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Abstract— We present a novel numerically robust and com-
putationally efficient extended Kalman filter for state estimation
in nonlinear continuous-discrete stochastic systems. The result-
ing differential equations for the mean-covariance evolution of
the nonlinear stochastic continuous-discrete time systems are
solved efficiently using an ESDIRK integrator with sensitivity
analysis capabilities. This ESDIRK integrator for the mean-
covariance evolution is implemented as part of an extended
Kalman filter and tested on a PDE system. For moderate
to large sized systems, the ESDIRK based extended Kalman
filter for nonlinear stochastic continuous-discrete time systems
is more than two orders of magnitude faster than a conventional
implementation. This is of significance in nonlinear model
predictive control applications, statistical process monitoring as
well as grey-box modelling of systems described by stochastic
differential equations.

I. INTRODUCTION

The objective of state estimation is to reconstruct the state

of a system from process measurements given a model. State

estimation has important applications in nonlinear model

predictive control as well as in monitoring, prediction and

fault detection. Several approaches to state estimation in

systems modelled by ordinary differential equations exist.

They include a rigorous probabilistic method solving Kol-

mogorov’s (Fokker-Planck’s) forward equation [1], [2] as

well as approximative methods such as extended Kalman

filtering (EKF) [3], [4] and optimization based approaches

usually referred to as moving horizon estimation (MHE)

[5]–[7]. The probabilistic approach based on solution of

Kolmogorov’s forward equation is applicable only to the

simplest systems due to its requirement for solution of

partial differential equations with the number of independent

variables equal to the number of stochastic states. Moving

horizon estimation has gained some popularity recently due

to its similarity to model predictive control and its abil-

ity to handle constraints on the states and the stochastic

process disturbances. While moving horizon estimation has

a number of desirable properties compared to for instance

extended Kalman filtering [8], its application in relation to

model identification and in particular systematic rigorous

grey-box model identification [9]–[11] seems problematic

due to the computational demanding optimization needed

for each state estimate. Grey-box identification for moving
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horizon estimation would give rise to several nested layers of

optimization yielding a computational infeasible procedure.

Undoubtedly, the extended Kalman filter is the most widely

adopted state estimation technology for nonlinear systems

and remains the standard technology for state estimation in

nonlinear model predictive control applications despite recent

popularity of moving horizon estimation [4], [12]–[18]. Fur-

thermore, systematic methods for grey-box identification of

nonlinear models used in continuous-discrete time extended

Kalman filters exist [9], [10], [19], [20].

This paper is organized as follows. Section II introduces

the extended Kalman filter for continuous-discrete stochas-

tic systems and presents an efficient numerical algorithm.

Section III demonstrates the performance of the new EKF

algorithm based on scalable PDE system, while Section IV

provides the conclusions.

II. NUMERICAL IMPLEMENTATION

In this section, we develop a robust yet efficient numerical

procedure for filtering and one-step ahead prediction by the

extended Kalman filter for the continuous-discrete stochastic

system [1], [21], [22]

dx(t) = f(t,x(t))dt + σdω(t) (1a)

y(tk) = h(tk,x(tk)) + vk (1b)

in which ω(t) : t ≥ 0 is a standard Wiener process and σ is

a time invariant matrix. σ is time-invariant in many practical

problems [9], [23]. For this reason and due to numerical

efficiency considerations, we specialize to the case with

σ(t) = σ being time-invariant. The measurement noise is

normally distributed, vk ∼ N(0, Rk), and the initial state is

a realization of a random variable with finite first and second

moment, i.e. x0 ∼ F(x̂0|−1, P0|−1).
The major operation in the continuous-discrete extended

Kalman filter concerns integration of the mean-covariance

pair

dx̂k(t)

dt
= f(t, x̂k(t)) (2a)

dPk(t)

dt
= A(t)Pk(t) + Pk(t)A(t)′ + σσ′ (2b)

with

A(t) =
∂f

∂x
(t, x̂k(t)) (2c)
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and initial conditions

x̂k(tk) = x̂k|k (2d)

Pk(tk) = Pk|k (2e)

The mean-covariance pair defined by (2) is solved numeri-

cally by solution of

dx̂k(t)

dt
= f(t, x̂k(t)) x̂k(tk) = x̂k|k (3a)

dΦ(t, s)

dt
= A(t)Φ(t, s) Φ(s, s) = I (3b)

in which

A(t) =
∂f

∂x
(t, x̂k(t)) (3c)

and

Pk(t) = Φ(t, tk)Pk|kΦ(t, tk)′

+

∫ t

tk

Φ(t, s)σσ′Φ(t, s)′ds
(3d)

In the implemented algorithm the matrix square root,

Pk(t)1/2, rather than Pk(t) itself is computed.

A numerical procedure for solution of (3) based on the

ESDIRK algorithm is presented [24], [25]. The ESDIRK

algorithm is an explicit singly diagonal implicit Runge-Kutta

method. The implementation is equipped with an adaptive

step size controller such that the computed solution satisfies

certain accuracy specifications. The method is constructed to

be able to handle stiff systems and it is a single-step method.

In contrast to multi-step methods e.g. BDF methods, single-

step mehtods are ideally suited for systems with frequent

discontinuities [25], [26]. For computer controlled systems,

discontinuities typically arise at each sample time because

the manipulated process inputs are adjusted. In addition,

the ESDIRK algorithm is simple to implement and easy to

modify. This implies that the ESDIRK algorithm may be

used to solve (3) for x̂k(tk+1) and Pk(tk+1)
1/2 in a way

that is not much more computational expensive than solving

(3a) for x̂k(tk+1).

A. The ESDIRK Method

The ESDIRK method is described in [25]. Here, an outline

of the algorithm for solution of (3a) is provided. At each

internal integration step chosen by the step-size controller,

the following Runge-Kutta equations are solved

Ti = tn + cih i = 1, 2, 3, 4 (4a)

Xi = xn + h
i

∑

j=1

aijf(Ti,Xi) i = 1, 2, 3, 4 (4b)

xn+1 = xn + h

4
∑

i=1

bif(Ti,Xi) (4c)

en+1 = h
4

∑

i=1

dif(Ti,Xi) (4d)

in which the coefficients of ESDIRK methods are described

by the Butcher tableau

0 0
c2 a21 γ
c3 a31 a32 γ
1 b1 b2 b3 γ

xn+1 b1 b2 b3 γ
en+1 d1 d2 d3 d4

=

c A
b

T

d
T

(5)

en+1 is an estimated error of the solution. This estimated

error is used by the step-length controller to adjust the step

size, h. The main numerical effort for each integration step

concerns solution of (4b). (4b) may be stated as the nonlinear

system of equations

Ri(Ti,Xi) = 0 i = 1, 2, 3, 4 (6)

with the residual, Ri(Ti,Xi), defined as

Ri(Ti,Xi) = Xi − xn − h

i
∑

j=1

aijf(Tj ,Xj)

= Xi − hγf(Ti,Xi) − xn −
i−1
∑

j=1

haijf(Tj ,Xj)

(7)

It should be noted, that (6) needs to be solved for i = 2, 3, 4
only, as X1 = xn. In addition, as a consequence of the

diagonal structure of the A-matrix in the Butcher tableau for

ESDIRK methods, Xi with i = 2, 3, 4 can be computed

successively rather than simultaneously. (6) is solved by

Newton’s method, i.e.

M∆Xi = −Ri(Ti,X
(l)
i ) (8a)

X
(l+1)
i = X

(l)
i + ∆Xi (8b)

in which the iteration matrix, M , is defined by

M = I − hγA A =
∂f

∂x
(tn, xn) (8c)

In computational efficient ESDIRK algorithms for integra-

tion of (3a) only, the iteration matrix, M , is evaluated and

factorized adaptively and not at every integration interval.

For the joint computation of the mean and state sensitivities,

(3a)-(3b), by the staggered direct method [27], the iteration

matrix, M , and the Jacobian, A = ∂f
∂x (tn, xn), are needed at

every integration interval. Consequently, in the implementa-

tion considered in this paper, the iteration matrix is evaluated

and factorized for each integration step, i.e. at {tn, x(tn)}.

B. State Sensitivities and Covariance

In the solution of (3b), we invoke the following assumption

Assumption 1 (Constant Jacobian Matrix): The Jacobian

matrix

A(t) = A =
∂f

∂x
(tn, x(tn)) t ∈ [tn, tn+1 = tn + h] (9)

is constant in each integration interval, [tn, tn+1 = tn + h],
accepted by the step-length controller.
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Numerical experience has demonstrated that this is an excel-

lent assumption, because the step-length controller reduces

the step length in regions where the solution changes unpre-

dictably, i.e. in regions in which A(t) is not constant. Hence,

due to the adjusted step-length, h, the Jacobian, A(t) = A, as

well as the iteration matrix, M = I−hγA, may be assumed

to be constant in all integration intervals accepted by the

step-length control algorithm.

By Assumption 1, (3b) may be written as

dΦ(t, s)

dt
= AΦ(t, s) Φ(s, s) = I (10)

which for time invariant matrices, A, has the solution [28]

Φ(t, s) = exp [A(t − s)] (11)

In addition, due to the time invariance in the interval

[tn, tn+1], the state transition matrix, Φ(t, s), may be ex-

pressed as

Φ(t, s) = Φ(t − s, 0)

= exp [A(t − s)] = exp (Aτ) = Φ(τ)
(12)

in which τ = t − s. This implies
∫ tn+1

tn

Φ(tn+1, s)σσ′Φ(tn+1, s)
′ds =

∫ tn+1

tn

Φ(tn+1 − s)σσ′Φ(tn+1 − s)′ds =

−
∫ τ=0

τ=tn+1−tn

Φ(τ)σσ′Φ(τ)′dτ =

∫ h

0

Φ(τ)σσ′Φ(τ)′dτ

(13)

in which τ = tn+1 − s. For illustration, assume that Pn =
Pk|k and tk = tn. Then, using Φ(t, tk) = Φ(t, tn) =
Φ(t, tn+1)Φ(tn+1, tn), we obtain

Pk(t) = Φ(t, tk)Pk|kΦ(t, tk)′ +

∫ t

tk

Φ(t, s)σσ′Φ(t, s)′dt

= Φ(t, tn+1)Pn+1Φ(t, tn+1)
′

+

∫ t

tn+1

Φ(t, s)σσ′Φ(t, s)ds

(14)

in which

Pn+1 = Φ(tn+1, tn)PnΦ(tn+1, tn)′

+

∫ tn+1

tn

Φ(tn+1, s)σσ′Φ(tn+1, s)
′ds

= Φ(h)PnΦ(h)′ +

∫ h

0

Φ(τ)σσ′Φ(τ)′dτ

(15)

Consequently, for each integration interval, [tn, tn+1 =
tn + h], accepted by the step-length control algorithm we

may under Assumption 1 propagate the covariance matrix

Pn = P (tn) = Pk(tn) to the covariance matrix Pn+1 =
P (tn+1) = Pk(tn+1) by solution of

dΦ(τ)

dτ
= AΦ(τ) Φ(0) = I (16a)

Pn+1 = Φ(h)PnΦ(h)′ +

∫ h

0

Φ(τ)σσ′Φ(τ)′dτ (16b)

in which A = ∂f
∂x (tn, x(tn)). (16a) is the sensitivity equation

and may be solved in the quadrature points using the

ESDIRK integration scheme, i.e.

Φ1 = I (17a)

Φ2 = M−1 (I + ha21A) (17b)

Φ3 = M−1 (I + A(ha31I + ha32Φ2)) (17c)

Φ4 = M−1 (I + A(ha41I + ha42Φ2 + ha43Φ3)) (17d)

in which Φi = Φ(τi) and τi = cih. Note that the iteration

matrix, M = I − hγA, is already factorized and this

factorization may be reused. Subsequently, (16b) is solved

by the quadrature formula of ESDIRK, i.e.

Pn+1 = Φ(h)PnΦ(h)′ +

∫ h

0

Φ(τ)σσ′Φ(τ)′dτ

≈ Φ4PnΦ′
4 +

4
∑

i=1

hbiΦiσσ′Φ′
i

= Φ4PnΦ′
4 + hb1σσ′ +

4
∑

i=2

hbiΦiσσ′Φ′
i

(18)

Let Q = σσ′ = Q1/2QT/2 in which Q1/2 is the matrix

square root of Q. The matrix square root is a lower triangular

matrix. The square root, P
1/2
n , may be propagated into the

square root, P
1/2
n+1, by the following sequence of orthogonal

transformations [4]
[

Φ4P
1/2
n

√
hb1Q

1/2
]

Θ1 =
[

X1/2 0
]

(19a)
[

X1/2 Φ2

√
hb2Q

1/2
]

Θ2 =
[

Y 1/2 0
]

(19b)
[

Y 1/2 Φ3

√
hb3Q

1/2
]

Θ3 =
[

Z1/2 0
]

(19c)
[

Z1/2 Φ4

√
hb4Q

1/2
]

Θ4 =
[

P
1/2
n+1 0

]

(19d)

C. Integration Algorithm

The ESDIRK implementation for solution of (3) and

thereby solution of (2) is stated in Algorithm 1. The algo-

rithm solves (3) in the time interval [tk, tk+1]. For systems

with constant sample time, Ts, the final time is tk+1 =
tk + Ts. However, the method is not restricted to systems

with constant sampling time and this is emphasized by the

general notation.

Based on the accuracy specifications, Algorithm 1 applies

a step-length controller [25] to subdivide the time interval,

[tk, tk+1], into smaller intervals. A solution to (3a) is ac-

cepted when it meets the accuracy specifications. At each

solution acceptance, the square root of the covariance is

propagated using Algorithm 2. Algorithm 2 is based on

Assumption 1 in the time subinterval [t, t + h].
The ESDIRK algorithm for solution of (2) as well as (3)

may be stated compactly as

[x̂k+1|k, P
1/2
k+1|k] =

ESDIRK(tk, tk+1, x̂k|k, P
1/2
k|k , Q1/2)

(20)

and consists of Algorithm 1 and 2. The inputs to the

algorithm is the initial and final time, tk and tk+1, the initial
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state (filtered state estimate), x̂k(tk) = x̂k|k, the matrix

square root, Pk(tk)1/2 = P
1/2
k|k , of the initial state covariance

(filtered state covariance), and Q1/2 defined by the relation

σσ′ = Q1/2QT/2. The outputs from the algorithm are

the predicted state, x̂k+1|k = x̂k(tk+1), and the matrix

square root of the associated state covariance, P
1/2
k+1|k =

[Pk(tk+1)]
1/2

.

D. EKF Algorithm

A numerical procedure using ESDIRK for the extended

Kalman filter of the continuous-discrete system (1) is stated

in Algorithm 3. The initialization of Algorithm 3 is stated

in Algorithm 4. For numerical robustness, the algorithm

propagates the matrix square roots of the involved covariance

matrices [4]. The arrangement of the operations in some

implementations may vary from the arrangement stated in

Algorithm 3. The order of the filter and prediction operations

is mainly dependent on the intended applications of the

extended Kalman filter.

The particular continuous-discrete time extended Kalman

filter defined by Algorithm 3 and 4 is stated for a general

state estimation application with non-uniform arrival of mea-

surements in mind. Though for notational simplicity it is

not stated in the algorithm, the extended Kalman filter is

implemented with possible missing observations indicated by

a status flag on the measurement vector. Rows corresponding

to non-valid measurements are simply removed from yk,

ŷk|k−1 and Ck. Columns and rows corresponding to missing

observations are removed from Rk, and a lower triangular

square root matrix of the result is computed. By allowing

missing observations, the algorithm can quite easily be em-

bedded in a procedure that handles delayed measurements,

i.e. laboratory measurements.

For control applications with fixed sampling time, Ts, and

no missing observations the order of the one-step ahead

predictor and filter of the extended Kalman filter may be

rearranged. In the control case, it is important to compute

the state estimate and subsequently the control as fast as

possible in order to minimize the computational delay. Based

on stored values of
{

ŷk|k−1, R
1/2
k|k−1, K̄fx,k

}

, the filtered

estimate, x̂k|k, is computed by a few matrix-vector operations

as a new measurement, yk, becomes available. The filtered

state, x̂k|k, may then be used as the initial state in a nonlinear

predictive control computation and the computed initial

control implemented before the extended Kalman filter is

updated by the computations in the one-step ahead prediction

block.

In all cases, the implementation of the extended Kalman

filter for continuous-discrete systems is simplified consid-

erably by use of the ESDIRK algorithm which handles

the real computational complexity of the continuous-discrete

extended Kalman filter.

III. EXAMPLE: ADIABATIC FIXED-BED REACTOR

To illustrate the efficiency of the proposed extended

Kalman filter algorithm, we consider a model of an adiabatic

Algorithm 1 ESDIRK34 with Covariance

Require: tk, tk+1, x̂k|k, P
1/2
k|k , Q1/2

t = tk, xn = x̂k|k, P
1/2
n = P

1/2
k|k .

while t ≤ tk+1 do

If t + h > tk+1 then h = tk+1 − t end if.

Compute

A =
∂f

∂x
(tn, xn) (21a)

M = I − hγA (21b)

and LU -factorize M .

Compute the internal stages iteratively for i = 2, 3, 4
using the LU -factorization of M :

while tol ≤ ‖R‖ do

Compute the residual vector R and solve for ∆Xi

R(X
(l)
i ) = X

(l)
i − hγf(Ti,X

(l)
i )

− xn − h

i−1
∑

j=1

aijfj

(22a)

M∆Xi = R(X
(l)
i ) (22b)

X
(l+1)
i = X

(l)
i − ∆Xi (22c)

end while

Compute the error estimate en+1 and tolerance monitor

r:

en+1 =
4

∑

j=1

hdjfj (23a)

r =

√

√

√

√

1

ns

ns
∑

i=1

(

(en+1)i

atoli + |(xn)i| rtoli

)2

(23b)

if r ≤ 1 then

Accept the step, update the time t ← t+h, and update

the solution

xn+1 = X4 (24)

Compute the covariance P
1/2
n+1 using Algorithm 2 and

P
1/2
n as initial condition.

Compute new step size h using the error controller.

else

Compute a new step size h using the error controller.

end if

end while

Return: x̂k+1|k = xn+1, P
1/2
k+1|k = P

1/2
n+1
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Algorithm 2 Approximate Covariance

Compute the state sensitivities

Φ2 = M−1 (I + ha21A) (25a)

Φ3 = M−1 (I + A(ha31I + ha32Φ2)) (25b)

Φ4 = M−1 (I + A(ha41I + ha42Φ2 + ha43Φ3)) (25c)

using the LU-factorization of M .

Compute square root matrices by orthogonal transforma-

tions (Householder operations)

[

X1/2 0
]

←
[

Φ4P
1/2
n

√
hb1Q

1/2
]

Θ1 (26a)
[

X1/2 0
]

←
[

X1/2 Φ2

√
hb2Q

1/2
]

Θ2 (26b)
[

X1/2 0
]

←
[

X1/2 Φ3

√
hb3Q

1/2
]

Θ3 (26c)
[

X1/2 0
]

←
[

X1/2 Φ4

√
hb4Q

1/2
]

Θ4 (26d)

Set P
1/2
n+1 = X1/2. Return P

1/2
n+1.

fixed-bed reactor with a feed-effluent heat-exchanger. This

model has been extensively used for bifurcation studies of

distributed systems [29]. In this paper, the model is used to

benchmark the EKF algorithm based on ESDIRK for differ-

ent model orders resulting from the spatial discretization. Let

α = α(x, t) be the conversion of a reactant and θ = θ(x, t)
be the dimensionless temperature as function of position, x,

in a fixed-bed reactor and time, t. Then the model of the

fixed bed reactor consists of the system of partial differential

equations

ε
∂α

∂t
= −∂α

∂x
+

1

Pem

∂2α

∂x2
+ DaR(α, θ) (34a)

∂θ

∂t
= −∂θ

∂x
+

1

Peh

∂2θ

∂x2
+ DaR(α, θ) (34b)

in which the reaction rate is given by

R(α, θ) = (1 − α)r exp

(

γ
βθ

1 + βθ

)

(34c)

The boundary conditions are

α(0, t) =
1

Pem

∂α

∂x

∣

∣

∣

∣

x=0

(34d)

θ(0, t) = fθ(1, t) +
1

Peh

∂θ

∂x

∣

∣

∣

∣

x=0

(34e)

∂α

∂x

∣

∣

∣

∣

x=1

= 0 (34f)

∂θ

∂x

∣

∣

∣

∣

x=1

= 0 (34g)

and the initial conditions are some perturbation of the steady-

state. The parameters are ε = 0.001, Pem = Peh = 200,

γ = 15, r = 2, β = 0.4, f = 0.3, and Da = 0.1.

The model (34) is reduced to a system of ordinary differen-

tial equations by employing an upwind discretization scheme

for the convection terms, αx and θx, and a central difference

discretization for the diffusion, αxx, and conduction, θxx,

terms. The boundary conditions at x = 0 are discretized

Algorithm 3 EKF for the continuous-discrete system (1)

Require: tk−1, tk, x̂k−1|k−1, P
1/2
k−1|k−1, yk, Q1/2, Rk

One-step ahead prediction:

Compute the one-step ahead predicted state, x̂k|k−1, and

the square-root covariance, P
1/2
k|k−1, using Algorithm 1:

[x̂k|k−1, P
1/2
k|k−1] =

ESDIRK(tk−1, tk, x̂k−1|k−1, P
1/2
k−1|k−1, Q

1/2)
(27)

Compute the one-step ahead measurement prediction,

ŷk|k−1, and the matrix Ck:

ŷk|k−1 = h(tk, x̂k|k−1) (28a)

Ck =
∂h

∂x
(tk, x̂k|k−1) (28b)

Compute the measurement update matrices by an orthog-

onal transformation
[

R
1/2
k|k−1 0

K̄fx,k P
1/2
k|k

]

←
[

R
1/2
k CkP

1/2
k|k−1

0 P
1/2
k|k−1

]

ΘM (29)

Filter:

Compute the filtered state

ek = yk − ŷk|k−1 (30a)

ēk =
(

R
1/2
k|k−1

)−1

ek (30b)

x̂k|k = x̂k|k−1 + K̄fx,kēk (30c)

Return: x̂k|k, P
1/2
k|k

spatially using the Euler discretization. A fixed uniform mesh

with grid size ∆x = 1.0/(N +1) is employed. The resulting

number of ODEs describing the system is 2N . The steady-

state is unstable and ends up in a limit cycle as shown in

Figure 1 using N = 200.

The only stochastic noise affecting the process is as-

sumed to be variations in the inlet temperature, i.e. σ =
e2 =

[

0 1 0 . . . 0
]′

. The measurements used by

the EKF are temperature measurements located at x =
0.2, 0.4, 0.6, 0.8. All measurements have unit additive mea-

surement noise, i.e. R = I4,4. The mean of the initial distri-

bution of the states is assumed to be equal to the actual states

and the corresponding covariance matrix is a unit-matrix. The

resulting system is a continuous-discrete stochastic system

(1) with 2N stochastic differential equations and 4 measure-

ment equations. The dependence of the system size on N ,

allows comparative studies of various EKF implementations

for medium- to large-scale systems. It should be noted that

the model obtained is highly structured. This implies that for

large N , it matters whether the integration is conducted using

dense or sparse linear algebra. Therefore, we compare dense

and sparse implementations for this example. Even though

the Jacobian is sparse, the associated covariance matrix is not

sparse. This implies that the covariance matrix computations

in the ESDIRK based EKF are still dense. Consequently, for
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Algorithm 4 EKF Initialization

Require: x̂0|−1, P
1/2
0|−1, y0, R0

One-step ahead prediction:

One-step ahead measurement prediction:

ŷ0|−1 = h(t0, x̂0|−1) (31a)

C0 =
∂h

∂x
(t0, x̂0|−1) (31b)

Compute the measurement update matrices by an orthog-

onal transformation
[

R
1/2
0|−1 0

K̄fx,0 P
1/2
0|0

]

←
[

R
1/2
0 C0P

1/2
0|−1

0 P
1/2
0|−1

]

ΘM (32)

Filter:

Compute the filtered state

e0 = y0 − ŷ0|−1 (33a)

ē0 =
(

R
1/2
0|−1

)−1

e0 (33b)

x̂0|0 = x̂0|−1 + K̄fx,0ē0 (33c)

Return: x̂0|0, P
1/2
0|0 .
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Fig. 1. Dynamic behavior of the outlet conversion and temperature of the
adiabatic fixed-bed reactor with feed-effluent heat-exchange.

large systems the Householder operations in Algorithm 2

becomes the computational bottleneck and limits the system

size to which the proposed continuous-discrete extended

Kalman filter is practical.

For comparison, consider a standard EKF integrating the

mean-covariance pair (2) directly. Only the equations cor-

responding to the lower triangular part of the symmetric

covariance matrix are integrated. The integrator applied is

Matlab’s ODE15s [30] and the linear algebra operations of

the EKF are implemented in a direct fashion without numer-

ical stability considerations (i.e. without using orthogonal

operations). The Jacobian of (2) for the fixed-bed reactor

is very sparse. Furthermore, the sparsity pattern is irregular

and narrows due to the fact that only the lower triangular

part of the covariance matrix is actually included in the

model. It should be noted that this Jacobian is very sparse

and of much larger size than the Jacobian of the system

model without the covariance matrix. The Jacobian of (2) is

obtained numerically, as its analytic derivation for the fixed-

bed reactor would be very tedious.

Table I shows CPU times for standard EKF implementa-

tion and the EKF implementation based on ESDIRK341. The

tests are conducted without process and measurement noise.

The initial state estimate is equal to the nominal value. As the

random variables are equal to their mean, this ensures that

all cases go through the scenario depicted in Figure 1 and

that the cases are comparable. The system is integrated from

t = 0 to t = 20 and sampled every Ts = 0.2 time unit. This

implies that 100 integrations are conducted in each test case.

The average time to do one extended Kalman filter computa-

tion, i.e. integrate Ts = 0.2 time units ahead and do the linear

algebra operations, are reported in Table I. Even for systems

of relative small size (N = 25 and N = 30), the extended

Kalman filter algorithm reported in this paper is about two

orders of magnitude faster than the standard implementation

of the extended Kalman filter. The standard EKF is based on

ODE15s while the ESDIRK34-EKF is based on ESDIRK.

The better performance of the ESDIRK34-EKF is not due

to ESDIRK in itself being a better integrator than ODE15s.

This can be seen by comparing the integration times without

covariance computations. In that respect ODE15s performs

marginally better than ESDIRK342. Based on Table I and

algorithmic profiling it is concluded, that the extra computing

time needed of ESDIRK34-EKF compared to ESDIRK34 is

mainly due to the time spent in Algorithm 2 computing the

square root of the covariance matrix and only marginally

due to the algebraic operations in Algorithm 3. For small

systems (N ≤ 50) the time needed by ESDIRK34-EKF is

about 2-5 times the time needed to integrate the system itself

by ESDIRK34. However, for large systems the Householder

operations in Algorithm 2 dominates the overall computing

time as seen for N = 100 and N = 200 in Table I. As

the Householder operations scale cubically with n = 2N ,

this limits the system size to which the proposed extended

Kalman filter algorithm can practically be applied. However,

it is about two orders of magnitude faster than the standard

extended Kalman filter for small to moderate sized systems.

IV. CONCLUSION

A computational efficient and robust algorithm for the

extended Kalman filter for stochastic continuous-discrete

1All simulations are conducted using Matlab 7.0 on a Pentium IV 3.20
GHz processor.

2ESDIRK34 applies the same integrator as used in ESDIRK34-EKF.
This integrator evaluates the Jacobian at each successful integration step.
This is necessary for the presented EKF algorithm. However, for pure
simulation applications, the Jacobian can be evaluated adaptively, making
the ESDIRK34 algorithm performance comparable to the performance of
ODE15s. Hence, based on Table I one should not conclude that ODE15s in
itself is a better integrator than ESDIRK34.
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TABLE I

CPU-TIME (SEC.) FOR VARIOUS EKF IMPLEMENTATIONS FOR THE FIXED-BED REACTOR WITH FEED-EFFLUENT HEAT-EXCHANGE. THE CPU-TIME IS

THE AVERAGE FOR ADVANCING 0.2 IN TIME IN THE INTERVAL 0 TO 20 USING THE LIMIT CYCLE AS NOMINAL SOLUTION. PENTIUM IV 3.20 GHZ AND

MATLAB 7.0. atol = 10
−6 AND rtol = 10

−3 .

Standard EKF ESDIRK34-EKF ESDIRK34 ODE15s

N n = 2N Dense Sparse Dense Sparse Dense Sparse Dense Sparse

25 50 13.43 8.49 0.12 0.15 0.07 0.08 0.05 0.05
30 60 37.10 19.01 0.18 0.22 0.07 0.08 0.06 0.06
40 80 - - 0.31 0.40 0.11 0.09 0.07 0.06
50 100 - - 0.50 0.62 0.13 0.11 0.08 0.07
100 200 - - 4.46 4.43 0.37 0.22 0.17 0.10
200 400 - - 38.86 29.32 1.47 0.48 0.59 0.17

systems has been presented. It is based on efficient in-

tegration of the state-covariance pair of the systems of

stochastic differential equations using an ESDIRK algorithm

with state sensitivity capabilities. For large scale systems it

is more than two orders of magnitude faster than current

standard implementations of the extended Kalman filter. This

feature expands grey-box modelling of stochastic differential

equation systems to large-scale systems. Furthermore, the

computational efficiency is important in nonlinear model

predictive control applications.

Application of state sensitivity computations to the ex-

tended Kalman filter algorithm has been demonstrated. The

procedure presented is based on the ESDIRK algorithm

which is well-suited for stiff problems with relative short

measurement intervals. This is typically the case for most

control applications of the extended Kalman filter. For non-

stiff problems, explicit integration methods that do not need

inversion of the iteration matrix would be more efficient than

the presented method based on ESDIRK.
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Bock, T. Bürner, E. D. Gilles, A. Kienle, J. P. Schlöder, and E. Stein,
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