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Dynamic aspects of electronic predissociation

Michael Grénager and Niels Engholm Henriksen
Chemistry Department B, Technical University of Denmark, DTU 207, DK-2800 Lyngby, Denmark

(Received 15 May 1995; accepted 28 November 1995

We consider electronic excitation induced with a continuous wave laser to an excited bound state
which can predissociate due to a radiationless transition to a dissociative state. The conditions for
a separation of the process into the preparation of a vibrational eigenstate which subsequently
dissociates due to a radiationless transition are established. We point out that the probability of the
radiationless transition can be calculated from a time-dependent nuclear autocorrelation function, an
expression which nicely reflects the pictorial aspect of the Franck—Condon principlQ96€
American Institute of Physic§S0021-96006)02909-9

I. INTRODUCTION geous, computationally and from the point of view of physi-
cal insight. Heller was discussing photoabsorption and
Photodissociation is normally divided into direct and in- basically the same idea has subsequently been used, e.g., in
direct processesIndirect processes implies dissociation via connection with vibrational predissociatinand nonadia-
an intermediate energized complex. This case is reminiscematic electron transfer ratés!*We show here that the same
of the traditional scheme for unimolecular reactions. The inidea is advantageous for electronic predissociatmrch a
direct processes can be further classified according to theomputational approach has, in fact, already been suggested
mode of dissociation of the energized complex. The principain this case for the evaluation of optical line shdpes
mechanisms are vibrational and electronic predissociation. We have organized this paper in the following way. In
Direct and indirect photodissociation can be treatedSec. Il we first rederive an expression for the transition
within the same theoretical framewdrkand the distinction  probability’ based on a perturbation treatment for the field
between the two cases might indeed, in some cases, be sonwily. We then include the radiationless coupling in the per-
what artificial. It can nevertheless be profitable to focus orturbation treatment, and derive an expression for the transi-
particular scenarios where simplifications—conceptually agion probability in terms of Franck—Condon factors. We get
well as a computationally—can be obtained. such an expression valid in the continuous wave limit, and an
We focus in this paper on situations where excitation andgexpression valid long time after we have removed the influ-
subsequent dissociation can be separated and we considggrce of the field. In Sec. Il we consider the validity of the
this limit in connection with electronic predissociation from approximations and test the derived formulas on a numerical
a bound to a continuum state. example.
The objective of this paper is to enhance the insight into
the time evolution of the predissociation process in a form
which, in part, is complementary to “standard” treatmehts. l. THEORY
We want to characterize the situations where one can evalu-

ate the radiationless transition probabilities in terms oy antum mechanical properties: Three stationary electronic

Franck—Condon factors! The possibility of creating non- giates: 5 bound ground state, a bound excited state, a repul-
stationary states by femtosecond excitation implies that suchy o excited statésee Fig. 1, and a weak coupling between

a description does not always apply. One of {implicit)  he nhound and the repulsive excited states. And finally radia-

assumptions behind the use of Franck—Condon factors is thg{,e coupling between the ground state and the bound excited
a stationary vibrational state has been created prior to diSSQtate. \We shall in the following refer to the three states as the

ciation. Even if excitation is carried out with a continuous ground, the bound, and the repulsive state and denote them
wave laser the conditions under which(guasijstationary with the subscriptsy, b, andr. The Hamiltonian for such
vibrational state is created must be established. This is one ‘ﬁf]olecules becomes in the diabatic representation

the main objectives of the present paper.
The dynamic aspects of electronic excitation to a single T(p) 0 0 Vg(f) 0 0
(isolated excited electronic state have already been dis-~ A A A
cussed in the literatur®® The nuclear state created by con- 1| ° T(p) OA 0 Vb(rA) Cb’(j)
tinuous wave excitation is often termed a Raman wave 0 0 T(p) 0 Cpp(r) V(1)
functior?” and some of the properties of this object have

In this paper we consider molecules with the following

been nicely illustrate8.We need, however, for the present R 0 Rgo(t) 0
purpose to clarify some additional points concerning the na-  +| Ry4(t) 0 of, (1)
ture of the Raman wave function. 0 0 0

Helle® pointed out that the transcription of Franck—
Condon factors into a time-dependent form can be advantawhereT is the kinetic energy functiory/ the potential energy
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FIG. 1. A plot of the model diabatic potentials defined by ER), Eq. (43), and Eq.(44).

Now assume that d@t=0 we have prepared the system in an
eigenstate of the electronic ground state Hamiltortigy
hence we have

function, C the coupling, an® the field, which in the rotat-
ing wave approximation takes the fotfn

Rog(t)=Rjy(t)=— 3a(t)Ege™ g, @
wherea(t) is the envelope functior, the field amplitude, X9(0)) Ing)
and e the transition dipole moment in the direction of the Ixp(0)) |=| O |. (4)
field. 1x:(0)) 0

A. The field as a perturbation The unperturbed evolution operat&o(t) becomes

We now approach the problem using time-dependent

perturbation theory. We write the full Hamiltonian as o i/iHgt 0
H=Hy+H'(t), and assuméd’(t) to be small enough to (Jo(t): qoe (5)
justify a perturbation treatment. Now let the unperturbed 0 e it ébb ;:”

r r

Hamiltonian be the full Hamiltonian, Eq1), without the

field and hence let . - ,
Recall that a function of an operator or a matrix is defined

through its series, and we can hence easily evalUgig)

0 Ryt) O
. - o using either the Chebychev or the SOD schémdsing first
H'(t)=| Rpg(1) 0 0]. 3 order perturbation theory we can write an expression for the
0 0 0 state of the nuclei in the two upper electronic states,
|
Do) 0l Gl e TR Corl TRy (4 Og(t) ng)
{Ixru» =g en nltfavenle, n 0 ' ©

J. Chem. Phys., Vol. 104, No. 9, 1 March 1996
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Further, if we defineE=EZ+7% w, whereE{ is the energy of o i/iHgt 0 0
Ing) we can write . .
. a2 Uo)=| O e /it o . (13
[|Xb(t)> _1Eg eilh b Cor tJ'tdt,a(t,) 0 0 —ilhHt
Ixr (1)) 2h Cro Hr 0 e r
e @b Qbr [ elng) Now second order perturbation theory yields fgf(t)),
Xe e (7) S\
b Hr 0 | ~ t t’ ~t
N _ e(0)=| + ur<t>f dt'f dr'Uf(t’)
Delta-distribution limit for the light sourceg(t) = &(t), 0 0
Ields ~ X ! % 4 - n % 14
Y o X CopUp(t) Ot Rg(t) Og(t)ng).  (14)
|Xb(t)>} IEO ik Ho Cor t /“E|ng> H H im;
=—_—— e We consider the continuous wave limit, , and we get
|Xr(t)> 27 e Crp Hr 0 . (8) H@) g

- t N R
We see that we simply displace the initial staggticallyup |y, (t))= E_Oz Ur(t)f dt’ ft dt”UI(t’)C,b
into the upper potentials and propagate it from here. We 2h 0 0
hence have a true Franck—Condon transition. The transition

o _ : (17 ya( 1) el (Hp—E)
probability to the repulsive state cdabove the tunneling XUp(t)a(t")e ° '““E|ng>' (15
regime be related to the Landau—Zener formtfia. where we again have defin&d=E3+%w, and used thagh,)
Now in the continuous wave limit we set is an eigenstate of the electronic ground state Hamiltonian
, 1 for O<t’'<r7, 7 large Hy- . . .
alt) =19 for r<t’ ) Now consider the second of the integrals in ELf), we

shall denote this integral by the symbof,(t')) and name it
and calculate the transition probability to the repulsive po-a Raman wave functin(see also Ref. 27 We implicitly
tential by assume that’'<7. Note that we define the Raman wave func-
tion as a time dependent object, and not as in Ref. 6 take the
P (t)= t t 10 . : T
(0= (Ox(1) (10 oo-limit. As we shall see taking the-limit causes the bound
which again can be evaluated as the absolute square efate Raman wave function to diverge!

|x:(t)) calculated by Consider
Xo(D)| _TEo iy o Cor t 2 jt/ i/4(Hp— E)”
— 9 - ~ ~ % N — " (Hp—E)t
{Ixru» 2n ¢ Lo )= ] dte ) (16
t - [ H 6br} [ melng) with |@)=pug|ng). Now insert a closure in the eigenstates of
1 a—ilREL Neailfi| ~° A~ |t FElTg ~ El''g
XJodt e ""Fra(t e ¢, A, o | H,, and get
(11)

N t’ . b_yen
| W= [Caven e o mymle). 17
It should be emphasized that the only approximation in Eq. m Jo
(1|l) IS ?) perturbatlor:j ttregtgnent .for the f'?(ldff zladndv\;ms .ﬁan\Ne assume that we have tuned the frequency soBhreEE,
always be accommodated by using a weax neid. We Wil I,y papce we get for tha,=n, term in the sum

the following use Eq(11) as a reference that we can com-

pare the more approximative formulas against. v ,
fo dt’[np)(np| @) =t'(Np| @) |Np). (18)
B. The field and the coupling as perturbations The other terms in the sum can be evaluated to
We shall now assume that the coupling also is small ei,h(E%,E)tr_
enough to justify a perturbation treatment. The transiton > —jz ——r——— (my|)|my). (19

from the ground state to the bound excited state, and further m#n Em—E

to the dissociative state is a second order process and WRe see that for lond time<~c. them. = n.. term will domi-
have to use second order perturbation theory. The perturb%-ate We hence wr?te for the ’Ramal?n w:;ve function

tion Hamiltonian now becomes

- Top(t")) = t'{n Np)- 20
0 Rgb(t) 0 | b( )>t,~w ( bl‘P>| b) (20
I:|’(t)= Iibg(t) 0 ébr ) (12) Using this result we are now able to reduce EtH)
0 & 0 further. We shall consider two cases; first what happens
rb

while the field is ont<r, and secondly what happens long
And the unperturbed Hamiltonian hence becomes diagonatime after the field is removed agait® 7.
and we get for the evolution operator(t), First fort<r, we get
J. Chem. Phys., Vol. 104, No. 9, 1 March 1996
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EO ~ t ~ ~ ~ _ , ’7TE2 ~
[xe(0)= 572 Ur(D) fodt'UI<t'>crbub<t'>|ﬁb<t ) P()= 573 [(nol melng) 2l (e =ERCoulno) . (29

Eo . b A where we have performed the integration over the eigenstates
”—“Wmd@ur(t)fodt t"U(t")CrpUp(t)np), of H,, leaving onlye, = E?.
We shall now consider the case witk7. Here we can
(21 ignore the creation process while the field was on, and we

where we have assumed that the Raman wave function b&/"'€ Eq.(22) as

comes proportional to an eigenstate immediately—this is not = R t e pa

the case, but for long times;-< the error introduced by this | Xr(t))= 252 <”b|ME|ng>Ur(t)fodt'e'm(H’*E”)t Crp[Np).-
assumption will vanish. We now use that,) is an eigen- (30)

state ofH, and write o o
Compare this with the definition of the bound state Raman

Eo ~ ih b wave function, Eq(16). It is hence obvious to define a re-
= — (H ) ’
x:(t) 242 <nb|¢>ur(t)fodt ve v Crp| ). pulsive state Raman wave function by

(22

From this equation we can easily evaluate the transition
probability by forming the absolute square, we get

)= [ avendier|g) @D

with |¢>:érb|nb), and withE=E? in the present case.
_ E§ 5 o i _EDy 2 We shall now consider closer the properties of this re-
Pr(t)= 277 [(npl elng)| fodt e TENC )| pulsive state Raman wave function. First consider the norm
23 of the Raman wave function

2

We see that we have now written the transition probability asg%r(t”%r(t»

the product of a Franck—Condon factor and a time dependent t . .

integral, though this is a great simplification compared to Eq. =f dt’f dt"(p|e HH B gl/AH B ) (32
(11), we can in fact simplify Eq(23) further. We insert a

closure in the eigenstates 6f,, and consider the integral Now let|¢, ) be the eigenstate dﬂ with energyE, and insert
part of Eq.(23) for t~, in general we can write it as a closure of all eigenstates in E(<$2) we get

(0] (1)
t t H ’ " ’
- j de'|(e'| )2 J dt j dreli(e -B=t) (33
0 0

Evaluating the integrals ovéf andt” yields

o) [ t t . , " y p
J det(X)=J dxf dt’f dt"t't"elxt' —t ), (25) <./z3,(t)|.ﬁ3,(t)>
- = Jo Jo

t t i ’ H n
ft(x):fodt'fodt"t'e'Xt t"e” " (24

We shall now rewrite this integral into a delta-distribution.
First we normalize with respect tq

) T cos{(e —BE)t/h]
now use that evaluating the integral overyields a delta- =2h J de’|(e'[#)] e —E)? (34)
distribution, )
From Ref. 18(p. 469 we find that
dxfi(x)=2 dt’ | dt"t't"s(t' —t” . 1—cogtx
f_ Xt ”f J ) 5(x) = lim —— %) (35)
e TEX
t 2T .
=277j dt’t’zz? t3. (26)  and hence we can write for large
0

Evaluating the integrals ovef andt” in Eq. (24), yields <%r(t)|%r(t)>ti¢2”ﬁj de't/(e’|$)|*5(e' ~E) (36)

1—cogxt) _sinxt) 1 evaluating the integral over yields
t 3 (X)=2——33——2—737 + . (27) / B )
X't X0 X (0] 2, (1) = 2mht|(e,=E|)[". (37)
We now easily see that forx#0 we have that We now return to the definition of the Raman wave func-
lim, .. t~3f,(x)=0 and hence we can write tion Eqg. (31), and formally evaluate the integral, we get,
] 24 ih[ei/h(l:lr—E)I_l]
lim t73f,() = —- 8(x) (28) , —— . . 39)
t—oo 3 Hr_ E |¢> (
hence for large we can reduce Eq23) to Multiplying by (I:|,— E) now gives

J. Chem. Phys., Vol. 104, No. 9, 1 March 1996
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3238 M. Grénager and N. E. Henriksen: Electronic predissociation

iR ilh(H B with the parametersD=0.1744, 8,=1.277, r,=1.3020,
Z0) 'hle L) 39 B,=1.0277, and ,=1.4020(all in at%mic units.gA plot of
Now, since the norm of the Raman wave function is proporihe potentials is shown in Fig. 1. For the coupling we use a
tional tot, and since the norm ¢#) is finite and independent Gaussian

of t, the only way Eq(39) can be valid, is if for large the ) )

Raman wave function approaches an eigenstateH pf Cor(1)=Crp(r)=Ae P71, (45

namely the eigenstate with energy a4 . .
It has earlier been shoWthat the real-part of the Raman where A=10", b=2 andr;, the mtersecﬂonjetweeﬁb
andV,, equals 1.8656. Further we sgt=10"". The re-

wave functiqn in the position representation lel indeed ap_duced mass of the system lis=918.075. We measure the
proach an eigenstate bi for larget. The proof given above transition probability in units ofE3 and shall hence only
IS muc_h stronger, though_. . assume that it is chosen within the perturbation limit. With
Using ¢ hese properties of the_ repulsive state .Rama?hese parameters we get for the bound excited state a vibra-
wave fL_Jr_lctlon together with Eq30) yields for the transition tion period of 7.6 fscompare with Fig. b
probability We have calculated the dissociation probabilitR’,
712E2 . PY! and P92 representing the transition from the Oth eigen-
P, (t)= TR [{npl eelng)|?|{ er = Ep|Crplnp)|?t,  (40) state in the electronic ground state via the Oth, 1st, and 2nd
eigenstate in the bound electronic excited state. Plots of the
i.e., the well-known lineat dependence. dissociation probabilities are shown in Figs. 2, 3, and 4, re-

We have now accomplished to make expressions of thepectively.
transition probability simply as a product of Franck—Condon  First consider Fig. 2, here we see a very fine agreement
factors. In some cases, if the analytical expressions for theetween Eq(11) and Eq.(23), but a very bad agreement
eigenfunctions exist we can evaluate E29) and Eq.(40)  With Eq. (29). Next consider Fig. 3, here we see indeed very

direcﬂy, bowever’ in many cases it becomes Simp|er to eva|ugOOd agreement between all the three fOfmUlaS, and we shall
ate|( | Cp|np)|? using hence conclude that here all the approximations are valid.

Finally, consider Fig. 4 here we see that the approximations

leading us from Eq(11) to Eq. (23) are not valid for short

times, however, for long times the relative error decreases,
(42 and the approximations becomes better. Further we see that

. - . ] we practically do not introduce any further errors in using
with |$)=Cp|np). We can think of the evaluation of the gq (29,

integral as composed by a vertical displacemémttrue o o
Franck—Condon transitigmof a wave packet given as a prod- A Validity of approximations

uct between a matrix element of the coupling and the pre-  Based on the calculations, we shall now reconsider the
pared vibrational eigenstate, followed by a propagation in theypproximations one by one. First of all we demand that the
repulsive electronic state. Here if the potential is stronglynonadiabatic terms in the Hamiltonian are small enough in

repulsive we need only to integrate up to short times, sincerder to justify a perturbation treatment. Or more formally,
the wave packet will then move very fast away from its

initial position, and the self-overlap will vanish. The evalua-  t||H’||
tion of Eq. (41) can be carried out exactly or even—often T<1'
successfully—by approximate methdd$. The use of Eq.
(41) is also from a conceptual point of view advantageous. Violating this inequality will cause the probabilities calcu-
lated by Eq.(11) and Eq.(23) to diverge for long times. In
our calculations we are not met with this problem, and hence
we shall not treat it any further.

The next approximation made, is that we assume that an
In order to test the derived formulas we have made nu&igenstate is created immediately in the bound electronic ex-

merical calculations on a model example using the fast Fougited state. Consider again the formation of the Raman wave
rier method in conjunction with the SOD time propagationfunction Eq.(17), and write the sum as

schemé?® We aim our interest on Eqs$11), (23), and (29) et =t

since it is in between these formulas new approximation are " ()=t (nel @)

(H,—E)

~ o . b s
2= BRIl = | dt e le 1)

(46)

Ill. RESULTS AND DISCUSSION

made. In our model we consider a diatomic molecule, with ol/H(ER—ENL _
the diabatic potentials, —ih 2 ——p—=— (My|@)[mp).
m#n En—Eqn
Vg(r)=D[e‘Bg(r‘rg>— 1]>-D, (42 (47)
Vy(r)=D[e AT~ o) —17?, (43)  We seek the conditions for which the first term will domi-
nate, and hence we shall establish an upper bound for the
V,(r)= 3 D/r?, (44)  second term

J. Chem. Phys., Vol. 104, No. 9, 1 March 1996
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FIG. 2. The 00-transition probability calculated using Ed4), (23), and(29) plotted in solid, long-dashed, and short-dashed lines, respectively.
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FIG. 3. The 01-transition probability calculated using Ed4), (23), and(29) plotted in solid, long-dashed, and short-dashed lines, respectively.
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FIG. 4. The 02-transition probability calculated using Ed4), (23), and(29) plotted in solid, long-dashed, and short-dashed lines, respectively.
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FIG. 6. The Raman wave function created in the repulsive potential for the Ol1-transition. The solid curve is the real-part and the dashed curve the

imaginary-part of the Raman wave function calculated via the FFT-method.

H ei/ﬁ(Etn’; EDt _ 1 We hence see that the overlap betwkgnand the eigenstate
—ifh ————=5— (Mp|@)|my) in the bound electronic excited stat®,), is very essential to
m#n Em—En how fast the Raman wave function becomes proportional to
1 In,). We will hence expect that we for the 00-transition suc-
<2% max 2 (my| @) myp) ceeds to create an eigenstate much faster than for the 02-
mzn Em— En | m7n transition. In Fig. 5 we plot the quantity

1 | 726(1))
<2h 2—ln 2 max 48 7o)
ol =Tl o) maxzo— o @ |y 59

further the norm of the first term evaluatestt®{n,| ¢)|, and
we get the inequality

to monitor how fast the Raman wave function becomes pro-
portional to|n,). We see that the Raman wave function in-
deed becomes proportional fn,) much faster for the 00-
transition than for the 01- and 02-transition. The fact that it
takes quite some time before the Raman wave function be-
comes proportional t¢n,) for the 02-transition is also re-
or flected in Fig. 4 where the agreement between (&#). and
JeP=Tn )2 Eq. (23) is not good for short times.

lell*=[{np| @) We shall now consider the approximations introduced

[(npl @) from Eq. (23) to Eq.(29), i.e., in the formation of the delta-

1
t'[(npl @)= 2% ]| @] = [(np| )| max—p—rp (49
m n

m#n E

t'>2h

max

. (50
m#n Ell')n_ EE
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FIG. 7. The outgoing eigenfunction for ar#potential calculated analytically using the same parameters as in the calculation of the Raman wave function
on the repulsive potential. The solid line is the real-part, the dashed the imaginary-part.

short light pulse gives the quantum mechanical counterpart

distribution. The problem here is analogous to the one jusf the (semiclassicalproposition formulated by Franck and
described above; if the quantitye, =ER|C,,|n,) is very  Condon®?
small compared to its value at other valuesafthen it will The wave packet created in such an instantaneous tran-
take quite some time before the delta-distribution is peekedition can, however, also play a central role in the expression
enough to filter off these other contributions. This is whatfor the absorption probability when the molecule is irradiated
causes Eq(29) to fail in Fig. 2. However, for very long Dy a time-dependent continuous wave fiefdEor electronic
times it will give the right transition probability. pred?ssociatiqn _the action of t_he time-inde_pendent perturba-

Finally, we shall make a note on how the repulsive statd!O" IS very similar, the only difference being that this con-
Raman wave function looks. We know that it is an eigen_stant perturbation only allows for transitions between states

function of the Hamiltoniaﬂf—lr . We get an eigenstate that do with t_he same energy and an expression, &, Wh.'Ch
. i ) contains an instantaneous nuclear transition can again be for-
not satisfy the usual boundary condition; to vanish at th

. . ) 7 ) , Smulated. It can be very useful, conceptually and numerically,
origin. This eigenfunction is in fact &Riccat-Hankel

U o =~ to use this formulation which is suggestive of the Franck—
function™ Figure 6 shows how the Raman wave function iScondon principle. However, the real process involves, as

created in time, and Fig. 7 shows the outgoing eigenstate fafemonstrated above, a continuous transition.
ther ~2 potential(a Ricciati—Hankel function We see that as
t—oo, the Raman wave function becomes proportional to the

outgoing eigenstate. V. CONCLUSIONS

B. Franck—Condon principle for electronic The transition prc_)babilities for radiationless transitions
predissociation are often gxpressed in tgr.ms of Eranck—Condon factor;. We
have considered the validity of this approach. First, a vibra-
The Franck—Condon principle was originally formulated tional eigenstate should be created instantaneously. This re-
for electronic transitions due to light absorptithf? It is  quirement is, in general, not fulfilled in practice and it might
well-known that the impulsive excitation induced by a verytake of the order of several vibrational periods before an
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eigenstate is creatdd/e have in this paper explicitly consid- in particular, that the laser is assumed to be in perfect reso-
ered a one-dimensional system, for a large molecule a typicalance with a givenquasibouny state on the bound elec-
vibrational period might not give the right estimate of the tronic surface and that these states decay independentty
required time if the intramolecular vibrational energy trans-overlapping resonances Work concerning the relation

fer is slow in the bound part of the potenjiaBecond, the between exact rate expressions and statistical microcanonical
time should be sufficiently large to ensure energy conservaexpressions for the rdteis an interesting and active field of
tion in the radiationless transition and at the same time notesearci*%

larger than the limit permitted by perturbation theory. A
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