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A Time-Variant Analysis of the 1=f2 Phase Noise in
CMOS Parallel LC-Tank Quadrature Oscillators

Pietro Andreani, Member, IEEE

Abstract—This paper presents a study of 1
2 phase noise

in quadrature oscillators built by connecting two differential
LC-tank oscillators in a parallel fashion. The analysis clearly
demonstrates the necessity of adopting a time-variant theory of
phase noise, where a more simplistic, time-invariant approach
fails to explain numerical simulation results even at the qualitative
level. Two topologies of 5-GHz parallel quadrature oscillators
are considered, and compact but nevertheless highly general,
closed-form formulas are derived for the phase noise caused by
the losses in the LC-tanks and by the noisy currents in the MOS
transistors. A large number of spectreRF simulations, covering
a wide range of working conditions for the oscillators, is used to
validate the theoretical analysis.

Index Terms—CMOS, LC-tank, oscillators, phase noise, quadra-
ture.

I. INTRODUCTION

WHILE powerful simulators such as spectreRF have en-
abled designers of integrated oscillators to estimate very

quickly the phase noise performances of any oscillator topology,
allowing design optimization over a very large set of parameters,
the numerical nature of such results makes it difficult to under-
stand how the different noise sources in the circuit contribute
to the overall phase noise. It is therefore sometimes important
to arrive at a deeper understanding of the mechanisms by which
noise is converted into phase noise, gaining those design insights
that only the traditional approach to circuit analysis is able to
provide. In the last few years, many important results have been
obtained in this sense, among which we can mention the study
of the tail noise [1]–[3] and transistor noise [2]–[4] in differ-
ential LC-tank oscillators, the impact of varactor nonlinearities
[5], [6], and closed-form phase-noise formulas in CMOS Col-
pitts oscillators [4], [7].

Quadrature LC-tank oscillators have also attracted a great
deal of attention (see e.g., [8]–[13]), since quadrature phases
from the local oscillator are needed in all modern radio trans-
ceivers. An important result for this class of oscillators has been
obtained by Romanò et al., who have produced the expression
of the phase noise generated by the tank resistances for a pop-
ular LC-tank parallel quadrature oscillator (PQO) design [14].

The goal of this paper is to study the conversion of noise into
phase noise for both tank noise and transistor noise in the two
most popular implementations of LC-tank PQOs. Closed-form
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formulas will be derived, and, perhaps equally important from a
theoretical point of view, the nontrivial nature of the analysis and
the importance of adopting a time-variant approach in the study
of oscillator phase noise will become apparent. The treatment
will be couched in terms of Hajimiri’s theory of phase noise [15]
because of its elegant simplicity and intuitiveness, although we
will have to transcend it, in order to derive closed-form symbolic
expressions.

The paper is organized as follows. Section II presents the
two PQOs treated in this work, and shows how the simpler
arguments used in the phase noise analysis of the differential
LC-tank oscillator are inadequate, if extended to the PQOs. Sec-
tion III introduces the time-variant approach employed in all
subsequent calculations of phase noise, together with the fun-
damental formulas quantifying the amount of white noise that
is converted into phase noise. Sections IV and V contain the
analysis of the two PQOs, respectively, deriving closed-form ex-
pression for the phase noise caused by the most important white
noise sources. Section VI summarizes the main results obtained
in this work, while the Appendix presents a formal derivation of
the formulas stated in Section III.

II. PARALLEL LC-TANK OSCILLATORS

Two PQOs will be treated in this paper, portrayed in Figs. 1
and 2, respectively, where the parallel tank resistance ac-
counts for all losses in each tank in the proximity of the reso-
nance frequency. The PQO in Fig. 1 is composed of two differ-
ential LC-tank oscillators, coupled to each other through two ad-
ditional differential pairs. Quadrature oscillation is achieved by
the combination of direct-coupling and cross-coupling between
the two differential oscillators (otherwise they would oscillate
in phase, acting as a single differential oscillator). The PQO in
Fig. 2 is identical to that in Fig. 1, the only difference being that
the sources of each switching pair (defined as usual as the tran-
sistor pair belonging to the original differential oscillator) are
connected to the sources of the respective coupling pair.1 For
this reason, in the following, we will refer to the first PQO as
the disconnected-sources PQO (dsPQO), and to the second as
the connected-sources PQO (csPQO).

A. Attempt at a Time-Invariant Phase Noise Analysis, and Its
Failure

An analysis of the phase noise generated by both the
switching and coupling transistors (to be referred to hereafter

1However, this seemingly trivial circuit difference results in a very significant
difference in the phase accuracy of the two architectures, when the unavoidable
component mismatches are considered. This important subject will be treated
at length in a different paper [16].

1057-7122/$20.00 © 2006 IEEE
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Fig. 1. Simplified schematic view of the dsPQO.

Fig. 2. Simplified schematic view of the csPQO.

as and ) might try to utilize what is already known
about the differential LC-tank oscillator. After all, each half of
the dsPQO is made of two differential pairs that do not interact
with each other, and can therefore be treated separately. In
the following, we will also assume that the voltages at the
transistor gates are sinusoidal, which is (almost) true as long as
the quality factor of the tanks is at least moderately high.

We start by defining the parameter as

(1)

where is the tail current for each switching (cou-
pling) pair, see Fig. 1. The width of and in the dsPQO
will be scaled accordingly, even though it will be shown that
this has (ideally) no effect on the oscillator behavior. Fig. 3
shows the voltage and current waveforms for a dsPQO built
around four identical RLC tanks having a self-resonance fre-
quency of 5 GHz, an inductance value of 1 nH, a of 15, and

mA (i.e., ). The transistor model
employed is quite ideal, which explains why the current wave-
forms look so square-wave-like; this simplification, however, is
necessary, if we do not want to be overwhelmed by a host of
second-order effects. Fortunately, the results we are going to
obtain can be applied to the general case, qualitatively if not
quantitatively.

Turning again to Fig. 3, it is obvious as well as expected that
the current delivered by the switching pair is in phase with the

voltage at the gates of the switching transistors, while the cur-
rent delivered by the coupling pair is in quadrature with the same
voltage. Therefore, one might be tempted to apply the same
argument usually invoked [2] when analyzing the differential
LC-tank oscillator: the switching transistors contribute to phase
noise only when the pair is commutating, and this happens ex-
actly when the phase of the tank voltage waveforms is most sen-
sitive to disturbances. Thus, all noise from the switching pair is
converted into phase noise, which leads to the (correct) conclu-
sion [2], [3] that the phase noise caused by the tank resistances
and the phase noise caused by the switching transistors, respec-
tively, are in a ratio of , where is the channel noise factor
of the MOS transistor.

The coupling transistors, on the other hand, are injecting
noise into the tank only when the phase of the tank voltages is
least sensitive to disturbances (or so goes the argument). The
coupling transistors noise does cause amplitude noise on the
oscillation, but this is rejected by the internal amplitude-sta-
bilizing mechanism of the oscillator. From this analysis, one
would expect that the phase noise in the dsPQO is mainly
caused by the tank resistances and the switching transistors (in
a proportion ), while the impact of the coupling transis-
tors is almost negligible. In fact, spectreRF simulations show
that, for , coupling and switching transistors contribute
roughly the same amount of phase noise, and tank resistors and
switching transistors, respectively, contribute in a proportion
much lower than , and very close to (where

in the long-channel limit).
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Fig. 3. Voltage and current waveforms for the I-half of the dsPQO in Fig. 1.

TABLE I
SIMULATED NOISE CONTRIBUTIONS (IN 10 � V /Hz) AT 1-MHz

OFFSET FREQUENCY FROM THE CARRIER, FOR EACH TANK RESISTANCE R,
SWITCH TRANSISTORM , AND COUPLING TRANSISTOR M (CALLED

N ;N , ANDN , RESPECTIVELY), IN THE 5-GHz dsPQO OF

FIG. 1

In order to try to get a more complete picture of the dsPQO
behavior, a number of spectreRF simulations were run for dif-
ferent values of (keeping a constant of 2 mA), with the
results reported in Table I. SpectreRF expresses any noise con-
tribution to phase noise as a phase-noise-generating noise
defined by the relation

(2)

where is the phase noise, and is the power of the os-
cillation voltage, assumed sinusoidal with peak value , at the
node where the phase noise is measured (the phase noise itself
is independent of the node where it is measured, while does
depend on it [13]).

It is clear that, for the lowest values of , the relative noise
contributions from , , and (called ,
and , respectively), are quite close to the expected ones:
the ratio of to is roughly , and is neg-
ligible. Moreover, it is easy to realize that the ratio of to

is much smaller than the ratio of the respective transistor
channel noise. This is because most of the noise from does
not translate into phase noise, as previously stated.

For larger values of , however, the situation becomes very
different, and simulation results do not conform to expectations
any longer: the relative impact of does not remain con-
stant, but decreases to negligibility; , on the other hand,
grows to eventually dominate, and its growth is this time larger
than what would be accounted for by the increasing channel
noise only. Finally, the absolute values of the different con-
tributions increase with , except , which remains almost
constant. It is therefore very obvious that our simple analysis
fails badly in the general case, and our goal is now to find one
able to explain all data in Table I.

As a matter of fact, as previously mentioned, Romanò et al.
have already treated the case of the tank noise as a function of

[14], finding the formula (in the notation of this paper)

(3)

which yields the correct amount of phase noise generated by
for all values of . Our approach will recover the same result,
together with the expressions for the phase noise contributed by
the transistors.

III. TIME-VARIANT PHASE-NOISE ANALYSIS

It is quite straightforward to find out whether the seemingly
innocent assumption made in the phase noise analysis of the pre-
vious section, i.e., that the switching transistors noise is totally
converted into phase noise, as is indeed the case in differential
oscillators, is correct or not. This can be done by injecting a
small disturbance into an oscillator node (e.g., a current impulse
charging a tank capacitor), and then measuring the phase devia-
tion of the perturbed waveform from a reference waveform. By
sweeping the instant when the disturbance is injected across a
whole oscillation period, it is possible to get quite an accurate
picture of when the phase of the waveform is most sensitive to
noise. In fact, many readers will have recognized the outlined
procedure as the cornerstone in Hajimiri’s and Lee’s impulse
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Fig. 4. Normalized phase excess for the voltage v = A sin(�) at node I+
of the dsPQO, when a delta-like current impulse is injected into the same node.
The best sinusoidal fit for the 16 simulated values is cos(�+ 46 ).

sensitivity function (ISF, with symbol ) linear-time-variant ap-
proach to the study of phase noise [15], [17], which for the first
time gave a simple and nevertheless very accurate way of cal-
culating the phase noise in a general oscillator, by means of a
number of standard transient simulations. For a short period of
time the ISF was the only practical way to study the phase noise
in a theoretically correct way, before the advent of modern sim-
ulators rendered the task trivial.

It is well known [15], [13] that in a differential LC-tank oscil-
lator the ISF is sinusoidal and in quadrature with the voltage at
the node where it is calculated, and that this form for the ISF ex-
plains the various phase noise contributions in such oscillators.
Turning to the dsPQO, Fig. 4 shows the normalized phase ex-
cess, caused by a small current impulse injected into node ,
together with the relative node voltage, again for . While
the phase excess is very well approximated by a sinusoid, there
is in this case a substantial departure from quadrature; in fact,
the best sinusoidal fit for the data has a 46 phase shift from
quadrature. A few more numerical simulations lead us to the
following conjecture: a good approximation of the phase shift

from ideal quadrature undergone by the ISF is

(4)

In the Appendix we will show that this conjecture is indeed cor-
rect, the approximated expressions for the ISFs being

(5)

(6)

where is the number of LC-tanks in the quadrature oscil-
lator,2 and where we have assumed that the node voltages have
the form

(7)

(8)

2For small values of 	, (5) and (6) reduce to � (�) � cos(�)=N and
� (�) � sin(�)=N , which have already been derived in [13]. Equations (5)
and (6) can therefore be considered as the extension to the general case of the
partial results contained in [13].

The angle is used instead of for simplicity,
being the angular frequency of oscillation. In the following,

we will show that (5)–(6), simple as they are, are all we need to
reconcile simulation results with theoretical predictions.

IV. PHASE NOISE ANALYSIS OF THE DSPQO

Referring to a general oscillator, it has been shown [15], [17]
that the phase noise at the offset frequency , measured
between one oscillator node and ground, is given by

(9)

where is the root-mean-square value of the ISF associ-
ated to the stationary white noise current , and is the max-
imum amount of dynamic charge loaded onto the capacitance
between the oscillator node and ground; all noise currents are
assumed uncorrelated to one another. When a cyclo-stationary
noise source is considered, the same (9), valid for stationary
noise sources, can still be applied, provided that the ISF is re-
placed by an effective ISF , defined as [15]

(10)

where includes the dependence of the noise source power
on .

The phase noise treatment in the quadrature oscillators is very
similar to the one followed in [4] for the analysis of the differ-
ential LC-tank oscillator, albeit more complicated. In order to
make the present paper somewhat self-contained, we will repeat
here some of the details of the approach.

Due to the symmetry of the quadrature oscillator, we focus
on the I-part of it, all results being transferable to the -part
via a 90 phase shift. In fact, it will be enough to calculate the
phase-noise contribution of just one-half of the I-part, again be-
cause of symmetry. Therefore, we will concentrate on what hap-
pens at node (Fig. 1); the total phase noise can thereafter be
calculated as [13]

(11)

where all quantities are referred to node (to repeat, is
independent of this choice [13]).

A. Tank Losses

We start by considering the simple case of the noise generated
by the tank losses, whose stationary white noise current is given
by the well-known expression

(12)

where is Boltzmann’s constant, is the absolute tempera-
ture, is the equivalent parallel tank resistance accounting for
all tank losses, and is the ISF of such a noise source. How-
ever, is, by definition, the same as in (5); therefore, the
square rms value of is

(13)
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Combining (2), (9), and (13), and making use of the relation
, we obtain

(14)

However, the trigonometric relation

(15)

shows that (13) is in perfect accordance with (3), since the am-
plitude of the oscillation is

(16)

independently of (see also the Appendix 1).

B. Switching Transistors

Let us now turn to the more difficult treatment of the transistor
noise. As previously mentioned, switching pair and coupling
pair are independent of each other, so that they can be studied
separately. Calling and the currents in the switching
pair (see Fig. 1), and neglecting all parasitic components at the
common source, we obtain

(17)

The above equation, together with (7)–(8), results, after some
simple algebraic manipulations [4], in

(18)

(19)

where ( being the electron mobility,
the gate oxide capacitance per unit area, and and

the transistor width and length, respectively), and where

(20)

divides the operation mode of the differential pair into two
regions: for or

, both transistors are working in saturation; otherwise, one
of them is turned off. From (18)–(19), the transconductances of
the switching transistors are given by

(21)

(22)

We make now use of the result demonstrated in [4], which states
that the ISF of the noise current displayed by is

(23)

where a commonly used expression for the power of is

(24)
with

(25)

and

(26)

and where the simplifying assumption is made that is pro-
portional to through .

From (10), (24), and (26), the effective ISF for becomes

(27)

After a few simplifications, can be written as

(28)

where

(29)

and

(30)

It has been shown [4] that, for , the following relation
(with the notation adopted in this work) is an almost exact so-
lution of (29)

(31)

Further, we can express the factor under the integral
sign in (29) as

(32)
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TABLE II
SIMULATED/CALCULATED NOISE CONTRIBUTIONS (IN10 � V /Hz) AT 1-MHz OFFSET FREQUENCY FROM THE CARRIER, FOR EACHR;M , ANDM

IN THE 5-GHz dsPQO OF FIG. 1

and notice that, for small values of , the term
in is negligible compared to the term in ; therefore,
(29) can be simplified as

(33)

From (2), (9), (16), (28), and (33), the final equation for
is

(34)

The above equation proves that is (ideally) independent
of , as was strongly suggested by Table I.

C. Coupling Transistors

Looking again at Fig. 1, it is clear that we can repeat the whole
treatment of the previous section for the coupling pair as well,
provided that all equations for transistor currents, transconduc-
tances, and noise are time shifted by (i.e., phase shifted
by ), and that is substituted with . The only
equation that should not be phase shifted is in (23), as

is the same for all noise sources flowing into node .
We are, however, not so much interested in the transistor

equations per se, but rather in the final value of ,
to be obtained with the same procedure that lead to (28). There-
fore, we can exploit the fact that all the phase shifted equations
figure under the integration sign, by performing a phase
shift of the integration variable. In this way, we can reuse most
of the results obtained in the previous section, once in (27)–(30)
we substitute with with
with , and with , where

(35)

In particular, reusing (29) we obtain quickly as

(36)

Again, for small values of ,
and (36) results in

(37)

From (2), (9), (16), (28), and (37), the final equation for
is

(38)
which is easily simplified to

(39)

given the relation

(40)

It is noteworthy that does not depend on , as
did not depend on ; however, is a very strong func-
tion of , while we have seen that is independent of it.
This was again expected from Table I.

From (14), (34), and (38), we find that the ratios of the three
phase-noise-generating noise powers are very simple functions
of

(41)

Table II shows the values of , and ,
for several values of , calculated by means of the previously
derived equations, together with the simulated values. The
agreement between calculations and simulations is excellent
for and , while the (small) discrepancies in

are most likely due to the presence of higher-order
harmonics in the full expression of .

V. PHASE NOISE ANALYSIS OF THE CSPQO

A. Current Waveforms in the csPQO

Although the csPQO looks superficially very similar to the
dsPQO, the current waveforms in the two oscillators are in re-
ality very different. As shown in Figs. 3 and 5, if switch and
coupling transistors have the same dimensions, each transistor
in the csPQO conducts the whole tail current (which in this case
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Fig. 5. Voltage and current waveforms for the I-half of the csPQO in Fig. 2.

is obviously common for all four transistors) for one fourth of
the period. Incidentally, this way of operation also means that
the conversion of the dc bias current into the first harmonic of
the tank current in phase with the tank voltage (called hereafter

, while we call the first harmonic of the tank cur-
rent in quadrature with the tank voltage) is more efficient in the
csPQO than in the dsPQO. In fact, from Fig. 5 we obtain

(42)

Considering that, for a fair comparison, we must have
( because of symmetry), it is

clear that is a factor larger in the csPQO than in the
dsPQO.

A very significant difference between csPQO and dsPQO is
that changing the ratio between and is much
less straightforward in the csPQO, since here the two currents
are not neatly separated in two noninteracting differential pairs.
Defining the effective coupling factor as

(43)

we can, to some extent, vary by varying , defined as the
ratio of the width of to the width of (as-
suming that all transistor lengths are identical):

(44)

Jumping over the somewhat tedious but elementary derivations
of the formulas, the amplitude of is found to be (as-

suming square-wave-like waveforms)

(45)

while the amplitude of is

(46)

where is defined as

(47)

To calculate the phase noise generated by the transistors, we
must again find the expressions for the transistor currents during
transitions. As an example, during the transition from to ,
indicated in Fig. 5, the equations for and are
(omitting again intermediate calculations)

(48)

and

(49)

with

(50)

and

(51)
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TABLE III
SIMULATED/CALCULATED NOISE CONTRIBUTIONS (IN 10 � V /Hz) AT 1-MHz OFFSET FREQUENCY FROM THE CARRIER, FOR EACHR;M , ANDM

IN THE 5-GHz csPQO OF FIG. 2

Equations (48)–(50) are valid for , with

(52)

B. Phase Noise in the csPQO

Looking again at Figs. 2 and 5, we notice that each tran-
sistor generates noise only during one current transition, and
not during both, as was the case in the dsPQO. To understand
why, we consider e.g., , and notice that when the tail cur-
rent switches from to , no noise is injected into
the tank, since these two transistors are in parallel to each other,
and the net noise they inject into the tank is zero, because of the
cascode effect from the common source node. When the current
switches from to , on the other hand, noise is in-
jected into the two tanks, in the same fashion as in the dsPQO
case. Thus, this transition does create phase noise.

Phase noise calculations for the csPQO are of course very
similar to those for the dsPQO. We assume again that the ISFs
are as in (5)–(6), with given by

(53)

Considering how was derived in (12)–(14), it is clear
that is the same in both csPQO and dsPQO (for iden-
tical values of , of course). However, this is not to say that the
phase noise generated by is the same as well, since we have
seen that the oscillation amplitude is in general different in the
two oscillator. To repeat, for the same current consumption and
for , the oscillation amplitude is higher in the
csPQO, resulting, via (2), in a 3-dB lower phase noise for this
noise source.

The phase noise contributions from the transistors are cal-
culated repeating exactly the same procedure followed for the
dsPQO. As an example, the effective ISF for during the
transition from to (Fig. 5) is

(54)

where and are immediately derived from (48)–(49).
It is worth noticing that, although this transition is the only time
when produces phase noise, it does so when the absolute
value of is at a maximum, as is clear from (5) with

.
From (54), it is straightforward to calculate , and

subsequently the phase noise caused by . The above pro-

cedure is then repeated for , and for all other transitions.
Table III shows a comparison between calculations (this time
all integrals have been evaluated numerically) and simulations

of phase noise contributions in a csPQO, for various values of
the nominal coupling factor . The values of the tank compo-
nents are the same as in the dsPQO case; further, A/V ,
and . As is clear from the table, theory and simu-
lations match again very well. It is interesting to notice that, for

, the three noise sources are very nearly in the propor-
tions

(55)

Indeed, with some patience and Maple’s help, it is possible to
show that, for and small values of , the
equalities

(56)

are very good approximations of the exact values for
, and .

VI. CONCLUSION

The importance of adopting a time-variant theory in the
study of phase noise has been made evident through the anal-
ysis of two topologies of quadrature LC-tank oscillators. While
a straightforward, time-invariant approach failed even at the
qualitative level, the time-variant treatment employed in this
work resulted in a number of compact and accurate closed-form
formulas for the phase noise generated by the most important
white noise sources in the oscillator cores. These formulas are
able to account very well for the extensive numerical simulation
results used to benchmark the study.

APPENDIX

Equations (5)–(6) will be formally derived in this Appendix.
To do this, we resort to a more powerful (although far less intu-
itive) theory than Hajimiri’s, namely Kärtner’s3 [19]. Although
applied to the specific case of the dsPQO, it is clear that the ap-
proach is valid in the general case, enabling in principle the sym-
bolic analysis of phase noise in any kind of autonomous circuits
(we may mention here the several PQO architectures contained
in the reference list), provided that sensible simplifications are
possible. For this reason, we believe it is of interest to show a
worked-out example of the application of the theory. In the fol-
lowing, we will use Kärtner’s original treatment and notation
wherever possible, and notably in (57)–(61).

An oscillator is a dynamic system, described by the set of
nonlinear differential equations

(57)

3Our phase noise analysis in [13] made use of yet another paper by Kärtner,
namely [18].
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where is the vector of the state variables (i.e., voltages across
capacitors and currents through inductors), and is the vector
of the noise sources. Let us define the components of a matrix

as

(58)

and let be the steady-state solution of the adjoint system

(59)

It is possible to show that

(60)

and, most importantly, that

(61)

where is the excess phase caused by the noise vector [19].
It is clear that the vector in Kärtner’s theory plays a role

analogous to the ISFs in Hajimiri’s theory. Without entering
into the rather lengthy details of the derivation, it is possible
to show that, for a (quasi)-sinusoidal oscillation of amplitude
and angular frequency , the following identity is valid:

(62)

where is the ISF relative to circuital node , and is the
component of relative to the same node.

A. Phase Noise Analysis of the Single-Ended dsPQO

In the following, we are going to derive (62) for the dsPQO,
and show that it yields (5)–(6). We treat for simplicity the case
when only two quadrature signals are generated (i.e., a single-
ended architecture, see Fig. 6); it will, however, be clear that the
procedure is directly extended to the four-phase case. Referring
to Fig. 6, (57) is written explicitly as

(63)

(64)

(65)

(66)

where is the in-phase current injected by
into the -tank ( -tank), while is

the quadrature current injected by into the -tank
( -tank). The directions of and in Fig. 6 corre-
spond to the signs of the coupling between the two differential
oscillators in Fig. 1.

We assume that saturates at , and that saturates at
. If the commutations between the positive

and the negative current levels (and viceversa) are switch-like,
and if the of the tank is high enough, it is well known that, with
arbitrary initial phase, the approximate solution of the equation
system above is

(67)

(68)

(69)

(70)

where all current harmonics except the fundamental have been
discarded. Moreover, the oscillation amplitude is4

(71)

while the angular frequency of oscillation is [11], [14]

(72)

where

(73)

is the natural angular frequency of oscillation.5

From (58) and (63)–(66), DF is found without difficulty as
shown in (74), at the bottom of the page, and equation system
(59) is then written immediately as

(75)

(76)

4Equation (17) gives an amplitude double the one in (16). This is correct,
since the in-phase current injected into the tanks in Fig. 6 switches between
I and �I , while the in-phase current injected into the tanks in Fig. 1
switches between I and zero.

5In reality, a second solution set to (63)–(66) is possible, where ! � ! �

k=(2CR). Since the oscillator invariably chooses the condition (72), [14], we
treat only such a state.

(74)
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Fig. 6. Single-ended model for a quadrature oscillator.

(77)

(78)

The factors ,
and , are found exploiting the switch-like com-
mutations of the currents. Considering e.g., , we
assume that switches from to (and vicev-
ersa) over a very brief time (brief compared of course to
the oscillation period; see Fig. 7). Thus, over the commutation
around , we can write

(79)

where we have made use of (67) and (71). It is now straight-
forward to check that the same expression for
is valid for the transition from to . In the limit of

, we can write the expression of over
the whole oscillation period as

(80)

where is Dirac’s delta function. The other derivatives are
found with the same procedure, and are

(81)

(82)

(83)

We now make the informed guess that the solutions to (75) and
(77), respectively, are

(84)

(85)

which, through (76) and (78), yield immediately

(86)

Fig. 7. Waveforms for the calculation of (88), where @i (v )=@v is well
approximated by two Dirac’s delta functions.

(87)

Equation (75) (and (77) can now be solved for . Actually, due
to the presence of the delta functions, it is easier to solve the
integral of the two sides of (75). As an example, let us consider
the integration of the factor in (75)

(88)

where is the unit-step function, and a nonzero dc value
in general. Fig. 7 shows the waveforms for all relevant functions
appearing in (88). The term in (88) represents
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a square wave with levels 1 and 0 and a 50% duty cycle, and can
be expressed with its Fourier series as

(89)

From (88) and (89), the time-varying expression6 of (88) be-
comes

(90)

Applying the same procedure to the factor
in (75), the same (75) is easily integrated as

(91)

Discarding again all harmonics except the fundamental, we ob-
tain

(92)

which, exploiting (72), can be simplified as

(93)

from which (4) easily follows, repeated here

(94)

Equation (77) should be solved as well, since it might very
well be that (94) is not compatible with (77). However, repeating
the procedure just used for solving (75), it is simple to check that
(94) is indeed a requirement for (77) as well.

There remains to find the factor . Using (60), (67)–(70), and
(84)–(87), we obtain

(95)

6The overall dc value in (88) is discarded, as we are here only interested in
the fundamental component in each y .

from which

(96)

follows, given that . It is clear that the factor 2 at the
denominator of (96) results from the number of phases gener-
ated in the oscillator. Thus, in presence of differential quadrature
phases, this factor would be replaced with a factor 4. Calling this
factor in general, and substituting (84)–(85) and (96) in (62),
we obtain finally (5)–(6), repeated below,

(97)

(98)

which is the result we set out to demonstrate in this Appendix.
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