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A homology measure for protein fold classes has been constructed by locally projecting consecutive
secondary structures onto a lattice. Taking into account hydrophobic forces we have found a
mechanism for formation of domains containing magic numbers of secondary structures and multipla of
these domains. We have performed a statistical analysis of available protein structures and found
agreement with the predicted preferred abundances. Furthermore, a connection between sequence
information and fold classes is established in terms of hinge forces between the structural elements.
[S0031-9007(96)00734-X]

PACS numbers: 87.10.+e, 05.50.+q, 05.70.Ln

Since the appearance of the first solved protein struc-
tures by x-ray diffraction and up to the present time with
large databases of high resolution protein data, there has
been a scientific endeavor to find a taxonomy that could
group protein structures. We here propose a new frame-
work for a structural classification. From an analysis of
packing under the influence of hydrophobic forces [1] we
find preferred abundance of proteins with “magic num-
bers” of secondary elements—and we test the paradigm
by a statistical analysis of available structural data.

Proteins are interesting polymers that in aqueous so-
lutions form dense globula, which neither dissolve nor
phase separate, as emphasized by Dill [2], who derived the
thermodynamic theory for these. A main reason for this is
the action of thehydrophobicor hydrophillic force, which
is an unspecific interface-tension-like force [1]. Yet a pro-
tein with a specific amino acid chain folds, paradoxically
[3] in a matter of seconds, to a particular fold, accord-
ing to information which must be provided via the un-
derlying linear sequence information. A concise review
is given by Wolynes [4] in which the folding problem
has been related to the spin glass problem, marginal sta-
bility, and minimal frustration. Another problem is why
proteins seem to have predominant lengths of chains [5]
and separate into subunits, secondary structures [6], do-
mains, and finally the functional tertiary or quaternary
structures. Bermanet al. [5] found characteristic peaks
in the length distribution of known proteins near multipla
of chain lengths of 125 amino acids (residues). The total
length may go up to a couple of thousand. A few hun-
dred different structures have so far been determined (in
crystalline form). Yet many thousands of proteins have
had their sequence determined. It is of great interest to
attempt to classify the possible structures.

To introduce a model we will start by looking at the
final, known structures. These consist of secondary struc-
tures [6] of principallya helices (spiral, stiff subunits of
around ten residues) andb sheets, which are semiplanar

collections of a number of almost straight chain elements
(b strands of around six residues). The elements are
connected with more irregular loops. The structures are
twisted and deformed in a characteristic biological way.
The first problem which arises is the homology prob-
lem: how to define when two protein structures are simi-
lar, i.e., whether belonging to the same structural class
or not. A strict identity measure such as, for example,
that of a minimal root mean square sum for the back-
bone coordinates is clearly too strict—and even mislead-
ing—since similar but differently twisted structures might
be judged as unrelated. In crystal structures it is known
that most materials—and in particular shape-memory-
alloys—assume a high symmetry, simple and open cubic
(bcc) phase at high temperatures, just below the melting
temperature. This is called theparentphase. At a lower
temperature, at themartensitic transition, they condense
into more complicated structures. We wish to describe
the protein folds on a similar high symmetry level. To
solve the homology problem, we consider the secondary
structures as straight sticks and replace the loops by the
interconnection lines between the end points of the sec-
ondary structures, which are defined by the sequence in-
formation. The unit vector̂e, of the first three elements
is found and rectified onto the closest cubic unit vectors.
Then the next element is added and the last three elements
are locally rectified and joined to the previous, etc. In
this way even severely twisted, similar protein structures
in the Brookhaven data bank (PDB) can be projected into
the same high symmetry fold without being sensitive to
details in the angles or the lengths of the elements (which
in the rectified structure are all equal). The second prob-
lem is to find a systematic and unique descriptor for a
fold. This is done by using a Hamiltonian for an inter-
acting spin system. The spinsS, are positioned at the
junctions of the elements at site, and act as “hinge” vari-
ables describing the normal to the plane formed by the
elements, as well as the sense of allowed bending. The
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sequence of interaction constants describes in a unique
way the directions of the spins and thus the fold. The
Hamiltonian for a chain withN secondary structures (in
total N ­ 2N 2 1 of the defined elements) is

H ­ 2

2N 21X
P­2n11­1

sJPSP ? SP11 1 KPSP 3 SP11 ? êPd

2

2N 22X
p­2n12­2

s jpSp ? Sp11 1 kpSp 3 Sp11 ? êpd .

(1)

We have neglected the orientation of the start and end
loops and allowed for two sets of interaction constants:
The capital letters are for the interactions between the
spins at the end of the secondary structures, and the
small letters are for those of the loops;J,, j, indicate
continuation of the third element in the same plane as
the two previous,K,, k, indicate it is perpendicular. The
sign controls if the third element must be joined parallel
(antiparallel) or perpendicular (antiperpendicular) [right
(left) turn]. Many underlying amino acid sequences can
be reduced to these basic parameters. This provides
the basis for the classification of sequences into fold
classes. As a simple example, we show in Fig. 1 the
projection of the 4-a-helix bundle, which is given by
the descriptorjKjK̄j, where K̄ ­ 2K. The descriptor
depends on the direction in which the chain is traversed,
but it is invariant under rotation. There are five other
dense structures with seven elements. They are given
by jK̄jKj, jKk̄Kj, jK̄kK̄j, kJk̄Jk, and k̄JkJk̄. The
letters k and K , which describe chiral turns, change
sign when the descriptor identifies a fold traversed in
the reverse direction. Similar unique descriptors with
N 2 2 letters can be constructed for any fold withN
elements. We find that Haemarythrin, rabbit uteroglobin,
and the cytochrome family belong to the mentioned
jKjK̄j class. The structure also occurs in T4-lysozym.
This is “embellished” by additional structures. This
focuses on the question of a definition of families and
of a metric. As a measure for closeness between classes
we suggest that two proteins, not necessarily of the same
length, have the largest similarity if the overlap in their
descriptors is maximal.

FIG. 1. 4-a-helix bundle, Haemarythrin (1HMQ): Right, the
actual structure in a ribbon representation. Left, the projected
structure. The descriptor isjKjK̄j.

Using the fact that the hydrophobic forces tend to
confine the proteins and make them contain as little as
3% water [2] in thenativestate, we want to find all folds
which are self-avoiding. A scaling and mean field theory
[7] of this problem gives the estimate that the number
of folds for N elements increases asszyedN , where z
is the coordination number, in our casez ­ 4, and e ­
ln21s1d. For a protein with nine secondary structures
and consequently eight interconnecting loop elements we
have N ­ 17, and the above theoretical relation gives
the number of folds ass4yed17 , 711. This is already
a quite small number. However, the discreteness gives
rise tomagicnumbers at which there are particularly few,
different folds. Figure 2 shows the exact enumeration
[8] of all dense folds on a cubic lattice for elements
up to N ­ 35. For N ­ 17 there is a pronounced
minimum with onlyps17d ­ 172 distinct and predictable
folds. The mean field theory overestimates this grossly.
Between the magic numbers the number of folds is, on the
other hand, much larger. The magic number atN ­ 7,
corresponding to the 4-a-helix bundle, is a close packing
of a 1 3 1 3 1 box. The next closed confinement is the
2 3 1 3 1 box, which we callB. The elemental magic
numbers atN ­ 11, 17, 23, 32, and 35 can be understood
as the optimal packing in closed polyhedra consisting of
1, 2, 3, 5, and 6B boxes.

In Fig. 3 the statistical distribution of proteins with a
specific number of secondary structural elements is shown.
We have used the prototypical standard set of 135 proteins
with sequence similarity below 25% selected from PDB by
Rost and Sander [9]. It is diverse and originally used for
secondary structure prediction. The secondary structures
are assigned using the renowned DSSP prescription [10]
and counted when having at least four identical, consec-
utive assignments of either beta strands or alpha and310

FIG. 2. Full line, number of distinct, dense folds for coordi-
nation numberz ­ 4, on a cubic lattice as a function of num-
ber of elementsN ; thin line, szyedN . Notice the deep minima
at elemental magicnumbers at the closed configurations. The
added numbers indicate the corresponding number of secondary
structures,N ­ sN 1 1dy2 for odd N.
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FIG. 3. Statistical abundance of proteins withN secondary
structures. Dotted line, counting when the number of identical,
consecutive DSSP assignments$4; full line, same but supple-
mented by 3D structural information forN # 6 [11].

helices (not distinguished). The curve clearly shows local
maxima in the abundance, which correspond to the optimal
packing we find theoretically [11].

The dense packing criterion we have used is a simple
count of the neighbors of end points of the elements. This
represents the hydrophobic force quite faithfully. First,
it is unspecific, i.e., independent of which elements are
close to each other. Second, it depends on the “curvature”
of the confinement approximately as a surface tension
force, i.e., the different sites are rated 3, 4, 5, and 6
for a corner, edge, face, and buried site, respectively.
Only the sum counts, in agreement with the nature of the
hydrophobic force. One could, in order to introduce a
temperature in the problem, assign energy values for the
mentioned sites. The found magic numbers are not very
sensitive to deviations from a linear weighting which is
still consistent with the globular structures. The magic
numbers in our model areuniversal in the sense that
they do not depend on the specific, chemical interactions
between the amino acids, neither between distant parts
of the chain nor the interaction along the backbone.
They are dictated by the hydrophobic, confining forces.
If the weighting is far from linear one can form other
families of proteins, for example, those that are dissolved
in cell membranes. Clearly, for those the hydrophobic
and hydrophillic forces act differently. Families could be
imagined with a higher coordination numberz or other
projected lattices. We have investigated the closed packed
folds for the simple cubic lattice case also withz ­ 5, and
find again a number of pronounced minima with the same
magic numbers as before for the smaller domains.

The folds at the magic numbers are particularly stable
and fast folding for the following reasons. They represent
closed confinements having minimal surfaces and thus
are energetically favorable from the point of view of the
hydrophobic forces. Our magic number configurations
have a clear energy separation from other folds. This
is, according to a hypothesis by Shakhnovich [12,13], a
necessary condition for rapid folding. The minimum at
N ­ 17 is relatively well pronounced. There is also a
well-pronounced minimum at the magic numberN ­ 35.
The N ­ 35 structure is confined in a3 3 2 3 2 box.
An analysis of the folds shows that a large part is formed
of two folds of theN ­ 17 domain interconnected by just

a single element, i.e.,2 3 17 1 1 ­ 35. This explains
why the domain formation of multipla ofN ­ 9 is
a natural consequence of the discrete packing problem.
Given the average size of the elements, the magic
numbers also rationalize why the size of the domains [5]
is as preferred by nature, being in concord with the overall
thermodynamic theory [2]. Next we can evaluate how
many distinct fold classes exist. If we restrict ourselves
to domain structures withN # 17 we find in total 3906
possible, distinct globular fold classes. This is close
to Chothia’s estimate of 1000 fold classes, based on a
heuristic argument [14].

The exhaustive enumeration in Fig. 2 and the unique
description of folds on a cubic lattice are also relevant for
the bead model of proteins, which is extensively studied;
see a recent discussion, e.g., Ref. [13]. This model is,
however, in fundamental principle very different from the
present one. It assigns the physics to interactions between
two or more different beads or residues distributed along
a cubic model protein.

Our approach is more closely related to the models de-
veloped by Finkelsteinet al. [15], where the secondary
elements are considered as rigid units. They propose that
the predominant occurrence of certain protein fold pat-
terns is due to specific, small thermodynamic advantages
and address the paradox of how entropy can play a role in
determining the unique, native structure, which has zero
entropy. Based on properties of the overall density of
states a Boltzmann-like statistics is discussed for the abun-
dance of a native folding pattern with the total number
of folds, M1, at, e.g., a given (lower) density. It reads
occurrence~ exps2F̃1ykBTpd, where Tp is a universal
conformational temperature and̃F1 is the selective free
energy. This contains an entropylike term2kBTp ln M1,
which would favor patterns with largeM1. We believe the
physics is more delicate and involves elements of several
phase transitions, in particular, by involving an intermedi-
ate phase, as in the martensitic case.

The dense structures we have enumerated do not repre-
sent the final native structures, but are somewhat expanded
intermediate structures in which the secondary structures
are basically developed, although not necessarily exactly
in the native shape. There arep different configurations,
which are supposed to be degenerate with respect to the hy-
drophobic forces. We call this theparentphase in analogy
to the martensitic problem. It is sufficiently free to be able
to test the degeneracyp and therefore gain an entropy con-
tribution 2kBTp lnp, which is a significant part of the free
energy at room temperature. We find the presence of such
an intermediate phase is supported by experimental inves-
tigations [16] and protein engineering studies of Barnase
[17]. For a smaller protein (chymotrypsin inhibitor 2) the
folding process is found to be more concerted and both sec-
ondary and tertiary structures form almost simultaneously
[18] in what is called a nucleation-condensation mecha-
nism. However, this is not contrary to our picture because
(1) for smallN there is no sharp phase transition and (2)

781



VOLUME 77, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 1996

the experiment is concerning a dynamic process, whereas
we are considering only the statistical properties. Upon
lowering the temperature, we assume there is a phase tran-
sition to the unique native state. This is driven by the short
ranged interactionsfabsra

i 2 rb
j d between the residuesa

andb at ra
i andrb

j on the neighboring elements as in the
bead model. The energy gainDE ­

P
ab fabsra

i 2 rb
j d is

limited because the interactions are highly frustrated.DE
depends on the underlying sequence information. A model
for the martensitic transformation was recently studied by
one of the authors [19]. This exhibits similarly a com-
petition between ap times degenerate parent phase and
an energy stabilized low temperature phase. It required a
largerDE to produce the (discontinuous, growth by nucle-
ation) transition from or to a more highly degenerate parent
phase at a given temperature, because the latter is stabi-
lized by the entropy term2kBTp lnp. In the present case
a largeDE requires a particularly favorable sequence of
amino acids, whereas a more random sequence will have a
smallerDE. In nature the diversity in proteins with differ-
ent sequences but similar structures is therefore more likely
for those for which the parent phase has low degeneracy.
Thus we have argued that the structures corresponding to
the magic numbers in Fig. 2, as well as proteins with rela-
tively smallN , are more abundant, as demonstrated by the
statistics Fig. 3.

Forces, for example, transmitted through the protein
backbone, might weakly act in positioning the incipient
structural elements in roughly the right place in space
early in the folding process. They could operate already
in forming a suitable “partly collapsed” state, as intro-
duced by Itzhakiet al. [18] for setting up the folding. In a
statistical model they can, however, simply berepresented
by the hinge forces in the Hamiltonian equation (1), defin-
ing the actual values of the parameters. In principle these
are then determined by the sequence information, selected
during the course of the evolution. We propose as a pos-
sibility that for a protein withN elements andp times
dense packing degeneracy, the hinge forces sum up to
give maximum energy gain for the potential native fold.
Thep 2 1 other states will then have a higher energy ac-
cording to how many letters in the descriptor have been
violated. The effect is that of a weak symmetry breaking
field [20]. Of course, symmetry breaking may also arise
from the short range forces and the sequences ofa andb,
etc. However, the result of this effect is known only in
the final native phase. The hinge forces are weakly sym-
metry breaking the intermediate, parent phase, which is
conceptually advantageous.

In terms of a simple model for the effect of hydropho-
bic forces in the protein folding, we have demonstrated
the appearance of magic numbers of secondary structural
elements. The model has the property that the folds of
these number of elements are favorable with respect to
being fast folding and the corresponding native ones to
being potentially stable, thermodynamically. This allows

us to predict a predominant abundance of proteins with
such numbers of secondary structures. A statistical anal-
ysis of experimental data supports this finding.
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