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Abstract— A method for detecting clutter in weather radar
images by information fusion is presented. Radar data, satellite
images, and output from a numerical weather prediction model
are combined and the radar echoes are classified using supervised
classification. The presented method uses indirect information on
precipitation in the atmosphere from Meteosat-8 multispectral
images and near-surface temperature estimates from the DMI-
HIRLAM-S05 numerical weather prediction model. Alterna-
tively, an operational nowcasting product called ’Precipitating
Clouds’ based on Meteosat-8 input is used. A scale-space en-
semble method is used for classification and the clutter detection
method is illustrated on a case of severe sea clutter contaminated
radar data. Detection accuracies above 90 % are achieved and
using an ensemble classification method the error rate is reduced
by 40 %.

I. INTRODUCTION

Weather radar clutter, i.e. radar echoes from non-
precipitation targets such as man-made objects (houses, wind
mills, and bridges) or the natural environment (the land and sea
surface, or birds and insects in the atmosphere) are common
phenomena in data from weather radars and contribute to
a significantly lowered data quality. Radar clutter remains a
challenge for the weather radar community, especially limiting
to the application and assimilation of weather radar data into
numerical weather prediction models, hydrological and other
automated models [1].

Detection and mitigation of clutter have been approached
with various methods from traditional signal processing tech-
niques, e.g. Doppler velocity clutter filters (removing clutter
from stationary targets) and statistical analysis of the radar
data itself [2], over combining radar data with external in-
formation through data fusion [3] [4], to using new advances
in radar technology, e.g. dual-polarimetric radars [5] to yield
improved possibilities of distinguishing between precipitation
and clutter [6].

In this contribution a method for detecting clutter in weather
radar images by information fusion with new satellite based
data is presented. Weather radar data are combined with mul-
tispectral satellite images from the geostationary Meteosat-8

and model output from a numerical weather prediction (NWP)
model to detect and remove weather radar clutter.

Previous studies using fusion of weather radar data and
first generation Meteosat images have shown promising re-
sults [3] [7], and the improved spatio-temporal resolution
of the Meteosat Second Generation (MSG) (Meteosat-8 on-
wards), coupled with its increased number of spectral bands,
is expected to make even better detection of clutter possible.

The method is based on supervised classification of a scale-
space representation of the input features and an ensemble
of several classifiers is combined through a majority voting

Fig. 1. Composite radar image from 2005-09-25 at 20:20 UTC. Radar reflec-
tivity factor. A: Clutter caused by anomalous propagation. B: Precipitation. C:
Close range ground clutter. Radar locations indicated by red points. Maximum
range of each radar is 240 km.
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scheme to obtain an improved classification.

II. DATA

A. Weather radar data

The weather radar dataset consists of data from three C-band
Doppler weather radars of the Danish Meteorological Institute
(DMI). The radar volume data are firstly resampled from their
local polar coordinate system to a common stereographic map
grid with a resolution chosen to match the range resolution
of the radar data (500 m). The azimuth resolution of the
radar data is 1◦ which at far ranges corresponds to a spatial
resolution of 4 km. Thus the weather radar data display a
varying spatial resolution from less than 500 m at close range
increasing to 4 km at far range.

Example case. Severe sea clutter: The radar images acquired
September 25. 2005 were heavily contaminated by sea clutter
in the Baltic Sea, some close range ground clutter, as well
as some electromagnetic interference clutter (Figure 1). The
sea clutter was caused by anomalous propagation of the
radar waves. Anomalous propagation (AP) occurs more or
less frequently [8] and is the term used to describe the
condition when the atmospheric refractive index does not vary
normally. In a standard atmosphere the radar waves travel with
increasing height in the atmosphere, however AP causes the
radar waves to be bent towards and intersect with the Earth’s
surface producing ground clutter echoes.

On the 25. September 2005, a temperature inversion over the
Baltic Sea was observed through most of the day and into the
evening causing ducting (trapping) of the radar waves, which
resulted in very large areas of sea clutter in the Baltic Sea off
the coast from the south-eastern most radar at Stevns.

B. Satellite data

The satellite based datasets used in this study are 1) mul-
tispectral satellite images from the geostationary Meteosat-8
SEVIRI sensor and 2) an operational meteorological product
derived from these images in combination with surface tem-
peratures from a numerical weather prediction model.

Meteosat-8 SEVIRI data: The SEVIRI (Spinning Enhanced
Visible and Infra-Red Imager) sensor on board Meteosat-
8 provides high resolution images from a geostationary or-
bit [9] and both the spatial and temporal resolution has been
significantly improved compared to Meteosat-7. The spatial
resolution at nadir is 3 km for the 11 visible, near infrared
and thermal infrared channels and 1 km for the panchromatic
channel. At the latitudes of Northern Europe the resolution is
approximately 5 km. The temporal resolution of the data is 15
minutes. In Figure 2 the infrared channel 4 is shown.

Precipitating Clouds: Within the ’Nowcasting SAF (Satel-
lite Application Facility)’ of EUMETSAT a range of meteo-
rological products, e.g., cloud masks and cloud type products,
are developed and produced for short-term weather forecast-
ing. Of special interest for detection of weather radar clutter
is the product named ’Precipitating Clouds’. Each pixel in the
Meteosat-8 dataset is assigned a probability of precipitation
for two precipitation intensity classes, light to moderate and

Fig. 2. Meteosat-8 SEVIRI channel 4, infrared (3.9 µm). Bright shades of
gray are colder (precipitating clouds), darker shades of gray are warmer.

heavy precipitation. The algorithm uses a linear combination
of the spectral information of Meteosat-8 together with surface
temperatures from a NWP model, and its parameters were de-

Fig. 3. ’Precipitating Clouds’ product from the “Nowcasting Satellite
Application Facility” of EUMETSAT. Darker colors indicate high probability
of precipitation. Compare to Figure 2 showing one of the input features of
the ’Precipitating Clouds’ product.
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veloped and tuned using quality controlled weather radar data
as described in [10]. For the classification method described in
this paper the two precipitation class probabilities were added
to yield the total probability of precipitation.

C. Numerical weather prediction output

From the numerical weather prediction model DMI-
HIRLAM (HIgh Resolution Limited Area Model) the near
surface temperature was extracted. The highest resolution
version of the DMI-HIRLAM models, the S-05 model was
used. Its prediction grid consists of 41 vertical levels over a
0.05 by 0.05 degree (approximately 5 km) horizontal grid.

III. IMAGE FUSION CLASSIFICATION

For the detection of weather radar clutter the data sources
described above are combined using image fusion and then
classified using manually selected training data and a scale-
space ensemble classifier.

A. Pixel level image fusion

Image fusion can be performed at different levels [11] and
for this study a pixel level image fusion was chosen. Fusing
images on the pixel level requires resampling and geocoding
of the images to a common map grid. A stereographic grid
with a grid spacing of 500 m was chosen to match the highest
resolution of the radar data. All of the datasets, the radar
data, the Meteosat-8 multispectral images, the ’Precipitating
Clouds’ image and the HIRLAM surface temperature fields
were resampled to this grid using bicubic interpolation.

From visual inspection by superimposing the fused images,
the geometrical co-registration is judged to be accurate to
within the spatial resolution of the satellite image. However,
since the radar and the optical multispectral sensor observe
different physical phenomena (backscatter from precipitation
and the cloud top, respectively), some mismatch between the
estimated precipitation in the radar image and the satellite data
is noticed.

Temporally the datasets are not always perfectly aligned.
The radar image data are acquired every 10 minutes and the
satellite data every 15 minutes. Thus a 5 minute temporal
mismatch will occur for four of the six radar images per hour.
The remaining two will be perfectly aligned temporally. A
five minute time lag and a velocity of clouds of e.g., 10 ms−1

will result in a 3 km mismatch. This is below the resolution
of the satellite data and thus not of great significance to the
accuracy. Ideally, a temporal component should be included
in the model.

B. Scale-space ensemble method

For the supervised classification, areas of precipitation and
clutter in the image fused dataset is annotated and training data
are extracted. The training data are divided into two groups,
one for building the classifiers and one for validation of the
classification results.

Before classification, an expansion of the feature space by
application of a scale-space is performed. In many applications

of image analysis, a scale space approach can be fruitful for
image segmentation, feature extraction and classification [12].
In the development of this method it was investigated if the
scale and resolution of the input image data would affect the
classification result. The scale-space is made by convolution
of the input features with a Gaussian kernel of a given window
size corresponding to the scale.

Instead of selecting one model to classify the data, an
ensemble method approach was chosen. Ensemble methods,
also known as multiple classifier systems, combine several
models for classification into an improved classifier with better
performance than classification by use of each model indi-
vidually. The data are classified using five different models:
linear and quadratic discriminant analysis, a decision tree,
the Mahalanobis distance and k-nearest neighbor (k=2) [13].
Subsequently the classification results of the five models are
combined using a majority vote by which the class selected
by the majority of the classifiers is chosen as the final output
class.

IV. RESULTS

The described method was applied to two different com-
binations of features: The radar data in combination with
the Meteosat-8 IR band number 4 (3.9 µm) and the DMI-
HIRLAM-S05 surface temperature. The classification result
of this feature combination is shown in Figure 4. The other
combination of features was the radar data combined with the
’Precipitating Clouds’ product only.

It is noticed how the large area of sea clutter in the Baltic
Sea is well detected. Likewise are single pixel noise clutter
and some of the ground clutter close to the radars. Errors

Fig. 4. Classification result. Red is clutter, green is precipitation.
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Fig. 5. Learning curves for the scale-space ensemble method. Linear
discriminant, quadratic discriminant, decision tree, mahalanobis distance, k-
nearest neighbor, and majority vote. The classification was performed 3 times
each with different training data and the error bars indicate the standard
deviation.

occur mostly at the edges of the precipitation areas where
the satellite and radar estimates do not match (precipitation is
here misclassified as clutter). Other errors are found in areas
of clutter close to or mixed with precipitation where clutter
is misclassified as precipitation. It should be remarked that a
large amount of the misclassified pixels are located in the low
(close to 0 dBZ) backscatter ground clutter regions which can
be removed by thresholding without much loss of data quality.

The classification results are assessed quantitatively by
calculation of the classification error rate from the confusion
matrix between the validation samples and the classified
image. Error rates between 4.5 % and 7.9 % are seen for
the example case (Figure 5). Perfect classification results, i.e.,
error rates close to 0 % were seen for other image pairs from
the same day.

From the learning curves in Figure 5 the effect of scale
can be seen. The lowest classification error occurs at scale 33
(the size of the Gaussian smoothing kernel) for most of the
classifiers. The reason for the increased classification accuracy
at this scale is the better alignment at the edges when the input
features are smoothed (i.e., seen at a coarser scale). Too much
smoothing degrades the classification accuracy.

The effect of the ensemble majority vote is also seen from
the learning curves: The overall error is decreased by 40 %
(from 7.7 % to 4.6 %) by using the majority vote classifier
compared to using a single linear discriminant classifier and
12 % (from 5.1 % to 4.5 %) compared to using a single
decision tree classifier.

Classification results similar to these are seen if the ’Pre-
cipitating Clouds’ product is combined with the weather radar
data.

V. CONCLUSION

Information fusion of radar images and satellite images
from Meteosat-8 and surface temperatures from the DMI-
HIRLAM-S05 weather model was performed. Using super-
vised classification of a scale-space representation of the fea-
tures and applying an ensemble classification method, weather
radar clutter was detected with classification accuracies above
90 %. Especially, areas of widespread sea clutter caused by
anomalous propagation were detected successfully. The best
classification was observed at scale 33 using the majority
voting scheme.

More work on the proposed method is in progress, e.g.,
evaluation of the performance of the method in several differ-
ent meteorological situations such as convective and stratiform
precipitation, as well as in situations with no precipitation.
Furthermore, the development of robust model parameters
based on training data from multiple radar and satellite datasets
is needed before the method can be considered for operational
use for removing weather radar clutter.
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