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Collapse of solitary excitations in the nonlinear Schro¨dinger equation with nonlinear damping
and white noise

Peter L. Christiansen,1 Yuri B. Gaididei,2 Magnus Johansson,1 Kim O” . Rasmussen,1 and Irina I. Yakimenko2
1Institute of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark

2Institute forTheoretical Physics, Metrologicheskaya Street 14 B, 252 143 Kiev 143, Ukraine
~Received 14 November 1995!

We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schro¨dinger
equation~NLS!. Using a collective coordinate approach, we find that for initial conditions where total collapse
occurs in the unperturbed NLS, the presence of the damping term will instead result in an exponentially
decreasing width of the solution in the long-time limit. We also find that a sufficiently large noise variance may
cause an initially localized distribution to spread instead of contracting, and that the critical variance necessary
to cause dispersion will for small damping be the same as for the undamped system.@S1063-651X~96!11207-1#

PACS number~s!: 03.40.kf, 05.40.1j

I. INTRODUCTION

The two-dimensional~2D! nonlinear Schro¨dinger equa-
tion ~NLS! can be obtained, e.g., in a continuum approxima-
tion of a model for 2D exciton-phonon coupled systems,
which has been used to model, for example, the Scheibe
molecular aggregates@1#. It is well known @2# that for some
initial conditions, the 2D NLS exhibits blowup; i.e., the
maximum of the solution will tend to infinity in a finite time.
In the case where the total ‘‘mass’’ of the wave collapses
into one single point, total collapse is said to occur, and the
time when this happens is termed the collapse time. If ther-
mal fluctuations of the phonon system are taken into account,
the resulting continuum equation for the excitons was shown
@3# to include a term containing colored multiplicative noise.
Approximating the complicated noise spectrum with Gauss-
ian white noise, it was shown@4# that the presence of noise
would delay the collapse process, and that the collapse could
be destroyed if the variance of the noise was sufficiently
large.

However, to allow the exciton system to reach thermal
equilibrium, the noise term providing energy input to the
exciton system should be balanced by another term provid-
ing energy dissipation. In this paper we suggest that this
balance can be obtained by adding a nonlinear damping term
to the equation. Nonlinear damping in NLS systems has pre-
viously also been considered in the context of nonlinear op-
tics @5,6#. We use a collective coordinate approach to derive
an ordinary differential equation for the width of the trial
exciton wave function. Solving this equation numerically we
find that blowup will not occur when the damping term is
included; the solution will be well defined for all times but
its width will approach zero exponentially in the absence of
noise. This behavior, which seems physically more reason-

able than a true collapse, will be termed ‘‘pseudocollapse.’’
As long as the damping is not too large, the critical variance
of the noise required to cause dispersion instead of contrac-
tion is found to be approximately the same as for the case
without damping.

II. MODEL

Following the derivation given in Ref.@3#, we start by
assuming that the coupled exciton-phonon system can be de-
scribed by the following pair of equations:

i\ċn1(
n8

Jnn8cn81xuncn50, ~1!

Mün1Mlu̇n1Mv0
2un2xucnu25hn~ t !. ~2!

Herecn is the amplitude of the exciton wave function cor-
responding to siten andun represents the elastic degree of
freedom at siten. Furthermore,2Jnn8 is the dipole-dipole
interaction energy,x is the exciton-phonon coupling con-
stant,M is the molecular mass,l is the damping coefficient,
v0 is the Einstein frequency of each oscillator, andhn(t) is
an external force acting on the phonon system. To describe
the interaction of the phonon system with a thermal reservoir
at temperatureT, hn(t) is assumed to be Gaussian white
noise with zero mean and the autocorrelation function

^hn~ t !hn8~ t8!&52MlkBTd~ t2t8!dnn8 , ~3!

in accordance with the fluctuation-dissipation theorem ensur-
ing thermal equilibrium.

In order to derive a single equation for the dynamics of
the exciton system, we start by writing the solution to Eq.~2!
in the integral form

un~ t !5un
~0!~ t !1

1

M ~S12S2!
E
0

t

dt8~eS1~ t2t8!2eS2~ t2t8!!@xucn~ t8!u21hn~ t8!#, ~4!

where
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S652l/26A~l/2!22v0
2, ~5!

and

un
~0!~ t !5

1

S12S2
$„lun~0!1u̇n~0!…~eS1t2eS2t!1un~0!~S1e

S1t2S2e
S2t!%. ~6!

Here un~0! and u̇n~0! are the molecular displacements and velocities at the initial moment of time. From Eq.~6! we ob-
serve thatu n

(0)(t) will decay ase2(l/2)t, and since we will be interested in times such thatt@2/l we can neglect this transient
term in Eq.~4!. Furthermore, using repeated partial integration we can write

E
0

t

dt8 eS6~ t2t8!ucn~ t8!u25F2eS6~ t2t8!S 1

S6
ucn~ t8!u21

1

S6
2

d

dt8
@ ucn~ t8!u2# D G

t850

t85t

1
1

S6
2 E

0

t

dt8 eS6~ t2t8!
d2

dt82
@ ucn~ t8!u2#.

~7!

The last term in Eq.~7! can be neglected ifucn(t)u
2 is as-

sumed to vary sufficiently slowly in time compared with the
lattice vibrations, i.e., if

v0
22~l/2!2

v0
4

1

ucn~ t !u2
d2

dt2
@ ucn~ t !u2#!1. ~8!

Neglecting all exponentially decaying transient terms, we
thus obtain an approximate expression for the molecular dis-
placements from Eqs.~4!, ~5!, and~7!:

un~ t !'
x

Mv0
2 S ucn~ t !u22

l

v0
2

d

dt
@ ucn~ t !u2# D 1sn~ t !.

~9!

Heresn(t), defined as

sn~ t !5
1

M ~S12S2!
E
0

t

dt8~eS1~ t2t8!2eS2~ t2t8!!hn~ t8!,

~10!

is a new stochastic force described by noise that is not white,
but strongly colored@3#.

Introducing the expression~9! for the molecular displace-
ments into Eq.~1!, we immediately get the following equa-
tion involving only exciton variables:

i\ċn1(
n8

Jnn8cn81Vucnu2cn2V
l

v0
2 cn

d

dt
@ ucn~ t !u2#

1xsn~ t !cn50. ~11!

Here we have introduced the nonlinearity parameterV de-
fined as

V5x2/Mv0
2. ~12!

Note that the main difference between the derivation above
and the one used in Ref.@3# is that we retain one more term
in the expansion~7!, the result of which is the presence of
the nonlinear damping term2V(l/v 0

2)cn(d/dt)[ ucn(t)u
2]

in the exciton equation~11!.
Making the additional assumptions thatcn varies slowly

in space and that only nearest-neighbour couplingJ is of

importance, we obtain in the continuum approximation for
the continuous exciton fieldc(x,y,t)5e2 i4Jt/\cn(t)/ l :

i\c t1Jl2¹2c1Vl2ucu2c2V
l

v0
2 l

2c~ ucu2! t1x l 2sc50,

~13!

where l is the distance between nearest neighbors and
s(x,y,t)5sn(t)/ l

2 is the noise density. Equation~13! can
be cast into a more convenient form by transforming into
dimensionless variables,

x

l
→x,

y

l
→y, Jt/\→t, AVl2

J
c→c,

x l 2

J
s→s,

~14!

which leads to

ic t1¹2c1ucu2c2Lc~ ucu2! t1sc50, ~15!

where the nonlinear damping parameterL is given by

L5lJ/\v0
2. ~16!

It may be interesting to note that an equation similar to the
one-dimensional version of Eq.~15!, but with ~ucu2!t replaced
by ~ucu2!x , is often encountered in the context of nonlinear
optics, where it governs the effect of Raman scattering@5#.
The presence of the term~ucu2!x was recently shown to arrest
the collapse of one-dimensional pulses in a NLS with critical
nonlinearity@6#.

It can be shown easily that in spite of the presence of the
nonlinear damping and multiplicative noise terms in Eq.
~15!, the norm, defined as

N5E E uc~x,y,t !u2dx dy, ~17!

will still be a conserved quantity, having the valueN5V/J if
the exciton wave function is assumed to be normalized in the

physical coordinates. By writingc5Aneiu, the following
equations for the amplitude and phase of the solution can be
obtained from~15!:
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1
2 nt1¹~n¹u!50,

~18!

2u t2Lnt2~¹u!21n1
1

An
¹2~An!1s~x,y,t !50.

The norm conservation is immediately seen from the first of
these equations, while the second equation shows that the
role of the damping term is to destroy the phase coherence of
the solution and cause a diffusionlike behavior for the phase.
The ordinary NLS Hamiltonian, defined as

H5E E @ u¹c~x,y,t !u22 1
2 uc~x,y,t !u4#dx dy, ~19!

will then in general no longer be conserved. Instead we find
that

dH

dt
5E E s~x,y,t !~ ucu2! tdx dy2LE E @~ ucu2! t#2dx dy.

~20!

Thus, the two terms provide energy input and energy dissi-
pation to the exciton system, making an energy balance pos-
sible. Consequently, there is a possibility for the system to
reach thermal equilibrium.

III. COLLECTIVE COORDINATE APPROACH

To investigate the influence on the collapse process of the
damping and noise terms in Eq.~15!, we will use the method
of collective coordinates. To this end, we will make some
simplifying assumptions. We will assume isotropy, which
effectively reduces the problem to one space dimension with
the radial coordinater5Ax21y2. We also assume that the
noises can be approximated by radially isotropic Gaussian
white noise with autocorrelation function

^s~r ,t !s~r 8,t8!&5
Dr

r
d~r2r 8!d~ t2t8!, ~21!

whereDr is the dimensionless noise variance. The validity of
this approximation was discussed in Ref.@3#. Finally, we
assume that the collapse process can be described in terms of
collective coordinates by using a localized self-similar trial
function for the exciton wave functionc(r ,t) of the form

c~r ,t !5A~ t ! f „r /B~ t !…eia~ t !r2, ~22!

wheref (x) is an arbitrary well-behaved, real function, which
decreases sufficiently fast~e.g., exponentially! asx→`. The
three real time-dependent parametersA, B, anda thus de-
termine the amplitude, width, and phase of the wave func-
tion, respectively. In Refs.@4# and @7#, where the caseL50
in Eq. ~15! was investigated, the particular choicef (x)
5sech(x) was considered. This choice was motivated by re-
garding it as a generalization of the approximate ground-
state solution to the ordinary 2D NLS found in Ref.@8#. As
long asL is not too large, one might expect this trial function
to give a good description of the collapse process also in the
presence of damping, but since the qualitative features of the

results obtained below do not depend on the explicit choice
of trial function, the functionf will here be left unspecified
@9#.

From the definition~17! of the norm, withc given by
~22!, we immediately obtain the relation between amplitude
and width,

A~ t !5
AN/s1,2,0
B~ t !

, ~23!

where the coefficients1,2,0 is obtained from the general defi-
nition of the integralssm,n,p :

sm,n,p52pE
0

`

rm@ f ~r !#n@ f 8~r !#pdr. ~24!

In @7# a variational approach was used, and from the
Euler-Lagrange equations the relation

a~ t !5
Ḃ~ t !

4B~ t !
~25!

was obtained together with an ordinary differential equation
for B(t). However, in the presence of damping~LÞ0! this
technique is not applicable. Instead, we will use the trial
function ~22! with a(t) given by~25! and derive an ordinary
differential equation forB(t) using the virial theorem. De-
fining the virial coefficientW as

W~ t ![E rW 2uc~rW,t !u2 drW52pE
0

`

r 3uc~r ,t !u2dr, ~26!

we obtain from~15! that it satisfies the equation

1

4

d2W

dt2
52H22pLE

0

`

r 2ucu2] r@] t~ ucu2!#dr

12pE
0

`

r 2ucu2] r~s!dr, ~27!

whereH is the Hamiltonian~19!. Using~22!–~25!, we arrive
at the following differential equation for the widthB of the
exciton wave function:

B3B̈5D2G
Ḃ

B
2

8p

s3,2,0
E
0

`S 11
r

B

f 8~r /B!

f ~r /B! D
3F f S rBD G2s~r ,t !r dr , ~28!

where the constantsD andG are defined as

D5
4

s3,2,0
S s1,0,22 Ns1,4,0

2s1,2,0
D , ~29!

and

G5
8NLs3,2,2
s1,2,0s3,2,0

, ~30!

respectively. Note thatD andG depend on the initial condi-
tions viaN, and that whileD can be either positive or nega-
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tive, G is always positive. In the absence of noise and damp-
ing, it is evident from~28! that collapse will occur if and
only if D,0.

In analogy with the treatment for the undamped case in
Ref. @7#, we find that it is possible to transform Eq.~28! into
a simpler stochastic differential equation without changing
the Fokker-Planck equation for the system. This equation,
which therefore gives an equivalent description of the pro-
cess, gets the form

B̈5
D

B32
GḂ

B4 1
h~ t !

B2 , ~31!

whereh(t) is white noise with the autocorrelation

^h~ t !h~ t8!&52Dd~ t2t8!. ~32!

Here the parameterD giving the variance ofh(t) is related
to the varianceDr of s(r ,t) defined in~21! through

D5
32p2Drs3,2,2

s3,2,0
2 . ~33!

IV. NUMERICAL SOLUTION OF THE COLLECTIVE
COORDINATE EQUATION

In this section we analyze the influence of damping and
noise on the collapse process by solving the ordinary sto-
chastic differential equation~31! for the widthB of the trial
function ~22! numerically. The numerical solutions have
been obtained using a stochastic version of the fourth-order
Runge-Kutta-Merson algorithm@10# using its standard error
estimate to adapt the size of the time steps so that the error of
the deterministic part of the solution is controlled. To control
the error of the stochastic part of the solution, we have
checked that its statistical properties remain invariant when
changing the maximum allowed time step and varying the
sample size. We note that the algorithm used in general will
give the Stratonovich solution to a stochastic differential
equation@11#, but that for our equation~31! this will be
identical to the Ito solution. Thus, there is no ambiguity con-
cerning the interpretation of the solution in this case.

With neither damping nor noise in the system~G5D50!
andD,0, the well-known exact solution

B~ t !5B0A12t2/tc
2, tc[

B0
2

AuDu
, ~34!

fulfilling the initial conditions

B~0!5B0 , Ḃ~0!50 ~35!

is easily obtained. Thus, the solution collapses and ceases to
exist at the collapse timet5tc . When the damping term is
present in Eq.~31!, we find that strictly speaking no collapse
will occur, since the solution will be well defined for allt.
Instead we find thatB(t) will go exponentially to zero for
large t,

B~ t !;e2~ uDu/G!t, t→`, ~36!

so that the process can be considered as a collapse process
with an infinite collapse time. This type of behavior will be
called ‘‘pseudocollapse.’’ The difference between the
damped and the undamped cases is illustrated in Fig. 1. As
can be seen, the initial stages of the pseudocollapse process
will resemble a pure collapse as long as the damping is
small. One can then roughly define a ‘‘pseudocollapse time’’
as the time where the asymptotic behavior~36! sets in.

In the presence of noise, but no damping, it was found in
Ref. @4# that the collapse time would increase with increasing
noise variance, and that the collapse process could be
stopped if the variance was large enough. In this case, by
rescaling the time variable

t̃5AuDut, ~37!

Eq. ~31! with G50 can be rewritten as

d2B

dt̃ 2
52

1

B3
1
h̃~ t̃ !

B2
, ~38!

where the rescaled noiseh̃( t̃) is still white but with the vari-
ance parameterD̃ rescaled as

D̃5
D

uDu3/2
. ~39!

Thus, for given initial conditionsB~0! andḂ~0! and arbitrary
D,0, the critical varianceD required to stop the collapse
will depend only on the parameterD̃ given by Eq.~39!.

When damping is also present, it is necessary to rescale
not only t, but alsoB, in order to eliminate both theD andG
dependence from Eq.~31!. The transformation will in this
case be given by

t̃5
uDu
G

t, B̃5
uDu1/4

AG
B, ~40!

while the variance of the rescaled noise still will be given by
Eq. ~39!. Thus, disregarding the changes in time scale, the
process is determined by two quantities,D̃ from ~39! and the

FIG. 1. WidthB as a function of timet in the absence of noise.
Dashed line shows the analytical solution~34! for G50 with
B05uDu51; solid line the numerical solution of Eq.~31! for G50.1.
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initial value at t50 of the quantityB̃ as defined in~40!.
Consequently, an increase of the damping parameterG will
be equivalent to a decrease of the initial widthB0, and one
would therefore expect that as long asG is small compared to
uDu1/2 the process will be practically indistinguishable from
the undamped process except whenB'0, i.e., close to col-
lapse.

To illustrate how the noise affects the~pseudo!collapse
process, we show in Figs. 2~a! and 2~b! how the width
B varies with time t for a sample of 100 different
noise configurations and small damping@B̃~0!'3.16#. In ~a!,
whereD̃50.05, we see that all trajectories will finally enter
the region of exponential decrease towards zero, but that the
noise will cause a spread in the pseudocollapse time, defined
as above as the approximate time where the asymptotic be-
haviour sets in. In~b!, however, whereD̃50.5, the noise is
sufficiently strong to cause divergence of some trajectories.
A more careful study shows that for this value ofB̃~0!, a
value of D̃'0.15 is sufficient to cause divergence for more
than 1/1000 of the trajectories. To the accuracy we can ob-
tain, this critical value ofD̃ is the same as for the undamped
case ~G50!. However, for stronger damping@or, equiva-
lently, smaller values ofB̃~0!#, even the initial stages of the
pseudocollapse process will be affected by the damping, and

we find that the critical value ofD̃ in these cases will be
increased. This is illustrated in Fig. 3~a!, where the critical
value of D̃, D̃crit , is plotted as a function ofB̃~0!. In Fig.
3~b! we plot the critical value ofD, Dcrit , as a function ofuDu
for the particular valuesB051 andG50.1 to illustrate that as
long as uDu is large compared toG2, the scalingDcrit
;uDu3/2 found in Ref. @4# for the undamped case will be
valid also in the presence of damping.

A quantity of physical interest is the ensemble average of
the width,^B(t)&, since it is related to the mean value of the
radial probability currentj r(t) for the exciton system defined
as

^ j r~ t !&5 K i2 E E r dr du~c] rc*2c* ] rc!L . ~41!

Using ~22!–~24!, the relation

^ j r~ t !&5
Ns2,2,0
2s1,2,0

^Ḃ~ t !& ~42!

FIG. 2. WidthB as a function of timet for 100 different con-
figurations of the noise forG50.1 andD5~a! 0.05 and~b! 0.5. In
both cases,B05uDu51. For computational reasons the numerical
integration for each trajectory has been aborted whenB,0.01, so
that the exponential decrease towards zero ast→` is not shown.

FIG. 3. ~a! Critical value of D̃, D̃crit , from Eq. ~39! vs B̃ ~0!
from Eq. ~40!. D̃crit , is here defined as the smallest value ofD̃ for
which more than 1/1000 of the trajectories obtained for different
noise configurations diverge. The error bars correspond to results
obtained for different samples. The line is a guide to the eye.~b!
Critical value ofD, Dcrit , as a function ofuDu when G50.1 and
B051. The line is a plot of the functionDcrit50.15uDu3/2, which
describes the scaling behavior in the absence of damping.
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is readily obtained. The behavior of^B(t)& is shown in Fig.
4 for the parameter valuesB05uDu51, G50.1, and different
values of the noise variance. It can be seen that for
D,Dcrit'0.15, the effect of the noise is to delay the
pseudocollapse in terms of the ensemble average of the
width, in analogy with the similar result obtained in Ref.@4#
for the undamped case. ForD.Dcrit , we observe a non-
monotonic behavior of̂B(t)&. Initially, the average width
will decrease in a similar way as whenD,Dcrit , but after
some time the dominating contribution to the mean value
will come from the diverging trajectories, and^B(t)& will
consequently also diverge ast→`. There will thus be a mini-
mum average width, which will increase towardsB0 asD
increases, as can be seen in Fig. 4.

An interesting question regarding the system described by
the collective variable equation~31! is whether it is possible
to obtain a balance between energy input and energy dissi-
pation also in this simple approximation. Defining the energy
as

E5
1

2 S Ḃ22
uDu
B2 D , ~43!

the following relation can be derived:

d

dt
^E&52GK Ḃ2

B4 L 1DK 1

B4 L . ~44!

Thus, an energy balance will be present if the right-hand side
of Eq. ~44! is zero. In principle, it should then be possible to
decide whether an energy balance will occur by numerical
calculation of this quantity. In practice, however, the calcu-
lation of this quantity with an acceptable accuracy would be
extremely time consuming, due to the factor 1/B4 growing
fast close to the pseudocollapse, and due to the necessity of
taking extremely small time steps in the integration proce-
dure close to the singularity atB50. Consequently, we have
not been able to establish the energy balance numerically.
However, it is interesting to note that if we make the as-
sumption that the two quantities 1/B4 andḂ2 are statistically
independent, a sufficient condition to get balance between
input and dissipation would be that

^Ḃ2&5D/G. ~45!

To calculate the left-hand side in~45! accurately close to
pseudocollapse is also a difficult numerical task. However, if
we in addition assume that the pseudocollapse process is
self-averaging, we can replace the ensemble average over the
pseudocollaping trajectories with a time average for one
single trajectory. The following scaling behavior has then
been found numerically:

lim
t→`

1

t Et0
t

Ḃ2~ t8!dt8;
D

G
, ~46!

wheret0 is chosen so thatB(t0) is small enough to be in the
asymptotic regime and the proportionality constant is close
to one. This relation can also be obtained using the transfor-
mation ~40!, from which we find

S dB
dt

D 25D

G

1

D̃
S dB̃
dt̃

D 2. ~47!

Assuming that the asymptotic behavior of the pseudocollaps-
ing trajectories will not be affected by changing the initial
condition B̃~0!, the scaling relation~46! follows.

Noticing that the diverging trajectories give no contribu-
tion to the mean value~44! ast→`, our results thus indicate
that an asymptotic balance between energy input and dissi-
pation may occur. However, we stress that we have no real
justification for making the assumptions of statistical inde-
pendence and self-averaging used to obtain this result.

V. CONCLUSIONS

We have used the method of collective coordinates to
study the influence of noise and nonlinear damping on the
collapse process in the two-dimensional nonlinear Schro¨-
dinger equation. This model has been shown to result under
certain approximations in the description of a coupled
exciton-phonon system where thermal fluctuations are taken
into account. We find that the main effect of the damping
term is to replace the abrupt collapse process, where the
solution ceases to exist after a certain time, with a physically
more reasonable exponential decrease of the width ast→`.
Concerning the influence of the noise, we have found that if
the variance is large enough the wave packet may disperse
instead of contracting. The critical variance necessary to
cause dispersion will not be affected significantly compared
to the undamped system, unless the damping is large. In the
latter case, the critical variance is increased.

A comparison of the predictions obtained by the collec-
tive coordinate method to results obtained by direct numeri-
cal simulations of the partial differential equation~15! would
be of interest. We note, however, that in the presence of
nonlinear damping a commonly used numerical scheme such
as the split-step Fourier method cannot be directly applied. It
is also of interest to compare the results for the continuous
equation ~15! with results for the corresponding discrete
equation~11!. Work in this direction is in progress@12#.

FIG. 4. Ensemble average of the width^B& as a function of time
t for different noise variances. From bottom to top we haveD50,
0.05, 0.15, 0.5, 1.5, and 12.5, respectively. In all casesB05uDu51
andG50.1.
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