i 

(ni) 

Observed 

probability of i 

(pi) 

Number of 

observations of 

index i or greater 

(ni+) 

Conditional 

probability of i 

(π i) 

1 10 0.19 54 0.19 

2 25 0.46 44 0.57 

3 14 0.26 19 0.74 

4 3 0.06 5 0.60 

5 2 0.04 (2)a (1)a 

 
aAs the conditional probability of the highest outcome is always one, it is not included in 

the analyses. 
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Table 2. Generalised linear model of the continuation-ratio logit of the probability of 

being of length l. ∑
=

=
5

0
1 )(

n

n
nlblf , ∑

=

=
3

0
,2 ),(

n

n
yn lbyearlf , ∑

=

=
3

0
,3 ),(

n

n
posn lbpositionlf  and 

∑
=

=
3

0
,,4 ),,(

n

n
posyn lbpositionyearlf . See text for definition of bn. 

Source Deviance df F (type 1) Pr>F r2 Cum. r2

Total 24,045 1036
f 1(l) 13,901 5 1585 0.0001 0.578 0.578
f 2(l,year) 2120 4 292 0.0001 0.088 0.666
f 3(l,position) 3616 36 55 0.0001 0.150 0.817
f 4(l,year,position) 2654 36 41 0.0001 0.110 0.927

Position*l4 74 9 4.7 0.0001 0.003 0.930
Year*l4 1 1 0.8 0.3594 0.000 0.930
Year*position*l4 13 9 0.8 0.629 0.001 0.931
Year*l5 1 1 0.8 0.3608 0.000 0.931
Position*l5 36 9 2.3 0.017a 0.001 0.932
Year*position*l5 9 9 0.6 0.831 0.000 0.933  

a The parameters no longer have a significant effect when the model is reduced. 
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Table 3. Model of probability of being age 1. 
Source Deviance df F (type 1) Pr>F r2 Cum. r2

Total  2791 403 . . . .
Length 1872 1 2225 0.0001 0.671 0.671
Year 549 1 653 0.0001 0.197 0.867
Position 108 9 14 0.0001 0.039 0.906
Lab 7 1 7.7 0.0059a 0.003 0.909
Year*position 19 7 3.2 0.0027a 0.007 0.915
Year*length 13 9 1.8 0.0660 0.005 0.920
Length2 1 1 1.0 0.3215 0.000 0.921
Year*length2 12 6 2.3 0.0356a 0.004 0.925
Position*length 1 1 1.6 0.2133 0.000 0.925
Year*position*length 1 1 1.2 0.2666 0.000 0.926
Position*length2 4 9 0.6 0.8213 0.001 0.927
Year*position*length2 1 6 0.2 0.9878 0.000 0.927
Residual 203 335       

a The parameters no longer have a significant effect when the model is reduced. 
 



Figure texts 

 

Fig. 1. Map of position of study area (a) and inset map of dredging positions 1-10 (b). 

 

Fig. 2. Length distribution at position 1 (a) and 6 (b) in 1998. +: Observed probability. 

Solid line: Probability estimated by the multinomial distribution. Hatched lines: 95% 

confidence limits of the estimate (calculated by equation (2)). 

 

Fig. 3. Probability of being a given length conditioned on being at least this length, 

posyl ,,

∧

π , at position 1 (a) and 6 (b) in 1998. +: Observed. Solid line: Predicted by 

model. Hatched lines: 95% confidence limits of the predicted mean. 

 

Fig. 4. Length distribution at position 1 (a) and 6 (b) in 1998. +: Observed probability 

of being length l. Solid line: Probability predicted by model. Hatched lines: 95% 

confidence limits of the mean (simulated). 

 

Fig. 5. Relative difference in standard deviation (+) by length, 

( )( )simulatedsimulatedestimated stdstdstd /− . The value of stdestimated calculated by a): 

Assuming covariances to be zero (equation (1)) and b): The multinomial distribution 

(equation (2)). Line: Average relative difference.  

 

Fig. 6. Probability of being age 1 (a) and the logit of this probability (b) as a function 

of length at position 30 in 1997. +: Observed values (calculated by haul). Solid line: 

Predicted value from model. Hatched line: 95% confidence limits of predicted value. 

 



Fig. 7. Estimated length distribution of sandeel of age 1 (+), age 2 (Ο) and age 3 and 

older () in 1997 (a) and 1998 (b). 
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Figure 4 
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