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Abstract— A Prediction-error-method tailored for model
based predictive control is presented. The prediction-error
method studied are based on predictions using the Kalman
filter and Kalman predictors for a linear discrete-time stochastic
state space model. The linear discrete-time stochastic state
space model is realized from a continuous-discrete-time linear
stochastic system specified using transfer functions with time-
delays. It is argued that the prediction-error criterion should
be selected such that it is compatible with the objective function
of the predictive controller in which the model is to be applied.
The suitability of the proposed prediction error-method for
predictive control is demonstrated for dual composition control
of a simulated binary distillation column.

I. INTRODUCTION

Predictive control computes the controls based on a pre-

diction of the outputs. The predictions are based on a model

of the system. Original model predictive control algorithms

developed for the process industries such as Dynamic Matrix

Control [1] and Model Predictive Heuristic Control [2]

are based on step an impulse response models for the

output predictions and introduce feedback by updating a bias

term representing an output disturbance. In contrast to the

approach applied by the process industries, the academic

system identification community developed predictive con-

trollers based on ARMAX (ARIMAX, CARIMA) models

[3]–[5]. Generalized Predictive Control [4] is the most

famous implementation of this class of predictive controllers

that use an ARMAX model for the filter in generating the

feedback as well as for the output predictions. The success of

these model based control algorithms and their applications

is to a large extent due to existence of efficient methods for

generation of the models needed by these controllers.

Modern predictive control is discussed in terms of state

space models [6]–[8]. These algorithms are based on a

discrete-time linear stochastic state space model. They apply

a Kalman filter to compute the current state based on the

measurements, and a Kalman predictor for predicting the

outputs [9]. State space based model predictive controllers

may be derived by realization of input-output models (i.e.

FIR, ARX, ARMAX models) in state space form. Subspace

identification may be regarded as state space realization of

ARX models. However, no advice has been given regarding

direct construction of a linear state space model suitable for

predictive control. Therefore, better identification methods
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for state space based predictive control are requested [10]–

[14].

This paper addresses construction of stochastic linear

state space models using the prediction-error-method and a

continuous-discrete time linear stochastic transfer function

parametrization [15]–[17]. In particular, we argue that for

predictive control the parameters in the model should be

based on the multi-step prediction error compatible with

the predictive controller in which the predictor is to be

used. Shah and coworkers [18]–[20] apply a similar multi-

step approach based on impulse response models and a

least-squares criterion. The approach presented in this paper

distinguishes itself by being general for linear systems, by

applying a maximum likelihood criteria for the prediction

errors in the estimator, and in particular by providing models

that are tuned for state space model based predictive control

in its modern implementation.

II. PREDICTIVE CONTROL

The predictive controller considered assumes that the

system, S, can be described by a linear stochastic discrete-

time difference equation of the form

xk+1 = A(θ)xk + B(θ)uk + wk (1a)

yk = C(θ)xk + vk (1b)

in which
[

wk

vk

]

∼ Niid

([

0
0

]

,

[

Rww(θ) Rwv(θ)
Rwv(θ)′ Rvv(θ)

])

(1c)

and

x0 ∼ N(x̂0|−1(θ), P0|−1(θ)) (1d)

The system matrices, (A = A(θ), B = B(θ), C = C(θ)),
are parameterized in terms of the parameter vector, θ. This

parameter vector is also used to specify the distribution of the

exogenous stochastic variables, i.e. to specify the covariance

matrices, (Rww = Rww(θ), Rwv = Rwv(θ), Rvv = Rvv(θ)),
of the noise terms as well as to specify the initial condition,

x̂0|−1 = x̂0|−1(θ), and its covariance P0|−1 = P0|−1(θ).
The states, xk, the process noise, wk, the measurement

noise, vk, and the outputs, yk, are stochastic vectors. As

x0, wk, and vk are normally distributed and the system is

linear, the states, xk, and the outputs, yk are also normally

distributed. The inputs, uk, are assumed to be deterministic

and in particular assumed to be uncorrelated with the process
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measurements, yk. This assumption implies that the IO-data,

{yk, uk}
N−1

k=0
, are collected for a system that operates in

open-loop.

Assume that the system matrices, noise covariance matri-

ces, and distribution of the model, M, and the true system, S,

are identical. Then prediction uncertainties and errors are due

to the stochastic nature of the initial state, the process noise,

and the measurement noise, but not due to any systematic

trend as a consequence of an incorrect model. In this case,

the optimal filter and predictor is the Kalman filter and

predictor [9]. Under the same assumptions the separation

principle is valid, and the optimal controller for the system

can be split into an estimator and a certainty equivalence

regulator.Obviously, the true system and the model are never

identical. The separation principle does not hold either, as the

system is constrained. Nevertheless, predictive control uses

the Kalman filter feedback, the Kalman predictor for the out-

put predictions, and separates the controller into an estimator

and a regulator. To guarantee offset free control in the case

of model-plant mismatch as well as unknown disturbances,

the model must be augmented with integrators [21], [22].

For ARMAX models this is achieved by differencing the

inputs and outputs [4]. In the face of these approximations

and deliberate model modifications introduced to obtain

steady-state offset-free control, it is clear that the structure

of the estimated model, M, in general will be different

from the structure of true system, S. Therefore, it seems

most reasonable to view the parameter-estimation purpose

to obtain good predictors for the predictive controller rather

than accurate parameters in the true unknown model [16].

A. Filter and Predictor

The filter and predictor used in the predictive controller

for the system (1) is the Kalman filter and predictor. The

recursions defining the Kalman filter and predictor along

with their covariances are stated in this subsection. The filter

and predictors are the conditional states, xk+j |Ik, and the

conditional outputs, yk+j |Ik, given the information vector

Ik defined recursively as Ik = {Ik−1, yk, uk−1}, I0 = {y0},

and I−1 = ∅. As all states, xk, and outputs, yk, are

normally distributed, the conditional states, xk+j |Ik, and the

conditional outputs, yk+j |Ik, are also normally distributed.

Normally distributed stochastic variables are completely

characterized by their mean and covariance.

The Kalman filter and predictor algorithm stated next is

the measurement-time updated Kalman filter and predictor

[9]. As new information, yk, becomes available, the gains,

Kfx,k and Kfw,k, and one-step prediction error, ek, of the

filter are updated according to

ŷk|k−1 = Cx̂k|k−1 (2a)

ek = yk − ŷk|k−1 (2b)

Re,k = CPk|k−1C
′ + Rvv (2c)

Kfx,k = Pk|k−1C
′R−1

e,k (2d)

Kfw,k = RwvR−1

e,k (2e)

The filtered state and filtered process disturbance are nor-

mally distributed, i.e. xk|Ik ∼ N(x̂k|k, Pk|k) and wk|Ik ∼
N(ŵk|k, Qk|k). The expressions for the filtered conditional

means are

x̂k|k = x̂k|k−1 + Kfx,kek (3a)

ŵk|k = Kfw,kek (3b)

and the expressions for the filtered conditional covariances

are

Pk|k = Pk|k−1 − Kfx,kRe,kK ′
fx,k (4a)

Qk|k = Rww − Kfw,kRe,kK ′
fw,k (4b)

The one-step-ahead prediction of the state, xk+1|Ik ∼
N(x̂k+1|k, Pk+1|k), and the measured output, yk+1|Ik ∼
N(ŷk+1|k, Rk+1|k), are also normally distributed. The one-

step-ahead prediction conditional means are

x̂k+1|k = Ax̂k|k + Bûk|k + ŵk|k (5a)

ŷk+1|k = Cx̂k+1|k (5b)

and the associated covariances are computed by

Pk+1|k = APk|kA′ + Qk|k − AKfx,kR′
wv − RwvK ′

fx,kA′

(6a)

Rk+1|k = CPk+1|kC ′ + Rvv (6b)

Similarly, the j-step-ahead predictions (j > 1) of the states,

xk+j |Ik ∼ N(x̂k+j|k, Pk+j|k), and the outputs, yk+j |Ik ∼
N(x̂k+j|k), are normally distributed. The j-step-ahead pre-

diction conditional means are

x̂k+j|k = Ax̂k+j−1|k + Bûk+j−1|k (7a)

ŷk+j|k = Cx̂k+j|k (7b)

and the associated conditional covariances are computed by

Pk+j|k = APk+j−1|kA′ + Rww (8a)

Rk+j|k = CPk+j|kC ′ + Rvv (8b)

The recursions (2)-(8) specifies the Kalman filter and pre-

dictor equations used by the predictive controller completely.

Often the j-step-ahead (j > 1) conditional covariance

equations (8) are not used directly in the predictive controller.

Equations (2) and (3) are used in the estimator part for

forming the filtered states and filtered process disturbances.

Equations (4), (5a), and (6a) are used in the estimator part

for updating the Kalman filter.

The described Kalman filter and predictor is implemented

numerically robust using the array algorithm [9].

B. Regulator

Given the conditional mean of the filtered state, x̂k|k,

and the conditional mean of the filtered process disturbance,

ŵk|k, the certainty equivalence predictive regulator applies
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equations (5) and (7) for predicting the mean of the condi-

tional outputs, ŷk+j|k, in the regulator objective function

φk =
1

2

Np
∑

j=1

(ŷk+j|k − rk+j|k)′Q(ŷk+j|k − rk+j|k)

+
1

2

Nc
∑

j=0

∆û′
k+j|kS∆ûk+j|k

(9)

The objective, φk, has a finite prediction horizon, Np, and

computes the optimal predicted inputs,
{

ûk+j|k

}Np−1

j=0
=

{

ûk+j|k

}Nc

j=0
∪

{

ûk+j|k

}Np−1

j=Nc+1
by solving

min
{ûk+j|k}

Np−1

j=0

φk (10a)

s.t. (5), (7) (10b)

ûk+j|k ∈ U(x̂k|k, ŵk|k) (10c)

ŷk+j|k ∈ Y(x̂k|k, ŵk|k) (10d)

and using some parametrization of the tail inputs,
{

ûk+j|k

}Np−1

j=Nc+1
[6], [8], [23]–[25]. The sets U(·, ·) and

Y(·, ·) denote input constraints, rate of movement input con-

straints, and output constraints. (10) is a quadratic program

with special structure for which efficient solution algorithms

exist [26]. Predictive control is implemented in a moving

horizon manner, which means that the first optimal control,

ûk|k, of the optimal control sequence obtained by solving

(10),
{

ûk+j|k

}Np−1

j=0
, is implemented on the process, i.e.

uk = ûk|k. In some implementations, the setup is modified

slightly to accommodate the duration of computation and the

implemented process input is uk = ûk|k−1.

The implemented process input, uk = ûk|k, is an implicit

function of the output predictions. The objective function

in the regulator of the model predictive controller requires

multi-step output prediction, i.e. ŷk+j|k for j = 1, 2, . . . , Np.

Hence, intuitively it seems natural to estimate the model

parameters based on multi-step prediction capabilities com-

patible with the regulator objective [18]–[20], [27], [28].

This is in contrast to the usual approach in which the

parameters are determined based on their single-step one-

step-ahead prediction capabilities. In yet another alterna-

tive, Np different models are identified, i.e. one model

for each single-step j-step-ahead output prediction, ŷk+j|k

for j = 1, 2, . . . , Np. This implies that instead of using

ŷk+j|k(θ) for j = 1, 2, . . . , Np, the predictors ŷk+j|k(θj) for

j = 1, 2, . . . , Np are proposed. This multi-model approach

has been applied for ARX models [29], [30] and is also

adopted in the MUSMAR (multi-step multi-variable adaptive

regulator) algorithm for predictive control [31], [32].

C. Parametrization and Realization

A parsimonious parametrization of the state space model

(1) is obtained using a multivariate stochastic transfer func-

tion specification

Z(s) = G(s; θ)U(s) + H(s; θ)E(s) (11a)

y(tk) = z(tk) + v(tk) (11b)

in which U(s) is the process input vector, E(s) is a vector

with white noise components, Z(s) is the process output

vector. v(tk) is the measurement noise vector and y(tk) is

the measured process output vector at time tk. The elements,

{gij(s)} and {hij(s)}, of the transfer function matrices,

G(s) and H(s), are rational transfer functions with time

delays

gij(s) =
bij(s; θ)

aij(s; θ)
exp(−τij(θ)s) (12a)

hij(s) =
dij(s; θ)

cij(s; θ)
exp(−λij(θ)s) (12b)

(11) is converted to a linear system of delayed stochastic

differential equations using an observer-canonical realization.

This system is converted to a stochastic discrete-time state

space model using a zero-order-hold input representation and

the theory for linear stochastic differential equations. Finally,

a minimal stochastic discrete-time state space model (1) is

obtained by model reduction using the Hankel-norm.

This realization process is conducted numerically by com-

putation of the discrete-time Markov parameters for each

SISO system. The resulting minimal discrete-time state space

system is realized from the Hankel matrix with all Markov

parameters.

D. Maximum Likelihood Prediction-Error Identification

The Np multi-step maximum-likelihood multi-step predic-

tion error estimate is compatible with the model predictive

controller with a prediction horizon of Np. This multi-step

maximum likelihood prediction error estimate is

θ̂ = arg min
θ∈Θ

VML(θ) (13)

in which the likelihood function is

VML(θ) =
nyf

2
ln(2π) +

1

2

N−2
∑

k=−1

ln (detRk) + ǫkR−1

k ǫk

(14)

f = Np[N − 1

2
(Np − 1)], ǫk = Y k − Ŷk(θ), Rk = 〈ǫk, ǫk〉,

and

Y k =











yk+1

yk+2

...

yk+Np











Ŷk(θ) =











ŷk+1|k(θ)
ŷk+2|k(θ)

...

ŷk+Np|k(θ)











(15)

{(yk, uk)}N−1

k=0
is the input-output data for which the esti-

mation is performed. Based on these data, Yk denotes the

realization of Y k and ǫk = Yk − Ŷk(θ). Rk has a special

structure that should be utilized in the efficient solution of

this multi-step maximum-likelihood estimation problem.

III. WOOD AND BERRY DISTILLATION EXAMPLE

In this section we demonstrate the proposed multi-step

prediction-error identification procedure for the Wood and

Berry distillation column separating methanol and water [33],

[34]. The Wood and Berry distillation column model is

Y (s) = G(s)U(s) + Gd(s)D(s) (16)
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Fig. 1. IO-data for the Wood and Berry distillation column simulated
using the model defined by (18) with the transfer functions (17). σ = 1 and
r1 = r2 = 1.0. The inputs, {u(t)}, are PRBS with bandwidth [0 0.01]
and levels [−0.5 0.5].

with

G(s) =

[

12.8e−s

16.7s+1

−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1

−19.4e−3s

14.4s+1

]

(17a)

Gd(s) =

[

3.8e−8.1s

14.9s+1
4.9e−3.4s

13.2s+1

]

(17b)

The variables in the model are: y1 is the overhead methanol

mole fraction, y2 is the bottom product methanol mole

fraction, u1 is the overhead reflux flow rate, u2 is the bottoms

steam flow rate, and d is the column feed flow rate.

The output data for the Wood and Berry distillation

column is generated using the stochastic model

Z(s) = G(s)U(s) + Gd(s)(D(s) + σE(s)) (18a)

y(tk) = z(tk) + v(tk) (18b)

with E(s) being white noise and σ = 1. The measurement

noise is

v(tk) ∼ Niid

([

0
0

]

,

[

r2
1 0
0 r2

2

])

(19)

in which r1 = r2 = 1.0. The sampling time of the system

is Ts = 1.0. In the identification experiment u is a pseudo

random binary sequence and the systematic feed flow rate

deviation, d, is set to zero.

The IO-data generated for this system and used for iden-

tification is plotted in figure 1. It is apparent that outputs are

highly co-linear, i.e.the system is ill-conditioned. This is a

well known phenomenon for distillation columns and may

in many cases require closed-loop identification or specially

designed perturbations suitable for the directionality of the

plant [35]–[37].

A. Identification of a Control Relevant Model

In the following the generated open-loop data will be used

for estimation of a process model, Ĝ(s), and a disturbance

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

y1

y
2

Fig. 2. Phase plane plot of the output data of the Wood and Berry
distillation column simulated using the model defined by (18) with the
transfer functions (17). σ = 1 and r1 = r2 = 1.0. The inputs, {u(t)},
are PRBS with bandwidth [0 0.01] and levels [−0.5 0.5]. The figure shows
that the output data are highly co-linear.

model, Ĥ(s). The application of this model for predictive

control is demonstrated.

The estimated model is of the form

Ẑ(s) = Ĝ(s)U(s) + Ĥ(s)Ê(s) (20a)

y(tk) = ẑ(tk) + v̂(tk) (20b)

in which Ĝ(s) is a transfer function with the same structure

as G(s). The disturbance model, Ĥ(s), has the structure

H(s) =

[

h11(s) 0
0 h22(s)

]

(21)

with

hii(s) =
1

s

σii

γiis + 1
i = 1, 2 (22)

Note that the disturbance model is equipped with integrators

in order to ensure steady-state offset-free control when the

model is applied in a predictive controller [21], [22]. Using

the multi-step maximum likelihood criterion, the estimated

model transfer functions are

Ĝ(s) =

[

13.21e−0.84s

17.20s+1

−18.52e−3.34s

20.67s+1
6.72e−7.69s

10.03s+1

−19.28e−3.07s

14.77s+1

]

(23a)

Ĥ(s) =

[

1

s
0.18

0.16s+1
0

0 1

s
0.27

0.16s+1

]

(23b)

and the estimated covariance of the measurement noise is

R̂vv =

[

1.032 0
0 1.042

]

(23c)

In this particular disturbance model, we have not utilized

that the impact of the actual disturbance on the outputs are

correlated even though this is evident from the estimated

disturbance model. This implies that the estimated model is

essentially two MISO models.

The step responses of the estimated transfer function,

Ĝ(s), and the true transfer function, G(s), are shown in
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Fig. 4. Low and high gain plots for the true model (dashed line) and the
estimated model (solid line) of the Wood and Berry distillation column. It
is evident that the error of the estimated model is almost entirely in the
low gain direction, while the gain in the high gain direction is estimated
accurately.

figure 3. It is evident that the estimated model represents the

true model well. To illustrate the identification consequences

of having co-linear output data as shown in figure 2, the high

gain and low gain direction gains are plotted as function

of frequency in figure 4. It is evident that the gain in the

high gain direction is estimated accurately, while there is

some error in the estimate of the gain in the low gain

direction. This phenomena is well known for ill-conditioned

plants and can be overcome by closed-loop identification or

identification experiments taking the high-gain and low-gain

direction into account.

B. Model Predictive Control

The suitability of the proposed identification method for

predictive control is validated by application of the identified
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Fig. 5. The Wood and Berry distillation column controlled by a predictive
controller. Top: Outputs (z, solid line) and measured outputs (y, dotted line).
Bottom: Controlled process inputs, u.
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Fig. 6. The process outputs, z, for the Wood and Berry distillation column
controlled by a predictive controller (solid line) and the identical scenario
without control (dotted line).

model (23) for the design of a constrained multivariable

predictive controller. This controller is tested in a simulation

using (18) as the plant. The transfer functions are defined

by (17), σ = 1 and the measurement noise covariance is

defined by (19). At time t = 150 a deterministic feed flow

step disturbance, d = 1, occurs. This disturbance is unknown

to the controller. At time t = 400, the disturbance disappears

again.

The performance of the model predictive controller is

shown in figure 5. In the upper plots the noise free outputs,

z1 and z2, as well as the measurements, y1 and y2, are

shown. The measurement noise is significant. Its effect on

the measured output is of the same order of magnitude as the

effect of the process noise. This corresponds to the common

industrial plant using low resolution sensors contaminated
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with a high level of measurement noise. In this situation,

no control system can completely eliminate the effect of

the process noise on the outputs. However, as is evident by

figure 6 which compares the open-loop outputs, (z1 and z2,

dotted line), to the closed-loop outputs, (z1 and z2, solid

line), the controller rejects the disturbance and performs

marginally better than the no-control (open-loop) case in

the situation with only white process noise. This closed-

loop performance of the constrained predictive controller

indicates that the proposed prediction-error- methodology is

suitable and feasible for identification of models that can

be used by a predictive controller. For the performance of

the controller in the situation with model-plant mismatch as

well as unmeasured disturbance, it is important that the noise

model is equipped with integrators. In addition identification

of parameters in stochastic transfer functions with delays

have proven feasible and very useful for specification of

predictive controllers.

IV. CONCLUSION

A constructive method for estimation of parameters in

continuous-discrete-time stochastic systems parametrized by

transfer functions with time delays has been described. The

method applies a multi-step maximum-likelihood prediction-

error criterion. The predictions are generated using the

Kalman filter and Kalman predictor for a stochastic linear

discrete-time state space model, which is a realization of a

continuous-discrete-time stochastic transfer function model

with time delays. The multi-step prediction-error criteria may

be selected such that it is compatible with the optimization

criterion in the intended predictive control application. The

feasibility of the suggested approach for predictive control

is demonstrated using the Wood and Berry [33] distillation

example. In particular, the design of predictive controllers us-

ing continuous-discrete-time stochastic models specified by

transfer functions with delays has proven very convenient.
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