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Abstract-While most of the current forecasting methods interval forecasts, which translates to quoting particular points
provide single estimates of future wind generation, some methods of predictive distributions of wind power (see [5]-[7] among
now allow one to have probabilistic predictions of wind power. others). In the present paper, we leave aside the case of risk
They are often given in the form of prediction intervals or quan- . . ' . .
tile forecasts. Such forecasts, since they include the uncertainty indices and concentrate on probabilistc predicthons.information, can be seen as optimal for the management or Here, our aim is to describe what may be the quality and
trading of wind generation. This paper explores the differences value of probabilistic forecasts of wind generation. These
and relations between the quality (i.e. statistical performance) two concepts have been introduced in the meteorological
and the operational value of these forecasts. An application is forecasting literature by Murphy [8]: the quality aspect stands
presented on the use of probabilistic predictions for bidding in a for the statistical performance of the probabilistic forecasts,
European electricity market. The benefits of a probabilistic view forute wth a serfomanceof diagrams, whi theof wind power forecasting are clearly demonstrated. evaluated with a set of measures and diagrams, while the

Index Terms-Wind power, probabilistic forecasting, evalua- value aspect corresponds to the increased benefits (economical
tion methods, decision-making, operational value. or not) from the use of these probabilistic forecasts in an

operational context. We base the present study on uncertainty
I. INTRODUCTION estimates provided by a method previously developed by the
PODUENis the fastest-growing renewable

authors [4] (i.e. adapted resampling), which can be considered
W1iND POWER is the fastest-growing renewable for post-processing state-of-the-art wind power point predic-

electricity-generating technology. The targets for the tion methods. The test case consists in a multi-MW wind
next decades aim at high share of wind power in electricity farm located in Denmark, for which probabilistic forecasts
generation in Europe [1] (up to 75GW for 2010). However, are obtained by applying the adapted resampling approach
such a large-scale integration of wind generation capacities in- to point predictions given by three different methods, over
duces difficulties in the management of a power system. Also, a period of one year. Regarding the decision-making process,
the deregulation of European electricity markets makes that we concentrate on simulating the participation of the operator
wind generation is expected to be traded through electricity of the considered wind farm in the Dutch electricity market,
pools, in which energy bids are settled several hours before composed by the day-ahead pool APX (standing for Amster-
actual delivery. Imbalances lead to financial penalties that may dam Power eXchange) and by the real-time regulation market
substantially tighten the revenue of wind power producers. run by TenneT, the Transmission System Operator (TSO) for
Owing to these two reasons, predictions of wind generation up the Netherlands. We compare several bidding strategies, based
to 48 hours ahead contribute to a secure and economic power on point predictions only, or alternatively on more advanced
system operation. Increasing the value of wind generation strategies derived from probabilistic forecasts.
through the improvement of prediction systems' performance
is considered as one of the priorities in wind energy research

II. PROBABILISTIC FORECASTS OF WIND GENERATIONneeds for the coming years [2].
So far, most wind power prediction tools give an estimate AND THEIR REQUIRED PROPERTIES

of the future power generation without addressing the issue A. Definitions
of the forecast uncertainty [3]: we usually say that such In this paper, we consider that wind generation for a given
prediction systems provide the 'most likely outcome' for time t can be seen as a random variable Pt. Hence, the
each look-ahead time. Given the significant variability of measured power output p* is a realization of Pt. Denote by
the level of forecasting errors, end-users have expressed the ft the probability density function of that random variable.
need for an on-line estimation of forecast uncertainty. This If a point forecasting method is developed for providing
additional information would then be introduced in decision- point predictions that would minimize a mean square error
making processes. Such an information can indeed be given criterion, the resulting point forecast mt±an/tmade at time
by prediction risk indices that tell what may be the expected t for lead time t + k corresponds to an estimate of the
level of forecasting error [4], or alternatively by quantile or expectation of Pt±kC Such an information could be seen as

P. Pinson is with the Informatics and Mathematical Modeling department of sufficient for the management or trading of wind generation.
the Technical University of Denmark, Richard Petersens Plads, DK-2800 Kgs. But, associated uncertainty estimates would permit to optimize
Lyngby, Denmark (e-mail: pp@imm.dtu.dk). J. Juban and G. Kariniotakis are decisions resulting from the use of these predictions. Ideally,
with the Center for Energy and Processes of Ecole des Mines de Paris, B.P. . of p wol giv thhlnomto
207, F-06904 Sophia-Antipolis, France. (e-mail: jeremie.juban@ensmp.fr; an estimate Jt±k/t ofJt±k ol letewhlnomtogeorges.kariniotakis@ensmp.fr). on what could be the wind generation at time t + k. Today,
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probabilistic forecasts ofwind generation are given in the form coverage should exactly equal the pre-assigned probability.
of quantile or interval forecasts, produced with statistical post- That first property is referred to as 'reliability' or 'calibration'
processing methods [4], [6], or from wind power ensembles in the forecasting literature.
[5]. Fig. 1 depicts an episode with hourly point predictions Besides this first requirement, it is necessary that predic-
for the following 48 hours, given by a state-of-the-art fore- tion intervals provide a situation-dependent assessment of the
casting approach, compared to the measured power values. forecast uncertainty. Their size should then vary depending
The prediction intervals, which are estimated consequently by on various external conditions. For the example of wind
the adapted resampling method, are shown here in the form prediction, it is intuitively expected that prediction intervals
of a fan chart. Hereafter, all variables are normalized by the (for a given nominal coverage rate) should not have the same
nominal power Pn of the considered wind farm. size when predicted wind speed equals zero and when it is near

cut-off speed. The most simple type of intervals is constant-
100 size intervals (e.g. produced from climatology). Advanced

90% int. methods for their estimation are expected to produce variable-
80 80% int. size intervals. This property is commonly named 'shar-pness'

'E
m | |670%int. or 'resolution'. Note that here, we will introduce a nuance

n M~~~~~~~~~~60%int.he ,
0 60 L 50% int. between sharpness and resolution: the forner will relate to
ol 40% it. the average size of intervals while the latter is associated to

in30% int.
40 m2.............their size variability.

Ml 0% int. Actually, the traditional view of interval forecast evalua-
20-pred. tion, which mainly comes from the econometric forecasting

community, is based on the testing of correct conditional
0 5coverage. This means intervals have to be unconditionally

look-ahead time [hours] reliable, and independent (see [9] for instance). In the case
of wind power forecasting, we know there exists a correlation

Fig. 1. Example of a 48-hour point prediction of wind generation, associated among forecasting errors (at least for short time-lags). Thus,
with a set of interval forecasts. The point predictions are given by a state-
of-the-art method and interval forecasts are estimated consequently with the we do not expect prediction itervals to be idependent. Then,
adapted resampling approach. it appears preferable to develop an evaluation framework that

is based on an alternative paradigm. We propose to consider
Prediction intervals give the range of possible values within reliability as a primary requirement and then sharpness and

which the true effect is expected to lie with a pre-assigned resolution as an added value. It should be noted here that reli-
probability, known as their nominal coverage rate. Here we ability can be increased by using some re-calibration methods
concentrate on central prediction intervals t+) estimated (e.g. conditional parametric models [5] or smoothed bootstrap
at time t for lead time t + k with a nominal coverage rate [10]), while sharpness/resolution cannot be enhanced with
(1 - a), the bounds of which correspond to the (o/2) and post-processing procedures. This second aspect is the inherent
(1 - a/2) quantiles of the predictive distribution fI±k/t of (and invariant) ability of a probabilistic forecasting method to
expected power generation at that lead time: distinctly resolve future events [11].

-[t+klt - t+k1rt+k(t *) II. EVALUATING THE QUALITY OF WIND POWER
Estimating at once a sequence of n interval forecasts with PROBABILISTIC FORECASTS

various nominal coverage rates varying over all values in the A Focus on reliability
unit interval permits to construct predictive distributions of
wind generation. Denote by a = {ai,aa2,.., a,} the set of Firstly, let us introduce the indicator variable k which
nominal coverage rates (with the ai in the ascending order). is defined for a quantile forecast t±k / made at time t and
Probabilistic wind power forecasts made at time t for lead time for horizon k as follows:
t + k are then given by the set of corresponding 2n predictive 1 i PL± .
quantiles: T otherwise t+k/lt (4)

P - ,-1/2)(1-cj/2) <1-%) i /2)ftl+klt = Lrt+kl/t x rt+kc/t : t+k/t:
(1-aj/2) r (1 , 1/2) r(1-aj/2)'} (2) Consequently, denote by nm) the sum of hits and nh) the
t+kl/t : * * *: t+kl/t : t+kl/t : sum of misses (for a given horizon k) over the N realizations:

which can also be written as N

fL±k/t -{r+kG t+/t'j *,&tk (3) Thk.1 = ,k=1} = E k (5)

(° ) -_ f (a)0l--) ( 6)
B. Required properties Thk, #{Itkt O} NJ -in (6)

The first requirement for interval forecasts is that their mea- The easiest way to check the calibration of probabilistic
sured coverage should be close to the nominal one. Actually, if forecasts is to compare the empirical coverages of the various
considering infinite series of interval forecasts, that empirical quantiles to the nominal ones (i.e. the required probability
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di). An estimation a(a of the actual coverage a(a), for a should reward a forecaster that expresses his true beliefs. It is
given horizon k, is obtained by calculating the mean of the said to be proper if it does so. Gneiting et al. [16] recently
{t)}ki.N time-series over the test set: showed that any scoring rule of the form

i~~~) 1 m5j~~~~~~ (7) 2m + (sdPOei)ak HN ~ <)*nk (7) S( tp+k/tP±k) S (iSi( /t) + (Si(Pt+k)
Ntln d) + n d) =t=1 ~ ~k,O +Tk,1 i

, _ Kr(i) aa(i) ~~~~~~+hPt*k) O{1)This standard approach to the evaluation of prediction si( t+k/l)) t, + ) (
intervals was proposed by Ballie et al. [12] and by McNees with the indicator variable (for the quantile with pro-
[13]. This is the idea used in reliability diagrams which t,k
give the empirical coverage versus the nominal coverage for portion di) introduced above, si non-decreasing functions and

h arbitrary, was proper for evaluating predictive distributions
various nominal coverage rates. The closer to the diagonal e a s a set foq uanties Thefincoe valueis
the better. They can alternatively be depicted as the deviation nexpressed as a set of quanvles. The final score valueiS
from the 'perfect reliability' case for which empirical coverage dbtins overathe e set, asua fon of thedlook-
would equal the nominal one (calculated as the difference .

the
'

between these two quantities). This idea is similar to the use of ahead time k. Here S is a positively-oriented score: a higher
Probability Integral Transform (PIT) histograms as proposed score value stands for a higher skill.

...14 exceptthatreliabilit diagrams diA unique score does not tell what are the contributionsin[14], except that reliability diagrams directly provide that of reliability or sharpness/resolution to the skill of agie
additional information about the magnitude of the deviation probabilit forecastngsmesthod becaue sitlnompassesfrom~~~~~th.pretrlaiiy ae

probabilistic forecasting method, because it encompasses all
the aspects of probabilistic forecast evaluation (see discussion
in [15]). Though, if reliability is assessed in a first stage, then

B. Focus on sharpnesslresolution relying on skill scores such as the one given by Eq. (11) allows
When dealing with sharpness or resolution, focus is given one to compare the overall skill of rival methods.

to the size of the prediction intervals. Let us define

6(a) _ (1-a/2) A(a/2) C Evaluation of the quality of the probabilistic forecasts
t,k t+k/t rt+k/t (8) obtained by adapted resampling

the size ofthe central interval forecast It(+)/. Adapted resampling is a statistical distribution-free ap-
If two uncertainty estimation methods provide intervals at proach to the estimation of quantiles and interval forecasts

an acceptable level of reliability, it is the method that yields suitable for non-linear and bounded processes [4]. It serves
the narrowest intervals that is to be preferred. Hence, we relate to post-process point forecasting methods and enhances them
the sharpness aspect to the average size (a) of the prediction with probabilistic forecasts of wind generation. This approach
intervals for a given horizon k: has been applied and evaluated on a variety of case-studies

N N consisting of periods ranging from several months to sev-

k(a) _ 1 E 6(a) 1 E ((1 a/2) _(a/2) (9) eral years for various European wind farms. Here, adapted
Hk Zt,-k H Zt Kt+k/t t+k/l) ( resampling is applied for post-processing point predictions

provided by 3 methods from different research centers in
In parallel, the resolution concept is standing for the ability Europe (denoted by MI, M2, and M3). The evaluation period

of providing a situation-dependent assessment of the uncer- is composed by 8760 series of 43-hour ahead hourly predic-
tainty. It is not possible to directly verify that property, though tions. Predictive distributions are built by estimating 9 central
we may study the variation in size of the intervals. The predictions intervals with nominal coverage rates 10, 20,..., and
standard deviation a (a) of the interval size (for a given horizon 900. Fig. 1 gives an example of such series of probabilistic
k and nominal coverage rate (1- a)) calculated as forecasts of wind generation. Regarding the settings of the

(N - 2) method, we follow the sensitivity analysis carried out in [15]:
(cr) _ P 1 E (a) ((,10) we set the sample size to 300 items, the number of bootstrap
k tN I tk-1iV (I, ) replications to 50, and we use 5 triangular fuzzy sets for

mapping the range of power values.
provides that information. Because of the non-linear and For asessingin a ofirsageth
conditionally heteroskedastic nature of the wind generation Fofpoabistic peictios,wtae use reliability diagram which
process, the forecast uncertainty is highly variable and it is th deviatio from 'erfe reliability asramfunct
thus expected that the interval size also greatly varies. The thenom iaioverag raesftelqanilig. 2) Deviation_(O) (O) . . ~~~~~~~thenominal coverage rates of the quantiles (Fig. 2). Deviation
way both dk and (Tk can be considered for evaluating the values are the averages over the 43 look-ahead times. The
quality of predictive distributions is described in [15]. figures in the legend give the average absolute deviations

Alternatively, one may envisage to use skill scores for eval- ovrteanefnmilcvrgeaesOesesrm
uating the sharpness and resolution of probabilistic forecasts. Fig. 2 that the deviations from nominal coverage are comprised
Skill scores are obtained from scoring rules that associate a between -1.8 and 0.30% whatever the point forecasts used as
single numerical value S( ftP±k/t' Pt±k) to a predictive distri- input. Owing to these low deviations from 'perfect reliability',
bution fjP±kt if the event Pt+±k materializes. A scoring rule we assume that the three sets of probabilistic forecasts are
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well-calibrated. However, there is a difference in the overall -1
reliability of predictive distributions: the ones produced from
the Ml forecasts are more reliable than the two others. _15 E Ml (-2.6301)
Predictive quantiles resulting from M2 and M3 forecasts are M2 (-2.6939)
slightly underestimated.

=3 -2
(u
a)

0.5 ~~~~~~~~~~~~~0

35-

0 r 0 5 10 15 20 25 30 35 40 45
horizons [hours]

U> -

Fig. 3. Skill score values as a function of the prediction horizon for the three

-1.5 ideal sets of probabilistic forecasts. Figures in the legend give the average score
A- Ml (0.30842) values over the range of look-ahead times.

M2 (0.6861)

-21 M3 (0.46441)_
0 20 40 60 80 100

nominal coverage rate [%] Here, we consider that all energy producers participate in
the electricity market under the same rules, i.e. they have to

Fig. 2. Reliability diagrams for evaluating the reliability of the three series propose their bids on the day-ahead market and they are then
of probabilistic forecasts of wind generation. Figures in the legend give the propose teisons the day-heade matrkt adheyae. Then
average absolute deviation from 'perfect reliability' over the range of nominal financially responsible of their deviations from schedule. The
coverage rates. costs of keeping the balance are charged to the participants,

proportionally to their imbalance. A description of APX and
In a second stage, because we have assumed the three TenneT markets is given in [17]. In the Netherlands, bids are to

sets of probabilistic forecasts to be well-calibrated, we turn be given before 10:30 for the following day from midnight to
our attention to the use of the skill score introduced above midnight. Relevant predictions horizons are then between 14
(Eq. (1 1)), for assessing their overall skill. We put s i(p) = 4p, and 38 hours ahead (if the last available forecast is provided at
(i 1,... 2n), and h(p) = -2p, following [16]. Fig. 3 10:00). The length of the Program Time Unit (PTU) on APX
depicts the evolution of the resulting score, as a function of is of 1 hour. But then, the PTU length on the regulation market
the look ahead time. Figures in the legend give the average run by Tennet is of 15 minutes only. Therefore, we consider
score values over the range of horizons. There is a trend that that bids proposed on APX are composed by four equal
the score values decrease for longer horizons. This meets the amounts of energy for each of the TenneT PTUs composing
general statement that it is harder to forecast events that are an APX trading hour. Wind energy predictions are obtained
further in the future. One notices that the skill of the three by integrating the power forecasts over the related PTUs.
sets of probabilistic forecasts is rather close. But, even if the A crucial assumption for this study is that the wind power
average score values tell that MI predictive distributions have producer is a price-taker in the Dutch electricity market. This
higher skill than the two others on average, one sees that the means that the amounts of energy he proposes on the market
best and worst predictive distributions are not obviously the cannot impact the market clearing price 7w. We formulate the
same over the whole range of horizons. Also, although M3 same assumption regarding the regulation market: the wind
probabilistic forecasts are more reliable than the M2 ones, the farm operator is a small entity on that market and have no
overall skill of the latter is slightly higher. This is because influence on imbalance prices.
predictive distributions obtained from M2 point predictions Whatever the considered electricity market, the revenue R k
prove to be sharper. for a given PTU k of a participant proposing an amount of

energy E' but actually generating E7± can be formulated as
IV. EVALUATING THE VALUE OF WIND POWER

PROBABILISTIC FORECASTS Rk(E,E7±k) - Tk (E',E7±k) (12)
For studying the operational value of predictive distributions This revenue is composed by the income resulting from the

of wind generation, we tur our attention to the simulation of selling of actual wind generation at the spot price, minus thethe participation of the operator of the considered wind farm cost TZ (E2, E±k) associatedt
in the Dutch electricity market over the year 2002. d d as

A. Assumptions and problem formulation dk =E7±k - Ek (13)
Each electricity pool has its own rules and regulations In turn, the regulation costs are a function of the spot price

that determine the way energy is to be sold or purchased, qrk, the regulation unit costs <r) and wr)' for downward
how the market prices are settled, and the obligations that and upward dispatch respectively, and the amount of energy
the participants (producers or consumers) are committed to. produced in imbalance dkc:
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higher than the former over the first six months. One notices
T*( c2kI*d_ f k ,dk >. 14) that the unit cost for positive deviations from contract is on

V kkk , dk < average higher than the unit cost for negative deviations. The
average values for 7`) and 7*r+ over 2002 are of 4.03 and

B. Definition of bidding strategies 10.93E/MWh respectively. Hence, it would appear preferable
Different types of bidding strategies may be defined depend- to overestimate expected wind generation.

ing on the available information about future wind generation. TABLE I
If only point predictions are provided by a forecasting method, DUTCH ELECTRICITY MARKET TABLERIDUTCELCTRCIT MAKETCHARACTERISTICS FOR 2002: QUARTERLY
then these point predictions appear as the best bids one may AVERAGES OF SPOT PRICES AND REGULATION PENALTIES FOR UPWARD
propose on the electricity pool [18]. However, if the market

AND DOWNWARD DISPATCH.
participant has predictive distributions, he can develop more
advanced strategies, reflecting either his aim to maximize his Quarter 7rAc [e/MWh] wIT ' [E/MWh] wIF*'+ [e/MWh]
revenue over a certain period of time or a risk aversion for 1 11.65 0.33 16.22
large regulation costs [19], [20]. Here we concentrate on the 2 38.38 1.34 11.13
first type of strategies, referred to as Probabilistic Choice (PC) 341.17 8.22 8.51
strategies. 4 29.38 6.97 7.61

Applying a PC strategy directly translates to maximizing
the expectation of the revenue for each PTU k, formulated by
Eq. (12). Because in that formulation all wind generation is For setting up the model of regulation penalties, we assume
sold at the spot price, and the level of contracted energy only it is possible to perfectly predict these quarterly averages. This
influences the regulation costs, an optimal energy bid Ec is consequentlyyields four differentmodels ofthe regulationunit
determined by minimizing the expectation of these costs: costs, depending on the quarter of the year. Besides that, wedetermined byminimizing the expetationofthesecosts: consider the three sets of probabilistic forecasts, the quality

E=argmin E [TZ(E, Et+k)], (15) of which have been assessed in the previous Section. Out of
ECk the 8760 predictions series used for the quality evaluation,

where this expectation can be written as only 365 are actually considered for defining optimal bids
Ekc on the electricity pool. They are the forecast series produced

E [TZ(Ek, EL±k)1 -X)fi+k(x)dx everyday at 10:00. The PC strategies resulting from the use of

1 predictive distributions obtained by post-processing MI, M2,
+ J < +(x - Ec)fk(x)dx. (16) and M3 are denoted by PCI, PC2, and PC3 respectively. For

EC k k fi+k (x) dx. (16)comparison, participation strategies directly derived from the

Because neither the regulation unit costs nor the probability point predictions are also evaluated over 2002, and denoted

distributions of future wind generation can be known when by NI, N2 and N3.
proposing bids on the electricity pool, it is necessary to Results from the application ofthe various bidding strategies

consider.probabilisticforecass as well as a model of are gathered in Table II. In this Table,r1corresponds to the
the pa.rtcpan sensitivt toregulati+kot T l overall quantity of energy that is traded on the regulation
be d erivedfrom estimate o regulation utstis ly,tor market, in percentage of the total amount of energy producedmore genivedfrall modetinathes wegulaythe wnin powe ,proder over that year. It is then decomposed in the parts that aremore generally by modeling the way the wind power producer sujc todwwr +

an upadq ipth(uhta
will face deviations from contract in the most cost-efficient j t w a upward ratispatch (such tha
manner, if he has the possibility to couple his production with +r + rE. r r

. 1~~~ncome of the wind farm operator as a percentage of theconventional generation, or to use storage devices. Here, we
consider regulation penalties only in this model. The way the revenue he would have obtained by using perfect forecasts
optimization problem given by Eq. (15) integrates these two (and thus without any cost for regulation).
information, and is consequently solved, is described in [20]. TABLE II

RESULTS FOR THE VARIOUS BIDDING STRATEGIES.

C. Results and discussion
Table I gathers the quarterly averages of both the market NI N2 N3 PCI PC2 PC3

clearing prices and regulation unit costs for upward and 23.96 23.30 23.33 15.73 15.97 17.17
downward dispatch over 2002. The average spot price on APX - [0] 23.45 23.50 26.36 45.75 45.99 43.96
proves to be significantly variable throughout the year, being %[] 47.41 46.80 49.69 61.48 61.96 61.17
4 times higher during the third quarter (corresponding to the ~ [0/] 84.88 83 574 0.44 9. 90.08
summer period) than during the first one (corresponding in
turn to the winter period). The average market clearing price One sees from Table II that whatever the considered point
over 2002 is equal to 29.99e/MWh. In parallel, the regulation prediction method, applying the more advanced strategy in-
market behavior exhibits also substantial variations. Although stead of using the point forecasts only permits to augment the
the average unit costs for upward and downward dispatch are market participant's income. The revenue of the operator is
rather similar for the last two quarters, the latter is much increased by 5-6 points, which corresponds to reducing the
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