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Collapse of solitary excitations in the nonlinear Schrdinger equation with nonlinear damping
and white noise

Peter L. ChristiansehYuri B. Gaididei? Magnus Johanssdnkim @. Rasmussehand Irina I. Yakimenk®
Ynstitute of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark
2Institute forTheoretical Physics, Metrologicheskaya Street 14 B, 252 143 Kiev 143, Ukraine
(Received 14 November 1995

We study the effect of adding noise and nonlinear damping in the two-dimensional nonlineadiSgaro
equation(NLS). Using a collective coordinate approach, we find that for initial conditions where total collapse
occurs in the unperturbed NLS, the presence of the damping term will instead result in an exponentially
decreasing width of the solution in the long-time limit. We also find that a sufficiently large noise variance may
cause an initially localized distribution to spread instead of contracting, and that the critical variance necessary
to cause dispersion will for small damping be the same as for the undamped y&t€68-651X96)11207-1

PACS numbd(s): 03.40.kf, 05.40+]

[. INTRODUCTION able than a true collapse, will be termed “pseudocollapse.”
As long as the damping is not too large, the critical variance
of the noise required to cause dispersion instead of contrac-

tion (NLS) can be obtained, e.g., in a continuum approximasjo,, s found to be approximately the same as for the case
tion of a model for 2D exciton-phonon coupled systems, it damping.

which has been used to model, for example, the Scheibe
molecular aggregatdd]. It is well known[2] that for some
initial conditions, the 2D NLS exhibits blowup; i.e., the
maximum of the solution will tend to infinity in a finite time. Following the derivation given in Ref.3], we start by

In the case where the total “mass” of the wave collapsesassuming that the coupled exciton-phonon system can be de-
into one single point, total collapse is said to occur, and thécribed by the following pair of equations:

time when this happens is termed the collapse time. If ther-

mal quctu_ations o_f the phonon_ system are ta_ken into account, iﬁ¢n+ E I Ut + XUn =0, (1)

the resulting continuum equation for the excitons was shown n’

[3] to include a term containing colored multiplicative noise. . . ) 5

Approximating the complicated noise spectrum with Gauss- MU, +MAU+Mogu,— x| ¢n|*= 74(1). 2

ian white noise, it was showj#] that the presence of noise

would delay the collapse process, and that the collapse couHere "/"a.'s tr;e a;nphtuSe of the exc;to?hwa\lle Iyngtlon cor—f
be destroyed if the variance of the noise was su1‘ficientl)feSpon Ing 1o sité andu, represents the elastic degree o
large. freedom at siten. Furthermore,—J,,, is the dipole-dipole

However, to allow the exciton system to reach thermaIimeraCti(.)n energyy is the exc!ton-phonon_ coupling con-
equilibrium, the noise term providing energy input to thestant,M is the molecular mass, is the damping coefficient,

exciton system should be balanced by another term provid®0 is the Einstein frequency of each oscillator, am(t) is .
n external force acting on the phonon system. To describe

ing energy dissipation. In this paper we suggest that thi ; : . X
balance can be obtained by adding a nonlinear damping ter e interaction of the phc_)non system with a therma_ll reservoir
at temperaturel, 7,(t) is assumed to be Gaussian white

to the equation. Nonlinear damping in NLS systems has pre=" . : . )
viously also been considered in the context of nonlinear 0p|_10|se with zero mean and the autocorrelation function
tics [5,6]. We use a collective coordinate approach to derive (a0 7 (1)) =2MNKgTS(t—t") Sy (3)

an ordinary differential equation for the width of the trial

exciton wave function. Solving this equation numerically wein accordance with the fluctuation-dissipation theorem ensur-
find that blowup will not occur when the damping term is ing thermal equilibrium.

included; the solution will be well defined for all times but  In order to derive a single equation for the dynamics of
its width will approach zero exponentially in the absence ofthe exciton system, we start by writing the solution to &j.
noise. This behavior, which seems physically more reasonin the integral form

The two-dimensional2D) nonlinear Schidinger equa-

1. MODEL

1 t , ,
Un() =" O+ s =g Jodt'(e3+<“‘ 1= eSO IX () 2+ (1], (4)

where
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S.=—N\2+ (N 2)°— w}, (5)

and

utd(t)= {(\Un(0) +Un(0))(eS+t—eS-Y) +uy(0)(S, eS+—S_eS-h). (6)

S, -S_

Here u,(0) and u,(0) are the molecular displacements and velocities at the initial moment of time. Frorf6)Eqe ob-
serve that {9(t) will decay ase”*?", and since we will be interested in times such t¥a2/\ we can neglect this transient
term in Eq.(4). Furthermore, using repeated partial integration we can write

’_ 2
_esr(t—t') 1 |¢ (tl)|2+ 1d [|¢ (t/)|2] ' t+ 1 tdt/ esx(t—t’) d [|¢ (tl)|2]
SHRRAL 2 dt’ n 0 2 Jo dt’? n '
= =+ t'= +
(7)

t ’
fdt' e (1) 2=
0

The last term in Eq(7) can be neglected ifiy,(t)|? is as- importance, we obtain in the continuum approximation for
sumed to vary sufficiently slowly in time compared with the the continuous exciton fielg(x,y,t) =e~ ' “y (t)/I:
lattice vibrations, i.e., if

2 2 H 2y2 2 2 A 2 2 2 —
05— (N\/2) 1 d_2 O[2)<1 ® if i+ IV 2+ V19 g ‘/"Vw_g' W |?) i+ x1%o=0,
wé |wn(t)|2 dt2 [|¢n( ) ] . (13)

Neglecting all exponentially decaying transient terms, wewhere | is the distance between nearest neighbors and
thus obtain an approximate expression for the molecular diss(x,y,t) = o,(t)/1? is the noise density. Equaticfi3) can

placements from Eqg4), (5), and(7): be cast into a more convenient form by transforming into
dimensionless variables,
u (t)~L [ (t)lz—Li [ (D[] ] +on(t)
n Mw(z) n a)(z) dt n m= X y VI2 X|2
@ 7% 7Y WheL NTdmd Tyo—o,

Here o, (t), defined as
which leads to

1 t ' 4t
N VT fodt'(es*“‘t 1= eS- ) (1),
(10

[+ VE3+ |2y — Ay(| YD)+ oyp=0, (15

_ _ _ _ _ ~ where the nonlinear damping paramefeis given by
is a new stochastic force described by noise that is not white,

but strongly colored3]. A=\t w?. (16)
Introducing the expressio®) for the molecular displace-
ments into Eq(1), we immediately get the following equa- |t may be interesting to note that an equation similar to the

tion involving only exciton variables: one-dimensional version of E(L5), but with (|¢4?), replaced
\ q by (|49, , is often encountered in the context of nonlinear
i+ S I d VI Pe =V = g — t)[2 optics, where it governs the effect of Raman scattefBlg
Ui ?’ e Y V[l wh n g L1017 The presence of the terth)f?), was recently shown to arrest

the collapse of one-dimensional pulses in a NLS with critical
+x0n(1) ¥ =0. 11 nonlinearity[6].
It can be shown easily that in spite of the presence of the
nonlinear damping and multiplicative noise terms in Eq.
(15), the norm, defined as

Here we have introduced the nonlinearity paramé&fede-
fined as

V=x*Moj. (12
N=ff x,y,t)|2dx dy, 1
Note that the main difference between the derivation above w0y 0l y (17
and the one used in Rdf3] is that we retain one more term _ _ ]
in the expansior(7), the result of which is the presence of Will still be a conserved quantity, having the vale=V/J if
the nonlinear damping term-V(\ o 3) ¢, (d/dt)[| (1) 2] the exciton wave function is assumed to be normalized in the
in the exciton equatioll). physical coordinates. By writing/=ne'’, the following
Making the additional assumptions that varies slowly — equations for the amplitude and phase of the solution can be
in space and that only nearest-neighbour coupling of  obtained from(15):
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I n+V(nve)=0, results obtained below do not depend on the explicit choice
(18) E)f]trial function, the functionf will here be left unspecified
9].
—6,—An—(VO)>2+n+ i V2( \/ﬁ)+ a(x,y,t)=0. From the definition(17) of the norm, with¢ given by
Jn (22), we immediately obtain the relation between amplitude
and width,
The norm conservation is immediately seen from the first of
these equations, while the second equation shows that the VN/S; 20
role of the damping term is to destroy the phase coherence of A(t)= B (23
the solution and cause a diffusionlike behavior for the phase.
The ordinary NLS Hamiltonian, defined as where the coefficiens, , 5 is obtained from the general defi-

nition of the integralssy,

H=[ | 19 pxy.0= & lwexy.0l9ax ay, a9

Sm,n,p:27TJ r™f(r)]"[f'(r)]Pdr. (29
0
will then in general no longer be conserved. Instead we find
that In [7] a variational approach was used, and from the
Euler-Lagrange equations the relation
dH ) o 1o )
qi a(x,y,0)(|¥]*)dx dy-A [(|#1%)%dx dy. B(t)
a(t)y=—— (25
(20) 4B(t)

Thus, the two terms provide energy input and energy dissiwas obtained together with an ordinary differential equation
pation to the exciton system, making an energy balance pogor B(t). However, in the presence of dampify+0) this
sible. Consequently, there is a possibility for the system tdechnique is not applicable. Instead, we will use the trial
reach thermal equilibrium. function (22) with «(t) given by(25) and derive an ordinary
differential equation foB(t) using the virial theorem. De-
Ill. COLLECTIVE COORDINATE APPROACH fining the virial coefficientV as

To investigate the influence on the collapse process of the _ | 22122 47 * 3 2
damping and noise terms in E@.5), we will use the method W(t)—f r2ly(r, 0] df—ZTFjO r*[y(r,0)]%dr, (26)
of collective coordinates. To this end, we will make some
simplifying assumptions. We will assume isotropy, which we obtain from(15) that it satisfies the equation
effectively reduces the problem to one space dimension with 2
the radial coordinate = \x?+y?. We also assume that the E d_W
noise o can be approximated by radially isotropic Gaussian 4 dt?
white noise with autocorrelation function

=2H—zwAfxr2|¢|2ar[at(|dflz)]dr
0

5 +2’7Tf r2|yl%o,(o)dr, (27

0
(o(r,t)o(r',t")= T’ s(r—r)s(t—t"), (21
whereH is the Hamiltonian(19). Using(22)—(25), we arrive
at the following differential equation for the widtB of the

whereD, is the dimensionless noise variance. The validity of __ " T
exciton wave function:

this approximation was discussed in RE3]. Finally, we

assume that the collapse process can be described in terms of ) B 8m (= rf'(r/B)
collective coordinates by using a localized self-similar trial B3B=A-T —— — (14— — f—)
function for the exciton wave functiori(r,t) of the form B S320J0 B f(r/B)
2
w(r, ) =AM F(r/B(t))e' 0, (22) x| f 5| e(rvrdr, (29)

wheref(x) is an arbitrary well-behaved, real function, which \yhere the constants andT" are defined as
decreases sufficiently fagt.g., exponentiallyasx—c. The

three real time-dependent parametarsB, and « thus de- 4 NSy 40

termine the amplitude, width, and phase of the wave func- AT (31 02~ T) (29)
tion, respectively. In Ref§4] and[7], where the casd =0 320 120

in Eq. (15 was investigated, the particular choidéx) and

=sechk) was considered. This choice was motivated by re-

garding it as a generalization of the approximate ground- _ 8NAS; 5, (30)

state solution to the ordinary 2D NLS found in RE8]. As

long asA is not too large, one might expect this trial function
to give a good description of the collapse process also in theespectively. Note thaa andI” depend on the initial condi-
presence of damping, but since the qualitative features of thigons viaN, and that whileA can be either positive or nega-

$1,2,653,2,0
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tive, I is always positive. In the absence of noise and damp- ;
ing, it is evident from(28) that collapse will occur if and =0 -
only if A<O.

In analogy with the treatment for the undamped case in
Ref.[7], we find that it is possible to transform E@8) into
a simpler stochastic differential equation without changing \
the Fokker-Planck equation for the system. This equation,
which therefore gives an equivalent description of the pro- B 05
cess, gets the form

. A TB ht) \
TBF B 3D
whereh(t) is white noise with the autocorrelation o Y 1 -
’ t
(h(t)h(t"))=2Ds(t—t"). (32

FIG. 1. WidthB as a function of time in the absence of noise.
Here the parametdd giving the variance oh(t) is related Dashed line shows the analytical soluti¢84) for I'=0 with

to the varianceD, of o(r,t) defined in(21) through Bo=|A|=1; solid line the numerical solution of E¢31) for ’'=0.1.
3272D,S35 5 so that the process can be considered as a collapse process
= sz— (33 with an infinite collapse time. This type of behavior will be
3.20 called “pseudocollapse.” The difference between the
damped and the undamped cases is illustrated in Fig. 1. As
IV. NUMERICAL SOLUTION OF THE COLLECTIVE can be seen, the initial stages of the pseudocollapse process
COORDINATE EQUATION will resemble a pure collapse as long as the damping is

small. One can then roughly define a “pseudocollapse time”

In this section we analyze the influe_nce of dam'ping andys the time where the asymptotic beha\i@6) sets in.
noise on the collapse process by solving the ordinary sto- | the presence of noise, but no damping, it was found in
chastic differential equatio(81) for the widthB of the trial  Ref, [4] that the collapse time would increase with increasing
function (22) numerically. The numerical solutions have ,ise variance, and that the collapse process could be

been obtained using a stochastic version of the fourth—ordegtopped if the variance was large enough. In this case, by
Runge-Kutta-Merson algorithil0] using its standard error rescaling the time variable
estimate to adapt the size of the time steps so that the error of
the deterministic part of the solution is controlled. To control T= \/Wt, (37)
the error of the stochastic part of the solution, we have
checked that its statistical properties remain invariant wheieq. (31) with I'=0 can be rewritten as
changing the maximum allowed time step and varying the _
sample size. We note that the algorithm used in general will d’B 1 N h(t)
2

give the Stratonovich solution to a stochastic differential ﬁ__g ? (38)
equation[11], but that for our equatior{31) this will be
identical to the Ito solution. Thus, there is no ambiguity con-
cerning the interpretation of the solution in this case.

With neither damping nor noise in the systéfi=D =0)

where the rescaled noigr{t') is still white but with the vari-
ance parametdd rescaled as

andA<0, the well-known exact solution - D
D= W? (39)
Bz
_ [1_12/42 _ 0o .
B()=Bovl-tte, = \/m (34) Thus, for given initial condition8(0) andB(0) and arbitrary

A<O0, the critical varianceD required to stop the collapse
will depend only on the parametér given by Eq.(39).
When damping is also present, it is necessary to rescale
B(0)=B B(0)= not onlyt, but alsoB, in order to eliminate both tha andI’
(0)=Bo, (0)=0 39 dependence from Ed31). The transformation will in this

fulfilling the initial conditions

is easily obtained. Thus, the solution collapses and ceases tgse be given by
exist at the collapse time=t.. When the damping term is

present in Eq(31), we find that strictly speaking no collapse = H t B= A B (40)

will occur, since the solution will be well defined for ll r- Jro

Instead we find thaB(t) will go exponentially to zero for

larget, while the variance of the rescaled noise still will be given by

Eq. (39). Thus, disregarding the changes in time scale, the
B(t)~e (AIMt ¢ o0, (36)  process is determined by two quantitiBsfrom (39) and the
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(a) (a)
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0.1

4 0.1 1 50) 10 100
105 (b)
1
B Desy
1075
4 00001 0001 001 0. ll| 10 100 1000 10000
FIG. 2. WidthB as a function of time for 100 different con- FIG. 3. (@) Critical value ofD, Scm, from Eq. (39 VSE (0)

figurations of the noise foF=0.1 andD =(a) 0.05 and(b) 0.5. In from Eq. (40). D, is here defined as the smallest valueDofor

both casesBy=|A|=1. For computational reasons the numerical which more than 1/1000 of the trajectories obtained for different
integration for each trajectory has been aborted wBet0.01, so  noise configurations diverge. The error bars correspond to results
that the exponential decrease towards zerb-a® is not shown. obtained for different samples. The line is a guide to the éye.

I L~ i ) Critical value ofD, D, as a function ofA| whenT'=0.1 and
initial value att=0 of the quantityB as defined in(40). Bo=1. The line is a plot of the functiol ;=0.15A¥2 which

Consequently, an increase of the damping paranfetell  yescribes the scaling behavior in the absence of damping.
be equivalent to a decrease of the initial widgh, and one

would therefore expect that as longlas small compared 0 \ve find that the critical value ob in these cases will be
|A[2 the process will be practically indistinguishable from jncreased. This is illustrated in Fig(88, where the critical
the undamped process except wherO0, i.e., close to col- \5j,e of D, Scm, is plotted as a function oﬁ(O). In Fig.
lapse. _ 3(b) we plot the critical value oD, D, as a function ofA|

To illustrate how the noise affects thpseudocollapse  or the particular valueB,=1 andI'=0.1 to illustrate that as
process, we sho_vv in Figs.(@ and Zb) how the _W|dth long as |A| is large compared td? the scalingD.;
B varies with timet for a sample of 100 different ~|A|3’2 found in Ref.[4] for the undamped case will be
noise configurations and small dampiii(0)~3.16]. In (@,  \4lid also in the presence of damping.
whereD =0.05, we see that all trajectories will finally enter 5 quantity of physical interest is the ensemble average of
the region of exponential decrease towards zero, but that thge width,(B(t)), since it is related to the mean value of the

noise will cause a spread in the pseudocollapse time, defingd i, probability currenj, (t) for the exciton system defined
as above as the approximate time where the asymptotic bgy

haviour sets in. Inb), however, wherd =0.5, the noise is

sufficiently strong to cause divergence of some trajectories. i

A more careful study shows that for this value Bf0), a (jr(t)>=<§ f f rdr d oo, p* — o 5r,/,)>_ 41
value of D~0.15 is sufficient to cause divergence for more

than 1/1000 of the trajectories. To the accuracy we can ob- . .
tain, this critical value J05 is the same as for theyundamped Using (22)—(24), the relation

case (I'=0). However, for stronger dampinfpr, equiva- N

lently, smaller values oB(0)], even the initial stages of the (.(1)= 52,2,0<B(t)> (42)
pseudocollapse process will be affected by the damping, and 28120
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R —— : ~ (B2)=DIT. (45)
5 Bz?:g o To calculate the left-hand side i#5) accurately close to
D=125 -—-- pseudocollapse is also a difficult numerical task. However, if

we in addition assume that the pseudocollapse process is
self-averaging, we can replace the ensemble average over the
pseudocollaping trajectories with a time average for one
single trajectory. The following scaling behavior has then
been found numerically:

o1t D
LN Ty lim ?J Bz(t,)dt""_, (46)
t

2 3 4 5 t—oo 0 r

FIG. 4. Ensemble average of the widd) as a function of time ~ wheret, is chosen so tha(ty) is small enough to be in the
t for different noise variances. From bottom to top we h@e0,  asymptotic regime and the proportionality constant is close
0.05, 0.15, 0.5, 1.5, and 12.5, respectively. In all cd&gs|A|=1  to one. This relation can also be obtained using the transfor-

andI'=0.1. mation (40), from which we find

is readily obtained. The behavior 0B(t)) is shown in Fig. 2 ~\ 2

4 for the parameter value,=|A|=1, I'=0.1, and different as :Ei aB (47)
values of the noise variance. It can be seen that for dt D \di)

D<Dy=~0.15, the effect of the noise is to delay the

pseudocollapse in terms of the ensemble average of th . . .
width, in analogy with the similar result obtained in REf] Essummg that the asymptotic behavior of the pseudocollaps-

for the undamped case. F@>D,, we observe a non- ing tr_a}jecjtpries will not be affe_cted by changing the initial
monotonic behavior of B(t)). Initially, the average width corll\ldlttl_onB(?%, :htﬁ s%glmg _re'at"’?@“ﬁ) ff)”OW_S' i
il Gecrease i o smiar iy o3 Wha<D, bt afer NS el e Gherong Uaecones gve o oty
some time the dominating contribution to the mean valueth t totic bal bet ! inout and dissi-
will come from the diverging trajectories, an@(t)) will at an asymptotic balance between energy input and disst
consequently also diverge as-e. There will thus be a mini- pation may occur. However, we stress that we have no real

mum average width, which will increase towarBg as D justification for making the assumptions of statistical inde-
increases. as can bé seen in Fig. 4 pendence and self-averaging used to obtain this result.

An interesting question regarding the system described by
the collective variable equatidi31) is whether it is possible V. CONCLUSIONS
to obtain a balance between energy input and energy dissi-

pation also in this simple approximation. Defining the energy We have used the method of collective coordinates to
as study the influence of noise and nonlinear damping on the

collapse process in the two-dimensional nonlinear Schro
1 ( A dinger equation. This model has been shown to result under
E= 2 B BZ certain approximations in the description of a coupled
exciton-phonon system where thermal fluctuations are taken
the following relation can be derived: into account. We find that the main effect of the damping
term is to replace the abrupt collapse process, where the
d 2 solution ceases to exist after a certain time, with a physically
dt (E)= _F<¥> +D<¥>' (44 more reasonable exponential decrease of the width-as.
Concerning the influence of the noise, we have found that if
Thus, an energy balance will be present if the right-hand sidéhe variance is large enough the wave packet may disperse
of Eq. (44) is zero. In principle, it should then be possible to instead of contracting. The critical variance necessary to
decide whether an energy balance will occur by numericatause dispersion will not be affected significantly compared
calculation of this quantity. In practice, however, the calcu-to the undamped system, unless the damping is large. In the
lation of this quantity with an acceptable accuracy would bdatter case, the critical variance is increased.
extremely time consuming, due to the factoB4/growing A comparison of the predictions obtained by the collec-
fast close to the pseudocollapse, and due to the necessity e coordinate method to results obtained by direct numeri-
taking extremely small time steps in the integration proce-cal simulations of the partial differential equatiti) would
dure close to the singularity &=0. Consequently, we have be of interest. We note, however, that in the presence of
not been able to establish the energy balance numericallyionlinear damping a commonly used numerical scheme such
However, it is interesting to note that if we make the as-as the split-step Fourier method cannot be directly applied. It
sumption that the two quantitiesBY andB? are statistically is also of interest to compare the results for the continuous
independent, a sufficient condition to get balance betweerquation(15) with results for the corresponding discrete
input and dissipation would be that equation(11). Work in this direction is in progredd 2].

: (43
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