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Abstract— Single and multi-step prediction-error-methods
based on the maximum likelihood and least squares criteria are
compared. The prediction-error methods studied are based on
predictions using the Kalman filter and Kalman predictors for a
linear discrete-time stochastic state space model, which is a real-
ization of a continuous-discrete multivariate stochastic transfer
function model. The proposed prediction error-methods are
demonstrated for a SISO system parameterized by the transfer
functions with time delays of a continuous-discrete-time linear
stochastic system. The simulations for this case suggest to use
the one-step-ahead prediction-error maximum-likelihood (or
maximum a posteriori) estimator. It gives consistent estimates of
all parameters and the parameter estimates are almost identical
to the estimates obtained for long prediction horizons but with
consumption of significantly less computational resources. The
identification method is suitable for predictive control.

I. INTRODUCTION

In this paper, we address construction of stochastic lin-

ear models using the prediction-error-method [1]–[3]. We

parameterize the stochastic linear models as continuous-

discrete-time transfer functions with delay and realize these

models as discrete-time stochastic linear state space models.

The Kalman filter and Kalman predictor for this system is

used to generate the prediction errors and covariances need

by the prediction-error identification criteria. We investigate

multi-step prediction error identification and compare it to

single-step predictor error identification. Shah and coworkers

[4]–[6] apply a similar multi-step approach based on impulse

response models and a least-squares criterion. The approach

presented in this paper distinguishes itself by being general

for linear systems, by applying least-squares as well as

maximum likelihood criteria for the prediction errors in the

estimator, and in particular by being directly applicable to

state space model based predictive control in its modern

implementation. predictive control. We propose a method to

address the request for better identification methods tailored

for predictive control in order to potentially improve the

closed-loop performance of such control systems [7]–[11].

II. PREDICTION-ERROR-METHODS

A. Standard Regression Problem

The essence of regression is to select some parameters, θ,

such that the predicted outputs, ŷk(θ), match the measured

outputs, yk, as well as possible for all measurements k =

*Corresponding author

0, 1, . . . , N − 1. The estimation problem is often stated as

the stochastic relation

yk = ŷk(θ)+ek, ek ∼ N(0, Rk), k = 0, 1, . . . , N − 1 (1)

The predictor or estimator, ŷk(θ), is a function of the param-

eters, θ ∈ Θ ⊂ R
nθ . For the measured realization, {yk}

N−1
k=0 ,

of the outputs, {yk}
N−1
k=0 , the parameters, θ, are computed

such that some measure, e.g. the least squares measure, of the

residuals, {ek(θ) = yk − ŷk(θ)}
N−1
k=0 , is minimized. This is

the standard nonlinear regression problem [12], [13], which

can be stated as the optimization problem

θ̂ = arg min
θ∈Θ

V (θ) (2)

with the objective function V (θ) = VLS(θ) being

VLS(θ) =
1

2

N−1
∑

k=0

‖ek(θ)‖
2
2 (3)

in the least squares case. The maximum-likelihood estimate

corresponds to using negative log-likelihood function in (2),

i.e. V (θ) = VML(θ) with VML(θ) defined as

VML(θ) =
Nny

2
ln(2π) +

1

2

N−1
∑

k=0

ln (detRk(θ))

+
1

2

N−1
∑

k=0

ek(θ)′Rk(θ)−1ek(θ)

(4)

The maximum a posteriori estimate assumes that a priori

the parameters stem from the distribution θ ∼ N(θ0, Pθ0
) in

which θ0 ∈ Θ ⊂ R
nθ . Then using Bayes rule the negative

log-likelihood a posteriori function is

VMAP (θ) = VML(θ) +
nθ

2
ln(2π) +

1

2
ln (detPθ0

)

+
1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)
(5)

Hence, the maximum a posteriori estimate is obtained by

applying V (θ) = VMAP (θ) in (2).

B. Parametrization, Realization and Prediction

One way to represent multivariate stochastic distributed

processes is through the input-output representation in the

LaPlace domain

Z(s) = G(s; θ)U(s) + H(s; θ)E(s) (6a)

y(tk) = z(tk) + v(tk) (6b)
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in which U(s) is the process input vector, E(s) is a vector

with white noise components, Z(s) is the process output

vector. v(tk) ∼ N(0, Rvv(θ)) is the measurement noise

vector and y(tk) is the measured process output vector at

time tk. The elements, {gij(s)} and {hij(s)}, of the transfer

function matrices, G(s) and H(s), are rational transfer

functions with time delays

gij(s) =
bij(s; θ)

aij(s; θ)
exp(−τij(θ)s) (7a)

hij(s) =
dij(s; θ)

cij(s; θ)
exp(−λij(θ)s) (7b)

Assuming that u(t) is a zero-order-hold input, (6) may be

realized as a discrete-time stochastic linear state space model

xk+1 = A(θ)xk + B(θ)uk + wk (8a)

yk = C(θ)xk + vk (8b)

in which
[

wk

vk

]

∼ Niid

([

0
0

]

,

[

Rww(θ) Rwv(θ)
Rwv(θ)′ Rvv(θ)

])

(8c)

and

x0 ∼ N(x̂0|−1(θ), P0|−1(θ)) (8d)

The Kalman filter and Kalman predictor are optimal

estimators for (8) and therefore also optimal estimators for

(6) [14], [15]. The Kalman filter equations

ek = yk − Cx̂k|k−1 (9a)

Re,k = CPk|k−1C
′ + Rvv (9b)

Kfx,k = Pk|k−1C
′R−1

e,k (9c)

Kfw,k = RwvR−1
e,k (9d)

x̂k|k = x̂k|k−1 + Kfx,kek (9e)

ŵk|k = Kfw,kek (9f)

Pk|k = Pk|k−1 − Kfx,kRe,kK ′
fx,k (9g)

Qk|k = Rww − Kfw,kRe,kK ′
fw,k (9h)

provide the mean and covariance for the conditional distribu-

tions xk|Ik ∼ N(x̂k|k, Pk|k) and wk|Ik ∼ N(ŵk|k, Qk|k).

Ik = {(yj , uj)}
k

j=0. The Kalman one-step state predictor

equations

x̂k+1|k = Ax̂k|k + Bûk|k + ŵk|k (10a)

Pk+1|k = APk|kA′ + Qk|k − AKfx,kR′
wv − RwvK ′

fx,kA′

(10b)

and the j-step (j > 1) state predictor equations

x̂k+j|k = Axk+j−1|k + Bûk+j−1|k (11a)

Pk+j|k = APk+j−1|kA′ + Rww (11b)

provide the mean and covariance for the conditional distri-

bution xk+j |Ik ∼ N(x̂k+j|k, Pk+j|k) for j ≥ 1. The output

predictions

ŷk+j|k = Cx̂k+j|k (12a)

Rk+j|k = CPk+j|kC ′ + Rvv (12b)

provide the conditional mean and covariance for yk+j |Ik ∼
N(ŷk+j|k, Rk+j|k) for j ≥ 1. The Kalman filter and Kalman

predictor are implemented numerically robust using the array

algorithm propagating the square root of the covariances

rather than the covariances themselves [14].

C. The PE Method as a Regression Problem

The family of prediction-error-methods can be considered

as solving a general regression problem similar to (1). The

estimate of the prediction error estimates are obtained by

solving an optimization problem like (2) for some criteria

(LS, ML, MAP) and some predictors. For the case considered

in this paper, the predictors in the prediction error method

are the Kalman predictors, ŷk+j|k(θ). The prediction errors,

εk+j|k = yk+j − ŷk+j|k(θ), correspond to the residuals in

the standard regression problem. Therefore, the prediction-

error-method is a standard regression problem with a pre-

dictor generated by the Kalman filter and predictor. In the

following, the statistical properties of the predictors and the

prediction errors will be discussed and various criteria for

estimating the parameters in the prediction error framework

are presented.

If it is possible to know the true structure of the system,

S, and the model identified, M(θ), is equal to the true

system, M(θ) = S, then this model will be optimal in

a statistical sense no matter for what purpose it is to

be used and what consistent estimator (criterion) used for

determining the parameters. In any realistic situation, it is

almost impossible to know the true model structure due to

changing process conditions, changing disturbance properties

and nonlinearities. Therefore, in practice the model should be

suited and be identified for the purpose it is going to be used.

In predictive control this corresponds to minimization of

multi-step predictions compatible with the regulator objective

function.

D. Single-Step j-Step-Ahead Prediction Error

Let {(uk, yk)}
N−1
k=0 denote the IO-data for identification

and let Np denote the prediction horizon. Let the time indices

be k = −1, 0, 1, . . . , N − 1 − j and the prediction index be

1 ≤ j ≤ Np. This implies that 0 ≤ k + j ≤ N − 1. The

conditional outputs, yk+j |Ik, have the distribution

yk+j |Ik ∼ N(ŷk+j|k, Rk+j|k) (13)

and their correlation may be computed by [14]

R(i,j)|k = 〈(yk+i|Ik) − ŷk+i|k, (yk+j |Ik) − ŷk+j|k〉

=











CAi−j−1Nk+j|k i > j

CPk+i|kC ′ + Rvv i = j

N ′
k+i|k(Aj−i−1)′C ′ i < j

(14)

in which 1 ≤ i ≤ Np, 1 ≤ j ≤ Np, and

Nk+i|k = APk+i|kC ′ + Rwv (15)

Hence, the single-step j-step-ahead prediction error problem

may be stated as

yk+j |Ik = ŷk+j|k(θ)+εk+j,k|Ik k = −1, 0, . . . , N−1−j
(16)
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with εk+j,k|Ik ∼ N(0, Rk+j|k) in the ideal case when the

system and the model on which the predictor is computed

are identical. εk+j,k denotes the residual of the single-step j-

step-ahead predictor at time k. This corresponds to a standard

regression problem in which some measure of the j-step

prediction error

εk+j|k = yk+j − ŷk+j|k(θ), k = −1, 0, . . . , N − 1− j (17)

is minimized. εk+j|k can be regarded as the realization

of εk+j,k|Ik ∼ N(0, Rk+j|k). When the structure of the

model and the system are different, εk+j,k|Ik may have

a non-zero mean and a covariance different from Rk+j|k.

Even in such cases it seems reasonable to minimize some

measure of the prediction error, εk+j|k. However, as the

distribution of εk+j,k|Ik is unknown maximum likelihood

based procedures can only be considered as approximation,

i.e. quasi maximum likelihood.

As ŷk+j|k(θ) is not a simple function of θ, the analytical

derivatives of εk+j|k = εk+j|k(θ) with respect to θ are

generally not available. Hence, the optimization algorithms

for solving the parameter estimation problem must compute

the derivatives of the objective functions numerically, i.e. by

finite difference.

The one-step prediction-error estimates may be regarded

as special versions of the j-step prediction-error estimates.

However, in that case no extra effort is needed for computing

εk+1|k and Rk+1|k as they are already computed as part of

the Kalman filter updates. In the j-step prediction case with

j > 1, εk+j|k and Rk+j|k must be computed explicitly if

needed in the parameter estimation objective function.

E. Multi-Step Maximum Likelihood Predictors

To deduce true multi-step prediction-error (quasi) maxi-

mum likelihood and maximum a posteriori estimators, the

correlation between εk+i,k|Ik and εk+j,k|Ik for i 6= j must

be taken into account. This correlation is

〈εk+i,k|Ik, εk+j,k|Ik〉 = R(i,j)|k (18)

Define

Y k =
[

y′
k+1 . . . y′

k+Np

]′
k = −1, 0, . . . , N − 1 − Np

Y k =
[

y′
k+1 . . . y′

N−1

]′
k = N − Np, . . . , N − 2

and the corresponding multi-step predictions

Ŷk(θ) =
[

ŷ′
k+1|k . . . ŷ′

k+Np|k

]′

k = −1, 0, . . . , N − 1 − Np

Ŷk(θ) =
[

ŷ′
k+1|k . . . ŷ′

N−1|k

]′

k = N − Np, . . . , N − 2

Furthermore, define the conditional multi-step prediction

error vector as

ǫk|Ik =











εk+1,k|Ik

εk+2,k|Ik

...

εk+Np,k|Ik











ǫk|Ik =











εk+1,k|Ik

εk+2,k|Ik

...

εN−1,k|Ik











(20)

for k = −1, 0, . . . , N − 1 − Np (the left vector) and k =
N − Np, . . . , N − 2 (the right vector), respectively.

The multi-step prediction error problem can then be ex-

pressed as the stochastic model

Y k|Ik = Ŷk(θ) + ǫk|Ik k = −1, 0, . . . , N − 2 (21)

with ǫk|Ik ∼ N(0, Rk) and

Rk = 〈ǫk|Ik, ǫk|Ik〉

=











R(1,1)|k R(1,2)|k . . . R(1,Np)|k

R(2,1)|k R(2,2)|k . . . R(2,Np)|k

...
...

...

R(Np,1)|k R(Np,2)|k . . . R(Np,Np)|k











(22)

The realization of the multi-step prediction-error vector for

k = −1, 0, . . . , N − 1 − Np is

ǫk|k = Yk − Ŷk(θ)

=











yk+1 − ŷk+1|k

yk+2 − ŷk+2|k

...

yk+Np
− ŷk+Np|k











=











εk+1|k

εk+2|k

...

εk+Np|k











(23)

The negative log likelihood function for the multi-step

prediction is

V1:Np,ML(θ) =
nyf

2
ln (2π)

+
1

2

N−2
∑

k=−1

(

ln (detRk) + ǫ′k|kR−1
k ǫk|k

) (24)

in which f = Np

[

N − 1
2 (Np − 1)

]

. In computation of

the multi-step prediction-error maximum likelihood estimate,

ln (detRk) and ǫ′
k|kR−1

k ǫk|k must be computed. ǫk|k is

obtained by computing the j-step prediction errors. This is

accomplished using (10)-(12) for j = 1, 2, . . . , Np given Ik

and ûk+j|k = uk+j . By construction the covariance matrix,

Rk, has the special structure that arise from a state space

model. This implies that [14]

Rk = LkRǫ,kL′
k (25)

in which the factorization, Lk and Rǫ,k, is computed using

the Kalman filter recursions (9)-(12). Using the one-step

predictive Kalman gain

Kp,k = AKfx,k + Kfw,k (26)

the block lower triangular matrix, Lk, may be computed as

Lk =















I 0 . . . 0
CKp,k+1 I . . . 0

CAKp,k+1 CKp,k+2 . . . 0
...

...
...

CANp−2Kp,k+1 CANp−3Kp,k+2 . . . I















(27)

and the block diagonal matrix, Rǫ,k, is

Rǫ,k =











Re,k+1

Re,k+2

. . .

Re,k+Np











(28)
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Hence, the determinant of Rk may be computed as

detRk = detRǫ,k =

Np
∏

j=1

det Re,k+j (29)

which implies

ln (detRk) = ln





Np
∏

j=1

detRe,k+j



 =

Np
∑

j=1

ln (detRe,k+j)

(30)

Consequently, the term
∑N−2

k=−1 ln (detRk) in (24) may be

evaluated as

N−2
∑

k=−1

ln (detRk) =

Np−2
∑

k=0

(k + 1) ln (detRe,k)

+ Np

N−1
∑

k=Np−1

ln (detRe,k)

(31)

The term ǫ′
k|kR−1

k ǫk|k can be evaluated as

ǫ′k|kR−1
k ǫk|k = ǫ′k|k(LkRǫ,kL′

k)−1ǫk|k

= (L−1
k ǫk|k)′R−1

ǫ,k(L−1
k ǫk|k)

=

Np
∑

j=1

ē′k+j|kR−1
e,k+j ēk+j|k

(32)

in which
[

ē′
k+1|k ē′

k+2|k . . . ē′
k+Np|k

]′

= L−1
k ǫk|k.

{

ēk+j|k

}Np

j=1
is efficiently computed using the Kalman filter

recursions for j = 1, 2, . . . , Np

ēk+j|k = εk+j|k − Cx̄k+j|k (33a)

x̄f = x̄k+j|k + Kfx,k+j ēk+j|k (33b)

w̄f = Kfw,k+j ēk+j|k (33c)

x̄k+j+1|k = Ax̄f + w̄f (33d)

with x̄k+1|k = 0. Note that (33b)-(33d) may be expressed as

x̄k+j+1|k = Ax̄k+j|k + Kp,k+j ēk+j|k (34)

which implies that (33) can be expressed as

x̄k+j+1|k = (A − Kp,k+jC)x̄k+j|k + Kp,k+jεk+j|k (35a)

ēk+j|k = −Cx̄k+j|k + εk+j|k (35b)

Consequently, the term
∑N−2

k=−1 ǫ′
k|kR−1

k ǫk|k in (24) may be

efficiently evaluated using

N−2
∑

k=−1

ǫ′k|kR−1
k ǫk|k =

Np−2
∑

k=0

k+1
∑

j=1

ē′k|k−jR
−1
e,kēk|k−j

+
N−1
∑

k=Np−1

Np
∑

j=1

ē′k|k−jR
−1
e,kēk|k−j

(36)

and a bank of Kalman filter recursion (33) for computing

ēk|k−j and x̄k+1|k−j for j = 1, 2, . . . , Np. Hence, at each

time instant k the multi-step prediction error ǫk|k is com-

puted using the Kalman predictions. This vector is stored

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

y

0 50 100 150 200 250 300 350 400 450 500

−1

−0.5

0

0.5

1

u

time

Fig. 1. IO-data for the SISO system, S, defined by (37)-(38). The inputs,
{u(t)}, are PRBS with bandwidth [0 0.02] and levels [−1 1].

in memory for Np iterations such that εk|k−j can be used

in computation of ēk|k−j and subsequent evaluation of the

terms in (36). The advantage of this method compared to

a naive implementation is that gains and covariances in the

Kalman recursions need to be evaluated only once at each

time step.

III. SISO EXAMPLE

To illustrate the identification criteria discussed in this

paper, we consider the SISO system, S = {g(s), h(s)},

defined as

Z(s) = g(s)U(s) + h(s)E(s) (37a)

y(tk) = z(tk) + v(tk) (37b)

in which E(s) is standard white noise and v(tk) ∼
Niid(0, r

2). The transfer function, g(s), from the process

inputs, U(s), to the process output, Y (s), and the disturbance

transfer function, h(s), are

g(s) =
K

(α1s + 1)(α2s + 1)
e−τs (38a)

h(s) =
σ

γs + 1
(38b)

The parameters defining the system S and used for gener-

ating the data are: K = 1.0, α1 = 1.0, α2 = 3.0, τ = 5.2,

σ = 0.2, γ = 1.0 and r = 0.2. The system is sampled

with a sampling time of Ts = 0.25. The deterministic input,

U(s), is assumed to be implemented using a zero-order-hold

circuit. The IO-data used for estimation of this system are

illustrated in Figure 1.

A. Identical Model and System Structure

Consider the situation in which the model and the system

has the same structure. In this case the structure of the model,
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ĝ(s), and the disturbance model, ĥ(s), are

ĝ(s) =
K̂

(α̂1s + 1)(α̂2s + 1)
e−τ̂s (39a)

ĥ(s) =
σ̂

γ̂s + 1
(39b)

Let M =
{

ĝ(s), ĥ(s)
}

. This implies that the true system,

S, is within the class of models, M, estimated, i.e. S ∈ M.

The estimates for the single-step and multi-step least

squares criteria and various prediction horizons are shown

in Tables I-II.1 From these results, it is apparent that the

LS method cannot be used to uniquely estimate σ and

r. However, their ratio seems to be constant for different

starting guesses and decreases with increasing horizon. This

implies that the identified model approaches an output error

model for long prediction horizons.

The estimates for the single-step and multi-step maximum

likelihood criteria and various prediction horizons are shown

in Tables III-IV. σ and r are estimated consistently for

various initial guesses. For long-range single-step maximum

likelihood estimation, the estimated model is essentially an

output error model. The step response for the true model and

the models estimated by the multi-step maximum-likelihood

criterion with prediction horizons Np = 1 and Np = 200 are

shown in Figure 2. There is not much difference between

the two estimated models, but a little steady difference

compared to the true model. However, as can be read off

from Table IV the main difference between the estimated

models for prediction horizon Np = 1 and prediction horizon

Np = 200 is not the deterministic transfer function, ĝ(s),
but the disturbance model, ĥ(s), and the covariance of the

measurement noise, r̂2.

B. Simplified Model with Output Integrator

In this subsection we will illustrate the methodology when

the model structure, M, is different from the system model,

S, used to generate the data, i.e. S /∈ M. To do this consider

the model

ĝ(s) =
K̂

α̂s + 1
e−τ̂s (40a)

ĥ(s) =
σ̂

s
(40b)

In the process industries most stable models can be approx-

imated quite well by delayed first-order transfer functions,

ĝ(s). The disturbance model, ĥ(s), is chosen as an integrator

to ensure off-set free control for step-type disturbances and

model-plant mismatch in the resulting predictive control

system for which the estimated model is applied. For in-

ternal model control (IMC) which can be considered as a

restricted class of predictive control this modelling approach

is commonplace [16].

In contrast to the least-squares prediction-error-methods,

the maximum-likelihood prediction-error-methods yield

1All computations are conducted using a 3.20 GHz Pentium IV processor.
The CPU time is reported to indicate the order of magnitude of computing
time needed to calculate the various estimates.
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Fig. 2. Step response for the deterministic part of the SISO model estimated
using a simplified model with an output integrator. Estimated model (39a)
using the multi-step maximum likelihood criterion with Np = 1 (solid line)
and Np = 200 (dotted line). Dashed line: True model (38a).
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Fig. 3. Step response for the deterministic part of the SISO model estimated
using a simplified model with an output integrator. Solid line: Estimated
model (40a) using the multi-step maximum likelihood criterion with Np =
1 and Np = 200. Dashed line: True model (38a).

unique estimates for the covariance matrices. Hence, only

the maximum-likelihood prediction-error-estimates for the

system (40) will be reported here. The single-step maximum-

likelihood estimates for various prediction horizons are

shown in Table V. As the prediction horizon increases, σ̂ is

decreased and the estimated model becomes essentially an

output error model. For the case considered, the estimated

process noise vanishes already at a prediction horizon of

j = 8. The measurement noise is increased slightly as

the prediction horizon increases to accommodate the output

noise that is not caught by the process noise. The multi-

step maximum-likelihood estimates are shown in Table VI.

Compared to the single-step maximum likelihood estimates

the multi-step maximum-likelihood estimates are much less

sensitive to the chosen prediction horizon. In fact there is
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TABLE I

SINGLE-STEP LS ESTIMATION IN MODEL (39).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5641 3.4216 5.3171 0.8705 1.3757 0.8198 1.0618 109.9 113
4 0.9792 0.5798 3.4053 5.3119 0.4802 1.1548 0.3756 1.2785 116.9 154
8 0.9790 0.7239 3.3496 5.2037 0.8301 1.1885 0.5636 1.4730 120.0 227
20 0.9832 0.7086 3.3815 5.2019 1.9202 9.7771 2.0543 0.9347 119.2 351
40 0.9786 0.8639 3.2871 5.1016 0.1824 0.9056 0.1776 1.0268 122.5 325
80 0.9719 0.7612 3.3374 5.1578 0.1800 0.9000 0.1800 1.0000 129.5 394

100 1.0087 0.9820 3.3471 4.8656 0.1800 0.9000 0.1800 1.0000 200.3 376
200 0.9428 1.1445 2.8801 5.0634 0.1800 0.9000 0.1800 1.0000 130.4 532

TABLE II

MULTI-STEP LS ESTIMATION IN MODEL (39).

Np K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5632 3.4219 5.3179 0.3377 1.3754 0.3180 1.0620 110.0 87
4 0.9796 0.5657 3.4194 5.3170 0.0080 1.3861 0.0075 1.0603 449.1 421
8 0.9794 0.6136 3.3981 5.2827 0.3805 1.3641 0.3595 1.0585 924.2 251
20 0.9792 0.7116 3.3563 5.2107 0.3053 1.4301 0.2897 1.0539 2370 393
40 0.9823 0.7394 3.3641 5.1836 0.7805 8.0826 0.8318 0.9383 4763 644
80 0.9804 0.7597 3.3357 5.1767 0.4734 7.1230 0.4975 0.9514 9481 1101
100 0.9796 0.7586 3.3305 5.1782 0.6825 6.5664 0.7271 0.9386 11804 1426
200 0.9760 0.7739 3.2966 5.1802 0.5728 6.1969 0.6151 0.9314 23023 2382

TABLE III

SINGLE-STEP ML ESTIMATION IN MODEL (39).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4211 5.3164 0.2204 1.3762 0.2077 1.0613 -63.27 115
4 0.9793 0.5798 3.4048 5.3120 0.2432 1.1321 0.1868 1.3022 -1.987 371
8 0.9789 0.7184 3.3500 5.2088 0.2853 1.0881 0.1526 1.8694 23.57 725

20 0.9832 0.7081 3.3829 5.2007 0.2243 9.0000 0.2391 0.9384 17.62 2038
40 0.9786 0.8639 3.2871 5.1060 0.0002 0.1380 0.2475 0.0007 45.37 3297
80 0.9719 0.7608 3.3376 5.1580 0.0002 0.1985 0.2545 0.0007 100.7 6082
100 1.0088 0.9817 3.3474 4.8656 0.0002 0.2748 0.3165 0.0006 536.9 6696
200 0.9426 1.1232 2.8931 5.0718 0.0002 0.0291 0.2553 0.0007 107.4 13227

TABLE IV

MULTI-STEP ML ESTIMATION IN MODEL (39).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4211 5.3164 0.2204 1.3762 0.2077 1.0613 -63.27 111
4 0.9798 0.5607 3.4251 5.3186 0.2182 1.4745 0.2102 1.0383 -248.7 160
8 0.9798 0.5307 3.4369 5.3425 0.2051 1.5453 0.2140 0.9581 -468.5 237

20 0.9801 0.5262 3.4700 5.3392 0.1860 1.5200 0.2189 0.8498 -829.0 490
40 0.9835 0.5302 3.5242 5.3124 0.1807 1.3614 0.2189 0.8254 -1204 878
80 0.9872 0.5294 3.5495 5.3043 0.1840 1.3603 0.2190 0.8403 -1977 1616
100 0.9879 0.5295 3.5535 5.3027 0.1843 1.3535 0.2189 0.8421 -2397 2508
200 0.9898 0.5298 3.5640 5.2987 0.1840 1.3310 0.2185 0.8420 -4715 6730

not much difference between the estimated parameters for

the one-step ahead maximum likelihood estimate and the

multi-step maximum likelihood estimate with a very long

prediction horizon, i.e. Np = 200. The step responses for

the estimated multi-step maximum likelihood estimate with

a prediction horizon of Np = 1, i.e. the one-step maximum

likelihood estimate, and a prediction horizon of Np = 200
are shown in Figure 3. They can hardly be distinguished.

Hence, for all practical purposes they can be considered

identical. This suggests that the one-step ahead prediction

maximum-likelihood estimate should be applied in practice

as the computing time for the one-step ahead prediction

maximum-likelihood estimate is considerably lower than

the computing time for the multi-step maximum-likelihood

prediction with a long prediction horizon (Np = 200). Figure

3 also depicts the step response of the true system. It is

evident that the step responses of the estimated models

approximate the true step response quite well.

IV. CONCLUSION

A constructive method for estimation of parameters in

continuous-discrete-time stochastic systems described by
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TABLE V

SINGLE-STEP ML ESTIMATION IN MODEL (40).

j K α τ σ r σ/r V CPU sec.

1 1.0043 3.8386 5.7243 0.0658 0.2226 0.2959 -19.78 123
4 0.9911 3.6390 5.7547 0.0124 0.2424 0.0511 30.24 399
8 0.9811 3.5585 5.7792 0.0006 0.2490 0.0025 34.02 857
20 0.9812 3.5568 5.7802 0.0004 0.2455 0.0018 29.20 2245
40 0.9822 3.5750 5.7697 0.0002 0.2479 0.0009 48.26 4192
80 0.9747 3.5664 5.7618 0.0002 0.2547 0.0008 102.8 7448

100 1.0107 3.6458 5.6487 0.0002 0.3169 0.0006 539.5 8212
200 0.9465 3.3713 5.8331 0.0006 0.2556 0.0023 110.5 17885

TABLE VI

MULTI-STEP ML ESTIMATION IN MODEL (40).

j K α τ σ r σ/r V CPU sec.

1 1.0043 3.8386 5.7243 0.0658 0.2226 0.2959 -19.78 120
4 1.0043 3.8387 5.7244 0.0659 0.2424 0.2962 -79.72 160
8 1.0043 3.8386 5.7243 0.0658 0.2490 0.2956 -161.4 257
20 1.0043 3.8389 5.7244 0.0660 0.2455 0.2968 -398.4 382
40 1.0044 3.8394 5.7245 0.0666 0.2479 0.2995 -780.4 722
80 1.0039 3.8319 5.7256 0.0669 0.2547 0.3011 -1541 1550

100 1.0033 3.8277 5.7261 0.0670 0.3169 0.3018 -1954 2082
200 1.0024 3.8209 5.7269 0.0672 0.2556 0.3027 -4234 4268

transfer functions with time delays has been described and

demonstrated. The method applies prediction-error criteria

and the predictions are generated using the Kalman filter

and predictor for a stochastic linear discrete-time state space

model equivalent to the continuous-discrete-time stochastic

transfer function model with time delays. In particular, an ef-

ficient computing scheme for the multi-step maximum likeli-

hood prediction-error estimator is developed. The multi-step

prediction-error criteria may be selected such that they are

compatible with the optimization criterion applied by the pre-

dictive controller that uses the identified model. Compared

to the single-step least-squares and the single-step maximum

likelihood estimators, the multi-step maximum likelihood

estimator produces parameter estimates that are less sensitive

to the prediction horizon applied. In contrast to the single-

step and multi-step least squares estimators, the multi-step

maximum likelihood estimator computes unique parameters

for the process and measurement noise. Hence, the multi-

step maximum likelihood estimators are recommended for

predictive control. Depending on the prediction horizon,

the multi-step maximum likelihood estimator requires much

more computer resources than the single-step one-step ahead

least-squares predictor.

Consequently, based on the SISO simulation example,

we recommend the maximum likelihood (or maximum a

posteriori) estimator based on the one-step-ahead prediction-

error. The models obtained using the multi-step maximum-

likelihood prediction-error method with a prediction horizon

of one and a very long prediction horizon are essentially

identical. However, the long prediction horizon demands

much more computational resources than the criterion based

on the one-step-ahead prediction.
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