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device length of an air-core ARROW is around 50 mm 
(see [31) thickness, tolerances up to +/- 18 nm and 
+/- 16 nm are allowed. 

CONCLUSIONS 
We have shown that the polarization-discrimination 

performance of an ARROW can be improved consider- 
ably by the addition of thin metal layers placed outside 
the interference cladding layers. Such a metal-clad AR- 
ROW polarizer has the following crucial advantages: 
larger fabrication tolerances than required in conven- 
tional waveguide optics, a higher discrimination ratio be- 
tween the polarization states than in conventional AR- 
ROW’S, and nearly equal polarization discrimination for 
the TE field as well as for the TM field. The robustness 
and the large fabrication tolerances with regard to every 
parameter of the configuration should encourage the ex- 
perimental verification of our results. 
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Accurate Finite Difference Beam 
Propagation Method for Complex 

Integrated Optical Structures 
Thomas Rasmussen, J#rn Hedegaard Povlsen, and Anders Bjarklev 

Abstruct-A simple and effective finite difference beam propa- 
gation method in a z-varying nonuniform mesh is developed. 
The accuracy and computation time for this method are com- 
pared with a standard finite difference method both for 3D and 
2D version of the methods. 

INTRODUCTION 
URING the last two decades various numerical D method for the investigation of integrated optical 

structures have been developed. Until lately the most 
popular method has been the fourier beam propagation 
method (FBPM) 111 but also different finite difference 
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beam propagation methods (FDBPM) have been pre- 
sented [2]-[4]. However, for large and/or complex inte- 
grated optical structures these methods are all time con- 
suming to be accurate. 

It has been the purpose of our work to develop a 
method that enables us to investigate large and complex 
integrated optical structures accurately without using a 
long computation time. We have chosen to use a FDBPM 
due to the simplicity, stability, and independence of com- 
putational mesh. Furthermore we use a nonuniform mesh 
that is finest near the waveguide cores and gradually gets 
harsher when moving away from the cores. The mesh 
point spacing is chosen to be minimum at the discontinu- 
ities in the refractive index [5]. We show how the mesh 
may be automatically calculated with very little extra 
computation effort for step index waveguides. By incorpo- 
rating an interpolation procedure in the step-algorithm 
the calculations become dependent on the actual mesh 
only. This is important for instance in the case of one 
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waveguide branching into two waveguides since the num- 
ber of mesh-points will change from step to step. To 
compare the accuracy and computation time for our 
method with a standard FDBPM (in a uniform mesh) we 
have calculated the coupling length of a 3 dB coupler with 
curved sections at each end. We did also calculate the 
coupling length with 2D-versions of the two methods 
where the original 3D waveguide problem was reduced by 
using the effective index method [6] to estimate the error 
committed by doing this. 

THEORY 
In the following x and y denote transversal coordinates 

while z denotes the longitudinal coordinate. It is assumed 
that all waveguiding structures are weakly guiding so that 
we may consider the transversely and vertically polarized 
modes as degenerate. The scalar electric field is written as 
E h ,  y, z> = W x ,  y, z )  exp ( j ( o t  - n,kz)) where o is 
the angular frequency, t is the time, k the wave number 
of vacuum, j is the imaginary unit and no is the refractive 
index of the medium surrounding the waveguide cores. 
The Fresnel equation is transformed to the following set 
of difference equations using Crank-Nicolson's finite dif- 
ferences for a nonuniform but z-invariant mesh (xi, y,) 

q ( n )  
A Z  

-j 2n,kAxi( Axi + Axi- 

A Z  
j2n,kAy,(Ayj + Ayjpl) %,;)+ 11 

- 

A z  

Z n , k A y j -  l ( A y j + A y j -  1) 
*/,;L 1 -1 

+ j2nok(Ax,  +  AX^-^) (G + K )  

+j2n,k(Akj + Ayj-') [& + G] 

A Z  1 1 

Az 1 

i 

A Z  1 1 
- 

[j 2n,k( Axi + Axi- 1) (ax, + c) 
A Z  1 1 

+j 2n,k( Ayj + Ayjp [q + G) 

where Ax, = x ,+ l  - x,, and Ay, = Y , , ~  - y,. As (1) repre- 
sents a set of implicit equations it must be solved itera- 
tively. (1) is of course also valid for a uniform mesh. If the 
sample points ( x i n - ' ) ,  yjn- I ) )  and ( x : ~ ) , ~ J ( ~ ) )  are not equal 
(1) may not be used directly. We solve this problem by 
calculating a new set of sampled field values el:-') at the 
points ( xln) ,  y:") by parabolic interpolation of the field 
points *::-'). As long as the number of sample points 
inside the largest waveguide core was greater than 100 for 
3D and 10 for 2D we observed no instabilities due to this 
interpolation. 

NONUNIFORM MESH FOR STEP-INDEX WAVEGUIDES 
In the following we show calculations for step index 

waveguides as an example but the developed FDBPM may 
be used for any refractive index distribution. Fig. 1 shows 
the mesh that is used. The minimum distances between 
two mesh points in the x-direction Ax,,, and y-direction 
Aymln and the increments S, and S y ,  respectively, are 
found from the following equations: 

6, = (1.5)1/Lmax - 1 8, = (1.5)l/lmax - 1 

Axnun = 'xu, A Y m n  = ay's (2) 

where U ,  is the largest core width (waveguide number r )  
and b, is the largest core height (waveguide number s). 
2i,,, - 1 and 2j,,, - 1 are the number of mesh points 
inside the largest core width and core height, respectively. 
For mesh points at the core-cladding interface we define 
the refractive index to be the mean value of the core and 
cladding index. This means that we may use (1) at all 
points. At the boundaries of the computational window 
we use T = 0 as the window can be chosen large due to 
the nonuniform mesh. More sophistkated boundary con- 
ditions may of course be incorporated [21. 

ACCURACY AND TIME CONSUMPTION 
In Fig. 2 the coupling length L ,  defined on the inset of 

the figure, has been calculated for a free space wavelength 
of 1.55 p m  by the four approaches described above. The 
waveguides have cross sections of 6 * 6 pm2,  and refrac- 
tive index differences of 0.01. The other geometrical data 
are shown on the inset on Fig. 2. P, represents the input 
power and Pi and Pi are the output powers. The coupler 
is chosen so that all calculations could be made on a 
computer workstation when the mesh size was chosen to 
be 300.300 pm2.  The step length Az was chosen to 10 
p m  for the smallest meshes and 0.1 p m  for the largest. 
The 2D-methods converge to L = 900 p m  while the 
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Fig. 1. Nonuniform mesh near a rectangular core cross-section 
waveguide. 
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Fig. 2. Coupling length (lower curves) and relative power remaining in 
the waveguide modes after propagation through the coupler (upper 
curves) as functions of the number of mesh points. The coupler is 
defined on the inset. 

3D-methods converge to L = 1350 pm.  So, for this par- 
ticular coupler the reduction of the original 3D-problem 
to a 2D-problem by the use of the effective index method 
introduces an error of around 30%. Since the coupler is 
long enough to assure negligible bending losses we have 
ideally Pi + Pi = P I .  <Pi + P;)/Pl is also shown on Fig. 
2. For the 2D-methods around 200 points are needed for 
the nonuniform mesh and 800 for the uniform mesh. For 
the 3D-methods the figures are 22 000 and 360 000 for the 
nonuniform and the uniform mesh, respectively, when 
<Pi + P;)/P,  2 90% is required. This means that using a 
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Fig. 3. CPU-time for the four FDBPM-approaches described in the 
text. 

nonuniform mesh as compared to using a uniform mesh 
gives a reduction of the needed number of mesh points of 
4 in the 2D and 16 in the 3D case. We have also 
compared the CPU times for the four approaches as 
shown in Fig. 3. As seen does the time consumption 
approximate a power dependence on the number of mesh 
points for all four approaches, indicating that the calcula- 
tion time due to the iterations increases linearly with the 
number of mesh points. For the 2D approach one gains a 
factor of approximately 3 in time consumption by using a 
nonuniform mesh instead of a uniform mesh. For the 3D 
approach one gains a factor of approximately 30. 

CONCLUSION 
A finite difference method using a nonuniform z- 

varying mesh has been developed. The method is used to 
calculate the coupling length for a rectangular core cross 
section, step index single mode waveguide 3 dB coupler 
with curved end-sections. Comparing the results with re- 
sults obtained with a standard finite difference method we 
found that the computation time needed for a required 
accuracy is reduced by a factor of approximately 3 for 2D 
and 30 for 3D-approaches. 
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Numerically Stable Formulation of the - A 

’ 1 ’r ansver se Kesonance Method for Vector 
Mode-Field Calculations in Dielectric 

Waveguides 
Aasmund Sv Sudba 

Abstract-A new formulation of the eigenvalue problem ob- 
tained with the old mode matching or transverse resonance 
method for mode-field calculations in dielectric waveguides is 
presented. The formulation is numerically stable for a large 
class of waveguides of practical importance, and vector mode 
fields may be calculated much faster and more accurately than 
with sophisticated methods like finite element methods. 

NE of the oldest numerical techniques used for 0 calculation of mode fields in dielectric waveguides is 
that of mode matching (MM) [1]-[41, also developed for 
ridge waveguides as the transverse resonance method or 
the equivalent network method [4]-[7]. The main attrac- 
tion of the method is that it is straightforward. The full 
vector modes of dielectric waveguides can be computed 
with the method, and semivectorial and scalar approxima- 
tions emerge in a particularly transparent manner, as does 
also the widely used effective index approximation [3]. 

For very simple waveguide geometries like rectangular 
guides or symmetric rib guides the method is known to 
produce accurate mode field distributions with very small 
computational effort [41, 151. The method has a reputation 
for not living up to its promises when generalized to more 
practical geometries. The cause of this reputation and 
how to obtain a formulation that delivers as promised for 
general waveguide cross sections is the subject of this 
contribution. Only the essential final equations are pre- 
sented here, and the reader is referred to [81 for details. 

the formulation, thus “mode matching” is a more appro- 
priate term than “transverse resonance” for describing 
the method. 

First, let us talk about notation. We consider the wave- 
guide to be a sandwich of “slices” numbered m = 
1 , 2 . .  . M .  Each slice is considered to be cut from a film 
waveguide with film layers numbered n = 1 , 2 . .  . N .  It is 
therefore meaningful to use the label m for the whole 
film waveguide that slice no. m is cut from as well. Layer 
no. n in slice or film no. m has index of refraction d m s n )  
and relative permittivity = n(m,n)2 . We choose our 
x-axis parallel to the film layers and perpendicular to the 
slice interfaces, our y-axis perpendicular to the film layers 
and parallel to the film slice interfaces, and our z-axis 
along the waveguide, parallel to the layers and slices. Let 
c be the speed of light, w the angular frequency, A, the 
corresponding wavelength, and k ,  the corresponding an- 
gular repetency in vacuum, so that k ,  = w / c  = 2n-/A0. 
Let the thickness of layer n be d y )  and the position of 
the interface between layer n - 1 and n be y‘“) ,  so that 
d p )  = y ( n +  ’) - y‘”) .  Similarly, let the thickness of film 
slice m be d!”) and the slice interface positions be at 
dm),  so that d:”’ = dm+’)  - x(*). The relative permittiv- 
ity in film m is ~ ( * ) ( y )  = dm,n) for y ( “ )  < y < Y ( ~ + ’ ) .  

The waveguide mode field in slice no. m is expanded in 
TE- and TM-modes (or just scalar modes if the guide is 
weak) of the corresponding film, and each mode field 
component can be expressed as exp [i( w t  - k,z)] times 

~~ 

The equivalent network analogy is of no use in arriving at r 

F ( ” ( x , y )  = c c [ U $ ) ( . Y ) C $ ( Y )  
Manuscript received November 11, 1992. 
The author is with the Norwegian Telecom Research, N-2007 Kjeller, 

IEEE Log Number 9207608. 

p = e , h  k = I  

(1) Norway and the Department of Physics, University of Oslo, N-0316 Oslo, + $?( X I  FdTd,mk)( Y I ]  
Norway. 

where the film mode amplitudes u $ ) ( x )  have x-deriva- 
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