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Magic Numbers in Protein Structures

Per-Anker Lindgart and Henrik Boht
'Department of Condensed Matter Physics, Risg National Laboratory, DK-4000 Roskilde, Denmark
2Center for Biological Sequence Analysis, Department of Physical Chemistry, The Technical University of Denmark,
DK-2800 Lyngby, Denmark
(Received 23 January 19p6

A homology measure for protein fold classes has been constructed by locally projecting consecutive
secondary structures onto a lattice. Taking into account hydrophobic forces we have found a
mechanism for formation of domains containing magic numbers of secondary structures and multipla of
these domains. We have performed a statistical analysis of available protein structures and found
agreement with the predicted preferred abundances. Furthermore, a connection between sequence
information and fold classes is established in terms of hinge forces between the structural elements.
[S0031-9007(96)00734-X]

PACS numbers: 87.10.+e, 05.50.+q, 05.70.Ln

Since the appearance of the first solved protein struceollections of a number of almost straight chain elements
tures by x-ray diffraction and up to the present time with(8 strands of around six residues). The elements are
large databases of high resolution protein data, there ha®nnected with more irregular loops. The structures are
been a scientific endeavor to find a taxonomy that couldwisted and deformed in a characteristic biological way.
group protein structures. We here propose a new frameFhe first problem which arises is the homology prob-
work for a structural classification. From an analysis oflem: how to define when two protein structures are simi-
packing under the influence of hydrophobic forces [1] welar, i.e., whether belonging to the same structural class
find preferred abundance of proteins with “magic num-or not. A strict identity measure such as, for example,
bers” of secondary elements—and we test the paradigiinat of a minimal root mean square sum for the back-
by a statistical analysis of available structural data. bone coordinates is clearly too strict—and even mislead-

Proteins are interesting polymers that in agueous sdang—since similar but differently twisted structures might
lutions form dense globula, which neither dissolve norbe judged as unrelated. In crystal structures it is known
phase separate, as emphasized by Dill [2], who derived thinat most materials—and in particular shape-memory-
thermodynamic theory for these. A main reason for this isalloys—assume a high symmetry, simple and open cubic
the action of thénydrophobicor hydrophillic force, which  (bcc) phase at high temperatures, just below the melting
is an unspecific interface-tension-like force [1]. Yet a pro-temperature. This is called tiparentphase. At a lower
tein with a specific amino acid chain folds, paradoxicallytemperature, at thenartensitictransition, they condense
[3] in a matter of seconds, to a particular fold, accord-into more complicated structures. We wish to describe
ing to information which must be provided via the un- the protein folds on a similar high symmetry level. To
derlying linear sequence information. A concise reviewsolve the homology problem, we consider the secondary
is given by Wolynes [4] in which the folding problem structures as straight sticks and replace the loops by the
has been related to the spin glass problem, marginal stterconnection lines between the end points of the sec-
bility, and minimal frustration. Another problem is why ondary structures, which are defined by the sequence in-
proteins seem to have predominant lengths of chains [Sprmation. The unit vectoé, of the first three elements
and separate into subunits, secondary structures [6], dés found and rectified onto the closest cubic unit vectors.
mains, and finally the functional tertiary or quaternaryThen the next element is added and the last three elements
structures. Bermamet al. [5] found characteristic peaks are locally rectified and joined to the previous, etc. In
in the length distribution of known proteins near multipla this way even severely twisted, similar protein structures
of chain lengths of 125 amino acids (residues). The totain the Brookhaven data bank (PDB) can be projected into
length may go up to a couple of thousand. A few hun-the same high symmetry fold without being sensitive to
dred different structures have so far been determined (idetails in the angles or the lengths of the elements (which
crystalline form). Yet many thousands of proteins haven the rectified structure are all equal). The second prob-
had their sequence determined. It is of great interest ttem is to find a systematic and unique descriptor for a
attempt to classify the possible structures. fold. This is done by using a Hamiltonian for an inter-

To introduce a model we will start by looking at the acting spin system. The spirfy are positioned at the
final, known structures. These consist of secondary strugunctions of the elements at sifeand act as “hinge” vari-
tures [6] of principallye helices (spiral, stiff subunits of ables describing the normal to the plane formed by the
around ten residues) an@l sheets, which are semiplanar elements, as well as the sense of allowed bending. The
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sequence of interaction constants describes in a unique Using the fact that the hydrophobic forces tend to
way the directions of the spins and thus the fold. Theconfine the proteins and make them contain as little as
Hamiltonian for a chain with’N" secondary structures (in 3% water [2] in thenative state, we want to find all folds

totalN = 2N — 1 of the defined elements) is which are self-avoiding. A scaling and mean field theory
PN -1 [7] of this problem gives the estimate that the number
H = — Z (JpSp - Sps1 + KpSp X Spsy - ép)  Of folds for N elements increases ds/e)", where ¢
P=dntl=1 is the coordination number, in our cagse= 4, ande =
PN —2 In~!(1). For a protein with nine secondary structures
— Z (jpSp * Spr1 + kpSy X Spi1 - &,). and consequently eight interconnecting loop elements we
p=2n+2=2 have N = 17, and the above theoretical relation gives

(1)  the number of folds ag4/e)!’ ~ 711. This is already

) ) a quite small number. However, the discreteness gives
We have neglected the orientation of the start and enflge tomagicnumbers at which there are particularly few,
loops and allowed for two sets of interaction constantsyifterent folds. Figure 2 shows the exact enumeration
The capital letters are for the interactions between th?B] of all dense folds on a cubic lattice for elements
spins at the end of the secondary structures, and th?p to N =35. For N =17 there is a pronounced
small letters are for those of the loop&, j, indicate  minimum with only p(17) = 172 distinct and predictable
continuation of the third element in the same plane agy4s, The mean field theory overestimates this grossly.
the two previousKy, k¢ indicate it is perpendicular. The pgenveen the magic numbers the number of folds is, on the
sign controls if the third element must be joined parallelyihar hand, much larger. The magic numbenvat 7,
(antiparallel) or perpendicular (antiperpendicular) [rightcorresponding to the 4-helix bundle, is a close packing
(left) turn]. Many underlying amino acid sequences canyt 5 1 % 1 x | box. The next closed confinement is the
be reduced to these basic parameters. This providezs>< 1 X 1 box, which we callB. The elemental magic
the basis for the classification of sequences into foldy,mpers atv = 11, 17, 23, 32, and 35 can be understood
classes. As a simple example, we show in Fig. 1 theys the optimal packing in closed polyhedra consisting of
projection of the 4e-helix bundle, which is given by 1,2, 3,5, and & boxes.
the descriptorjK;jKj, wherek = —K. The descriptor In Fig. 3 the statistical distribution of proteins with a
depends on the direction in which the chain is traversedyecific number of secondary structural elements is shown.
but it is invariant under rotation. There are five oth_erWe have used the prototypical standard set of 135 proteins
dense structures with seven elements. They are giveRit, sequence similarity below 25% selected from PDB by
by jKjKj, jKkKj, jKkKj, kJkJk, and kJkJk. The  postand Sander [9]. It is diverse and originally used for
letters k and K, which describe chiral turns, change gecondary structure prediction. The secondary structures
sign when the descriptor identifies a fold traversed inyre assigned using the renowned DSSP prescription [10]
the reverse direction. Similar unique descriptors with;n4 counted when having at least four identical, consec-

N — 2 letters can be constructed for any fold with ;e assignments of either beta strands or alphazand
elements. We find that Haemarythrin, rabbit uteroglobin,

and the cytochrome family belong to the mentioned
JKjKj class. The structure also occurs in T4-lysozym.
This is “embellished” by additional structures. This
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FIG. 2. Full line, number of distinct, dense folds for coordi-
nation number; = 4, on a cubic lattice as a function of num-
ber of elementsv; thin line, (z/e)¥. Notice the deep minima
FIG. 1. 4«-helix bundle, Haemarythrin (LHMQ): Right, the at elemental magicaiumbers at the closed configurations. The
actual structure in a ribbon representation. Left, the projectedhdded numbers indicate the corresponding number of secondary
structure. The descriptor & K. structures N = (N + 1)/2 for odd N.
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a single element, i.e2 X 17 + 1 = 35. This explains

LINL I A O O

"g' o4 18 3 why the domain formation of multipla ofN" =9 is
S0b | _6 9 6 E a natural consequence of the discrete packing problem.
Z =t E Given the average size of the elements, the magic
E S A E numbers also rationalize why the size of the domains [5]
O T T e T T e is as preferred by nature, being in concord with the overall
'NUMBER OF SECONDARY STRUCTURES thermodynamic theory [2]. Next we can evaluate how

many distinct fold classes exist. If we restrict ourselves

FIG. 3. Statistical abundance of proteins wif~ secondary - . o
structures. Dotted line, counting when the number of identical,to domain structures wittv = 17 we find in total 3906

consecutive DSSP assignmestd; full line, same but supple- Possible, distinct globular fold classes. This is close
mented by 3D structural information faV' = 6 [11]. to Chothia’s estimate of 1000 fold classes, based on a

heuristic argument [14].

The exhaustive enumeration in Fig. 2 and the unique
helices (not distinguished). The curve clearly shows locatlescription of folds on a cubic lattice are also relevant for
maxima in the abundance, which correspond to the optimahe bead model of proteins, which is extensively studied;
packing we find theoretically [11]. see a recent discussion, e.g., Ref. [13]. This model is,

The dense packing criterion we have used is a simpléowever, in fundamental principle very different from the
count of the neighbors of end points of the elements. Thipresent one. It assigns the physics to interactions between
represents the hydrophobic force quite faithfully. First,two or more different beads or residues distributed along
it is unspecific, i.e., independent of which elements are cubic model protein.
close to each other. Second, it depends on the “curvature” Our approach is more closely related to the models de-
of the confinement approximately as a surface tensiomeloped by Finkelsteiret al. [15], where the secondary
force, i.e., the different sites are rated 3, 4, 5, and @&lements are considered as rigid units. They propose that
for a corner, edge, face, and buried site, respectivelythe predominant occurrence of certain protein fold pat-
Only the sum counts, in agreement with the nature of théerns is due to specific, small thermodynamic advantages
hydrophobic force. One could, in order to introduce aand address the paradox of how entropy can play a role in
temperature in the problem, assign energy values for thdetermining the unique, native structure, which has zero
mentioned sites. The found magic numbers are not vergntropy. Based on properties of the overall density of
sensitive to deviations from a linear weighting which is states a Boltzmann-like statistics is discussed for the abun-
still consistent with the globular structures. The magicdance of a native folding pattern with the total number
numbers in our model areniversalin the sense that of folds, M, at, e.g., a given (lower) density. It reads
they do not depend on the specific, chemical interactionsccurrencex exp(—F;/kgT.), where T, is a universal
between the amino acids, neither between distant partsonformational temperature arfgy is the selective free
of the chain nor the interaction along the backboneenergy. This contains an entropylike terakpT. In My,
They are dictated by the hydrophobic, confining forceswhich would favor patterns with largef;. We believe the
If the weighting is far from linear one can form other physics is more delicate and involves elements of several
families of proteins, for example, those that are dissolvegbhase transitions, in particular, by involving an intermedi-
in cell membranes. Clearly, for those the hydrophobicate phase, as in the martensitic case.
and hydrophillic forces act differently. Families could be The dense structures we have enumerated do not repre-
imagined with a higher coordination numberor other  sent the final native structures, but are somewhat expanded
projected lattices. We have investigated the closed packddtermediate structures in which the secondary structures
folds for the simple cubic lattice case also with= 5, and  are basically developed, although not necessarily exactly
find again a number of pronounced minima with the samén the native shape. There apedifferent configurations,
magic numbers as before for the smaller domains. which are supposed to be degenerate with respect to the hy-

The folds at the magic numbers are particularly stablelrophobic forces. We call this thparentphase in analogy
and fast folding for the following reasons. They represento the martensitic problem. It is sufficiently free to be able
closed confinements having minimal surfaces and thuto test the degeneragyand therefore gain an entropy con-
are energetically favorable from the point of view of the tribution —kT. Inp, which is a significant part of the free
hydrophobic forces. Our magic number configurationsenergy at room temperature. We find the presence of such
have a clear energy separation from other folds. Thisn intermediate phase is supported by experimental inves-
is, according to a hypothesis by Shakhnovich [12,13], digations [16] and protein engineering studies of Barnase
necessary condition for rapid folding. The minimum at[17]. For a smaller protein (chymotrypsin inhibitor 2) the
N = 17 is relatively well pronounced. There is also a folding process is found to be more concerted and both sec-
well-pronounced minimum at the magic numbBér= 35.  ondary and tertiary structures form almost simultaneously
The N = 35 structure is confined in 8 X 2 X 2 box. [18] in what is called a nucleation-condensation mecha-
An analysis of the folds shows that a large part is formechism. However, this is not contrary to our picture because
of two folds of theN = 17 domain interconnected by just (1) for smallN there is no sharp phase transition and (2)
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the experiment is concerning a dynamic process, whereas to predict a predominant abundance of proteins with
we are considering only the statistical properties. Uporsuch numbers of secondary structures. A statistical anal-
lowering the temperature, we assume there is a phase traysis of experimental data supports this finding.

sition to the unique native state. Thisis driven by the short It is a pleasure to thank K. Rapacki for assistance
ranged interactiong,, (r; — r}’) between the residues  with the numerical computations. We also wish to thank
andb atr! andrj-’ on the neighboring elements as in thethe Danish National Research Foundation for financial

bead model. The energy galvt = >, fur(ri — rj»’) is  support.
limited because the interactions are highly frustratad:

depends on the underlying sequence information. A model

for the martensitic transformation was recently studied by [1] C. Tandford, The Hydrophobic Effect: Formation of
one of the authors [19]. This exhibits similarly a com- Micelles and Biological Membrane§l. Wiley & Sons,
petition between g times degenerate parent phase and  New York, 1980).

an energy stabilized low temperature phase. It required d2] K.A. Dill, Biochemistry 24, 1501 (1985).

larger AE to produce the (discontinuous, growth by nucle- [3] C-J. Levinthal, Chem. Phy$s5, 99 (1968).

ation) transition from or to a more highly degenerate parent[# P-G: Wolynes, Protein Folds, edited by H. Bohr and
phase at a given temperature, because the latter is stabi- S. Brunak (CRC Press, New York, 1995), pp. 3-17;

- M. Sasai and P.G. Wol , Phys. Rev L 2740
lized by the entropy term-kzT. Inp. In the present case (19906;_56“ an olynes, Phys. Rev L&,
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ent sequences but similar structures is therefore more likely 729 (1951); L. Pauling, R.B. Corvey, and H.R. Branson,
for those for which the parent phase has low degeneracy. ibid. 37, 205 (1951).
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by the hinge forces in the Hamiltonian equation (1), defin- twisted structure for the counting introduces an uncertainty
ing the actual values of the parameters. In principle these because of (1) double counting if an element is broken
are then determined by the sequence information, selected Nt Wo, (2) noncounting if an element is broken beyond
during the course of the evolution. We propose as a pos-  "€cognition. The problem is most serious for Sma.
sibility that for a protein withN elements andp times Doubt can be resolved by considering the 3D structure.

. . 12] E.I. Shakhnovich, Phys. Rev. Lef#t2, 3907 (1994).
dense packing degeneracy, the hinge forces sum up 1931 k yyue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I.

give maximum energy gain for the potential native fold. Shakhnovich, and K.A. Dill, Proc. Natl. Acad. S@2,
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violated. The effect is that of a weak symmetry breaking[15] A.V. Finkelstein, A.M. Guntun, and A.Y. Badretdinov,
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the appearance of magic numbers of secondary structurglo] The proposed hinge force assisted folding is in fact a
elements. The model has the property that the folds of  much more direct and reliable process than the corre-
these number of elements are favorable with respect to  sponding defect assisted selection of variants, which oc-
being fast folding and the corresponding native ones to  curs in “trained” shape memory alloys. Given the code

being potentially stable, thermodynamically. This allows  for the hinge forces the descriptor, i.e., the fold class, can
be directly predicted from the sequence information.
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