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Electron-electron scattering in linear transport in two-dimensional systems
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We describe a method for numerically incorporating electron-electron scattering in quantum wells for small
deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For
a given temperaturé and densityn, a symmetric matrix needs to be evaluated only once, and henceforth it
can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for
that particularT andn. Using this method, we calculate the distribution function and mobility for electrons in
a quantum well, including full finite-temperature dynamic screening effects. We find that at some parameters
that we investigated, electron-electron scattering reduces the mobility by approximately 40%.

I. INTRODUCTION energy scale over whichr(e) varies significantly,
(ry=[(7~1)]7L. Conversely, in the case wheTeis large on

The effect of electron-electrore{e) interactions on trans- the scale over whichr(e) varies, there can be significant
port in bulklike systems of various dimensionalities is still andifferences in the calculated mobility using the two different
area of active research to this day, both experimeritaipyd  methods. For example, we show below that in particular
theoretically>* On the face of it, it would seem that in the cases in GaAs quantum wellgy/u..~ 2. Thus, for accurate
case of doped parabolic band semiconductors where untheoretical determination of the mobility at the semiclassical
klapp processes are negligibkee scattering should not af- level, it is important thakt-e scattering effects are included.
fect the linear transport properties of bulklike systemsFurthermore, it has been sholhat experiments measuring
(purely quantum effects such as weak-localization correcthe drag rate between electron gases between two coupled
tions exceptedsince ane-e scattering event conserves the quantum wells are sensitive to the exact details of the linear-
total current in the system. Nevertheless, it has been appreesponse distribution functiof in each layer. Sincd is
ciated for a long time that-e scatteringcan affect the mo-  strongly affected bye-e scattering in the intermediate tem-
bility of a system semiclassically by scattering carriers intoperature regim@~0.5T¢ (whereTg is the Fermi tempera-
or out of parts of the Brillouin zone that are strongly affectedture), it is important to include the effects efe scattering in
by the other available scattering mechanists. calculations of the drag rate.

In Ref. 5, it was shown that the expression for mobility in  In this paper, we demonstrate an efficient way of includ-
the presence of quasielastic scatters takes on different forniisg e-e scattering in the calculation of linear transport for
in the limits of zero and infinitely strong-e scattering. two-dimensional (2D) cylindrically symmetric systems,
Given a quasielastic energy-dependent trans@@rt calcu-  within the semiclassical Boltzmann equation formalism.
lated with the 1-cosi term) scattering timer(e) due to other  Similar calculations have been presented for linear transport
scattering processes in the system such as acoustic phondnsthree dimensiorisand for relaxation properties of isotro-
or impurities, the mobilities of the system for the cases ofpic nonequilibrium distributions in two dimensiofigVithin
zero and infinitee-e scattering rates, respectively, are giventhis formalism, the Boltzmann equation for linear response

by can be solved exactlgwithin numerical accuragy We have
included full effects of finite-temperature dynamical screen-
e() e ing, which automatically includes phenomena such as Lan-
Moo= Mw:m- 1) dau damping and collective mode enhancements to scatter-
ing. The description of the-e scattering formalism for the
Here, Boltzmann equation is given in Secs. Il and Ill, and Sec. IV
contains the results and discussion. Throughout this paper,
2 dk afg we assume that bands are isotropic and parabolic.
<A>:ﬁf Ws( )( _E)A(k)’ 2

. . . II. ELECTRON-ELECTRON SCATTERING PROBABILITY
where n is the carrier density of the systeng(k)

=#%2k?/(2m), fo(e(K)) is the Fermi-Dirac distribution func- Thee-e scattering occurs in the presence of other conduc-
tion, d is the dimensionality of the system, and we are astion electrons, and hence the bare interparticle Coulomb in-
suming an isotropic parabolic band system. Clearly, for thderactionU(q) is screened. Furthermore, at the intermediate
case when that temperatufeis small on the scale of the temperatures in which we are interested, the energy transfer

0163-1829/96/5@5)/100726)/$10.00 53 10072 © 1996 The American Physical Society



53 ELECTRON-ELECTRON SCATTERING IN LINEAR TRANSPORT ... 10073

between the electrons in a scattering event is often a substaexchange term. However, in the actual numerical evaluation,
tial fraction of the kinetic energy of the electrons, and hencewe ignore the exchange interaction.
the scattering matrix elements fere interactions should be

calculated using thdynamicallyscreened Coulomb interac- IIl. ELECTRON-ELECTRON SCATTERING OPERATOR
tion V(g,w)=U(q)/e(q,w), wheree(q,w) is the dielectric
function. In this paper, we us€{q,») given by the random- The Boltzmann equation for electrons in uniform electric

phase approximatiofRPA), which we evaluate using a field E producing a forcé= = (—e)E is

method described previously by Usind we use the Born

approximation for the scattering probability. -1 A ﬁ) N ﬂ) ©
The scattering probabilitw(k; o ,kj0,;k 01 ,ko0,) for ok \at) . ot p'i’

a pair of electrons initially in statels,o;,k,05 to be scat-

tered tok} oy ,kjc, depends on whether or not the electronsWhere the subscripts-e and p,i are for scattering due to

have the same or opposite spins. For electrons with the sanfdectron-electron interactions and the phonanpurity in-

spin, say’, teractions, respectively.
We define the function (k), related to the deviation of
w(k+q1,k’ —qT;kT,k'T) the distribution function from equilibrium, as
12w f(k) = fo(k)=fo(K)[1—fo(K)J¥ (k). @)

=5 |V(Qa8k+q_8k)_v(k’_q+k18k’fq_8k)|2-
2 % : . . .
This function can be written in terms of a sum of angular
3 components

The fraction 1/2 in Eq(3) is due to double counting, since
w(k+qT,k"—ql;kT,k'T) and w(k'—qT,k+qf;kT,k"'T) q’(kﬁ):; pn(k)cogné), 8
describe exactly the same process. For opposite spins,
where @ is the angle from an axis of symmetfhere, the
. , 2m ) direction of the electric field By the assumption of cylindri-
w(k+ql, k' —ql;kT,k" )= T|V(q'8k+q_8k)| - 4 cal symmetry of the system, the scattering terms in the Boltz-
mann equation do not mix different co#lj components!
There is an equal probability that an electron scatters ofOne can therefore isolate and concentrate on thé com-
another electron with equal or opposite spin, so one can suponent;(k), since this is the one that affects the current
over the Eqs(3) and (4) to obtain an “average” scattering and hence the mobility. In three-dimensional systems, this

probability’ method was used by Rotfefor electron-phonon scattering,
and extended by Sanbdrto include electron-electron inter-
w(k+aq,k'—q:k,k") actions.

The co® component of the linearized electron-electron
collision operatofi.e., neglecting higher powers i (k)],

2w
# IV(@ekeqm e[ "= 2REV(A 1 e1) which we denotd . o[ #4], is*

XV* (k' =q—k,ew g e ]}- S P RS [
The first and second terms in E() are referred to as the dk’ dg _
direct and exchange terms, respectively. = —ZJ 2n)? WW(Hq.k'—q;k,k’)

In practice, the exchange term often makes calculations
considerably more complicated and is usually ignored. The X fO(k) Ok H[1—foUk+q)][1—fo%k'—Qq)]
physical grounds for doing so are as follows. Fiesg col-
lisions are usually dominated by smagliscattering because X (€&t e — € g™ € —g) LK) Xt (k)X
V(q,e) falls quickly with g for finite £]. The direct(ex- _ _ r_
change term has the formiV(q,&)|? [V(q,£)V(q',e") with Pkt aDxcs g e = vk =aD%0 gl ©
q’>q], which implies that the direct term usually dominatesHere,x, \ is the cosine of the angle betwekrandk '. The
over the exchange. Also, the sign of exchange term cagoal is to write the operatdrin the form
sometimes be negative, which leads to cancellation of this
term within the collision integral. The effect of the exchange *
term was studied in a 3D system with statically screened I[‘r//lxk,F](k):Xk,Ffo dp pK(k,p)#(p). (10
interaction'® There it was found that the exchange term was
significant forna3=1 but not forna3=0.1. In the calcula- The kernalK (k,p) is symmetric, from detailed balan&g,
tions that follow we have useda3=0.15, and since we and the extra factor op in the integral comes from phase
furthermore include dynamical screening, which leads to space. Thus, in order to incorporate electron-electron scatter-
peaked interaction at smaijl we can assume that the direct ing for a particular density and temperature into a calcula-
interaction dominates in our case. tion, one need only generaltg k,p) once and store it; it can
We write down the formal expressions for the electron-then be used for all calculations involving electron-electron
electron scattering operator both including and excluding thecattering at that density and temperature.
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The four s in Eq. (9) give four terms, each of which mf(k)fo(p) [~
give a contribution to the kernek=K;+K,+K3+K,. In Ka(k,p)=— Wf d6p coFy
the following subsections, we explicitly write down the form 0
of each of these kernels. 27 _ _ _ _
X . d¢ w(k+Q,k—Q;k+ Ak, k—Ak)

A. First term, involving (k) [1- fo(st)][l— fo(sR,Q)] 16

The i, (K) X, ¢ can be factored out, and we obtain B
where ¢ is the angle betwee® andk.

_ dg
Ki(k,p)=—d(k—p)k lfo(k)f 2m)? C. Third term, involving ¢, (Jk+q])
dk’ k+Usingxk+q,F=xk,ka'k+q in the integrand and letting =
- —_ ' , gives

X[1 fo(k+q)]zf (Zw)sz(k ) a. g

) v P k! 2f%K)[1—f%p)] (27
X[1—fo(k' —q)Jw(k+q,k’;k,k"+q) Ks(k,p)= 2m)? Jo d Oy COSHy
X5(8kr+q_8kr_{8k+q_8k}). (11)

dk’
X | —=f%k'+p—k
In the event where the exchange interaction can be ne- f (2m) ( P=k)
glected, one obtains, as in Ref.(&e denote the scattering

_ f0/ 1"\ T\ns . ’ _
integral that neglects the exchange interaction with an aster- X[1=15(k") Jw(p. k" k. k" +p=k)

iSk)’ ><5(8p+8k’_8k_8k’+p—k)' (17)
£O(K) dq The & function 5(%2(p—k) - (k’ —k)/m) reduces thelk’ di-
K3 (k,p)=— 5(k—p){ 5 mensional integral to one dimension.
wk J (2m) If one neglects exchange, then as with the first term the

dk’ integral can be done, giving

X[1_fo(k+Q)]2_7T|V(Qv3k+q_8k)|2
h [£%ep)— (4]

* = —
K3 (KP)= 53 2T (p— o)/ (2KaT)]
XIm{x(0,ex—&x+q) INs(eksq— k) |, (12 5
™ m
XJ dek’pCOSQk'p7|V(p_k,Sk_Sp)lz
where ng(e)=[exp(Be)—1] ! is the Bose function, and 0
x(g,w) is the RPA polarizability. XIm[ x(p—K,e,—&p)]- (18)
B. Second term, involving ¢ (k') D. Fourth term, involving ¢ (|k’ —q[)

Since cosf+ 6')=cos@)cosE’)—sin(@)sin(¢’) and the The kernel is
sin terms vanish from symmetry considerations, we can write
Xk =Xk Xk’ k- Then, the second kernel is

W fo(p) [ dg
Kz(k,p)— _ZWJO dak,p COS@k'pJ‘ W y

2f9(k) (27
Ka(k,p)= (ZT)ZJO d 6y kcog O k)

dq
f (z—w)zw(kwtq,k’—q;k,k’)
xw(k+q,p—q;k,p)[1—fO(k+0)]
X[1-f%p—q)]8(ex+ep—exsq—ek—g)- (13

X[1-f%k+q)]f%(p+q)

. . . X5(8k+8p+q_8k+q_8p) (19)
The q integration can be evaluated by the change of vari-
ables, The term in thes function goes as
= =p— K= h?
g=Q+Ak/2, Ak=p—k, k=(k+p)/2. (149 8p+q_8p+8k_8k+qzm{q‘(p_k)}; (20)

Then, thes function in Eq.(13) becomes which reduces thg integration down to one dimension.

5 , ' Ip fact, the kernels.for higher-order components are very
S(eyt 80— Errg— B )= 0 ﬁ_ QZ_(%) (15) similar to the ones given above. For an _angular variation
kT ®p Tk+a Fp-g m 2 ' proportional to cosd, the K; term is identical for alln,
whereas withK,, K3, andK, one simply replaces césvith
which gives coxd in the 6 integration.
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We have shown that one can calculate the matrix (k)
K(k,p), which gives the electron-electron scattering term for lee[ 1(K)]=—
small deviations from equilibrium. Once the matiXk,p)

has been calculated, one simply needs to iterate the equatigfhere the first term on the right-hand side corresponds to the
for 1(k) until convergence is obtained. diagonalK; term andJ corresponds td<,+K;+K,. The

In order to calculatey,(k) for the case when the-e  Boltzmann equation fois,(k) in the case when the other
scattering rate dominates, it is often useful to use the fact thajcattering mechanisms are quasielastibich might include

electron-electron Scattering leaves a drifted Fermi-Dirac diSacoustic-phonon scattering, which genera”y involves very
tribution invariant'* Thus, for the case of elastic or quasi- small energy electron losss

elastic collisions, one can define

(K], (22

Tee

~ of fo(K)[1— fo(K) 1 h1(K) + 27 (K
Pa(K) = g (k) = 92 (K), (21) eEU(k)(&_o):_ o)LL~ fol ”E;’f)ﬂ )41 (W)
& T
where y2F(k) = #kvy/(kgT) is for a drifted Fermi-Dirac . o
distribution. Anyv 4 can be used. In our case, because we cut #1(K) 710K
off the matrix K(k,p) at a Kpa, Which implicitly sets o I, (23
P1(k>Kmnay = 0, we chosevy, which givesy(Kyna) =0
so that the distribution function is continuouskat.y. where (k) is the quasielastic scattering rate. This implies
We write the linearizea-e scattering term as that one must iterate the equation
eEv (k)

ot ToRLL= fo(k) 1+ 3] = fo(KITL—fo(K) YR (K 7 ()

P (k)= - - (24)
Ya(K) fo(K)[1—fo(k)]7e (k) + 7oa(k)
|
to find ¢4 (K). in coupled quantum wells are quite sensitive to the details of
#1(K). In particular, wheny; (k) rises faster thatk (which
implies that there are more carriers in the high-energy region
IV. RESULTS AND DISCUSSION than for a drifted Fermi-Dirac distributignthe drag rate
We study the case of electrons confined in a 100-A-wide
square GaAs quantum well with infinite barriers. We assume 12(T100 8 ~1 ' '

that there is a5-doping layer of(uncorrelated charged im-
purities, equal in density to that of the electrons in the well,
situated a distancd away from the center of the well. We
included three scattering mechanisms-e, charged-
impurity, and acoustic-phonon scattering, and we approxi-
mated the acoustic-phonon scattering as being elastic.

We calculated the matrix in the form of 28@00 grid
points fromE=0 to E=5kg, and we used spline routines to
interpolate between the grid points. Thes(k,p) and
K4(k,p) diverge logarithmically ak—p, which compli-
cates the splining procedure, but we got around this problem
by spliningK 3 4k, p)/In(lk—p|), which is a smooth function.

In Fig. 1, we show the deviation functiog, (k)/k for a
fixed densityn=1.5x 10'* cm 2 and temperaturd@ =30 K, o _ . _
for several different distances of the ionized impurities ~~ FIG. 1. Deviation functiony;(kjk * (normalized to 1 at
from the center of the quantum well. Note that when thek=0) for electrons responding ;\O a weak static gﬁm”?zﬁeld na
distribution is a drifted Fermi-Dirac functiong,(k)/k GaAs quantum well, W'dth. 100 A, density=1.5<10"cm ~ and
_ . o temperaturd =30 K, for distancesi=50, 150, 250, and 350 A of
=const. Thus, as the impurities are moved further away, thﬁ']e charaed i . L
. ) . . ged impurity layer from the center of the well. The collision
Impurity scatte_rlng become; weaker a.nd_the_ scatterm_g term includes screened impurity, acoustic-phonon and electron-
starts to dominat@ and drives the distribution function

. Ry ) . electron scattering terms. The further the impurities are moved
closer to a drifted Fermi-Dirac function. The inset SI"OWSaway from the well, the more dominant the electron-electron scat-

1 (K) Calculatgd both including f_i”d excluding electron- tering hecomes and the distribution tends to a drifted Fermi-Daac
electron scattering fod=100 A, which shows more clearly pyre drifted Fermi-Dirac is a straight horizontal lnéhe solid
the effect ofe-e on ¢, (k). While transport experiments in a (dashedl curve in the inset shows the deviation functién arbi-
single layer are not particularly dependent on the details ofrary unit9 for d=100 A calculated includingexcluding electron-
the shape ofy;(k), it has been showrthat drag experiments electron scattering.

10

¥,(k) k' (Normalized)
o
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rate is smal)l back into lower velocity states. The inset shows
that ug for this case can be almost twige, .

As d becomes larger, theee scattering dominates over all
other scattering mechanisms apd- u.,. Conversely, for
smalld, the impurity scattering is relatively large compared
to the electron scattering, and is closer to theuy than
M. The crossover fromug to w., is shown with the open
squares in the inset of Fig. 2. The crossover occurs when the
impurity scattering and electron-electron mean free paths be-
come equivalent. The transport scattering rate, for
impurity scattering is given byr, '=e/(um)=2.6x10'
cm?V s ?/u. The electron-electron scattering in two-
dimensional systems is approximately givertth

=
In| —

d @)

FIG. 2. Mobility as a function of impurity distance from the Tee™ 3"
center of the well. Parameters as in Fig. 1. Crosses arg foal- . o
culated from the Boltzmann equation, solid line is fog (no e-  FOr this system, this is on the order of'#@~%. Thus, the
e) and dashed line is foru, (infinite e-e). Inset: (i) crossover point, which should occur Whe{ﬁl and 7. are
(u— )l (o— 1) @s a function of impurity distance from center equal, is given byu~3x10* cm? V-1 s, An inspection of
of well (solid line. As the mobility passes through 3% 10* Fig. 2 shows this to hold. Chabasseur-Molyneux
cm? V~1 s71, wheree-e and impurity scattering rates are approxi- et al? have also experimentally found this crossover in
mately comparable, the mobility crosses over fragto u... (i)  GaAs/ALGa,_,As heterojunctions. Finally, ad=150 A,

The ratio u../po (dashed ling This ratio can be as small as ,~0.6u,, implying thee-e scattering has caused a substan-
~0.5. tial reduction in the mobility.

To summarize, in this paper we have described a method
increases because high-energy particles give a larger contigf including electron-electron scattering, including full
bution to the overall drag rate, and there is greater opportUfinite-temperature dynamical screening, exactly in the Boltz-
nity for coupling to the plasmons of the system, which alsomann equation, for small deviations of the distribution func-
enhances the drag rate. Therefore, for the purpose of calction from equilibrium. Using this method to calculate the
lating the drag rate in coupled quantum wells in intermediatejistribution function and mobilities for electrons in a GaAs
temperatures, it is crucial to calculate the actual form quuantum well, we find a well-defined crossover fr(,u;B to
¢1(K) accurately, including all salient scattering mecha-, . (which can be significantly different from each other
nisms. when thee-e and impurity scattering mean free paths are

~ Figure 2 shows the mobility. as a function of ionized  equivalent. For certain parameters studieg, is responsible
impurity distanced from the center of the quantum well. for reduction in the mobility of up to 40%.

Also shown are the mobilities ug=e{7)/m and
w..=el ({7~ 1ym), for the limits of zero and infinite electron-
electron scattering, respectively. The is generally larger
than u,, becausee-e scattering tends to scatter “runaway”  We thank Karim El-Sayed for useful discussions. K.F.
electrons with large velocitiegvhere the impurity scattering was supported by the Carlsberg Foundation.
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