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ABSTRACT

Non-negative matrix factorization (NMF) has become
a widely used blind source separation technique due
to its part based representation and ease of interpretabil-
ity. We currently extend the NMF model to allow for
delays between sources and sensors. This is a natural
extension for spectrometry data where a shift in onset
of frequency pro�le can be induced by the Doppler ef-
fect. However, the model is also relevant for biomedi-
cal data analysis where the sources are given by com-
pound intensities over time and the onset of the pro-
�les have different delays to the sensors. A simple
algorithm based on multiplicative updates is derived
and it is demonstrated how the algorithm correctly
identi�es the components of a synthetic data set. Mat-
lab implementation of the algorithm and a demonstra-
tion data set is available from [1].

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a blind source
separation algorithm (BSS) given by the decomposi-
tion

V n,m = å
d

Wn,dH d,m + En,m, (1)

where V 2 R N�M+ , W 2 R N�D+ and H 2 RD�M+ , i.e.
such that the variables V, W and H are non-negative
while E is noise. The decomposition is useful as it re-
sults in easy interpretable part based representations
[2]. Non-negative decompositions is also named pos-
itive matrix factorization [3] but was popularized by
Lee and Seung due to a simple algorithmic procedure
based on multiplicative updates [4]. The decomposi-
tion has proven useful for a wide range of data where
non-negativity is a natural constraint. These encom-
pass data for text-mining based on counts, image data,
biomedical data and spectral data. The algorithm can

also be useful even when the data in itself is nega-
tive by considering the amplitude of a spectral rep-
resentation [5]. Presently, we will advance the non-
negative matrix factorization to incorporate delays be-
tween sources and sensors based on the following shifted
non-negative matrix factorization (ShiftNMF) model

V n,m = å
d

Wn,dH d,m�t n,d
+ En,m, (2)

where t n,d denotes an arbitrary delay from the dth source
to the nth sensor. Notice, the above model can for in-
teger delays be considered a special case of the Non-
negative Matrix Factor Deconvolution (NMFD) intro-
duced in [6] where only one delay is present between
each sensor and source. In �gure 1 is illustrated the
impact of the delays for equally mixed sources into
9 sensors. In �gure 2 is shown an example of how
a given W, H and t generates the data V, see �g-
ure 3. Notice, the above model without non-negative
constraints has previously been treated in the litera-
ture. In [7, 8] a procedure based on integer shifts was
derived while Bell and Sejnowski [9] sketched how
to handle time delays in networks based on a simi-
lar model. This was further explored in [10]. In [11] a
model based on equally mixed sources, i.e. W = 1 (a
matrix of ones), formed by moving averages incorpo-
rated non-integer delays by signal interpolation. Yere-
dor [12] solved the model by joint diagonalization of
the source cross spectra based on the AC-DC algo-
rithm with non-integer shifts for the 2 �2 system. This
approach was extended to complex signals in [13]. In
[14] we derived an algorithm for shifted sources based
on the estimation of a shift-invariant subspace while
rotating and shifting the sources found using maxi-
mum likelihood ICA to achieve unique solutions. How-
ever, despite the recent popularity of NMF, to our knowl-
edge, delays have not previously been treated for mod-
els with non-negative constraints. Thus, the aim of
the current paper: To form an algorithm for ShiftNMF



Fig. 1. Example of activities obtained (black graph)
when summing three non-negative components (gray,
blue dashed and red dash-dotted graphs) each shifted
to various degrees (given in samples by the colored
numbers). Clearly, the resulting activities are heav-
ily impacted by the shifts such that a regular instan-
taneous NMF analysis would be inadequate.

based on multiplicative updates similar to the simple
updates of regular NMF.

Recently, NMF has proven useful in the analysis
of magnetic resonance spectra [15] and for analyzing
data obtained using astronomical spectrometers for the
identi�cation and classi�cation of space objects [16].
NMF has also been used in the analysis of �uorescence
spectra [17]. For these types of data, ShiftNMF is po-
tentially useful since shift in the spectral pro�les often
occurs for instance as a result of the Doppler effect.
Furthermore, NMF has proven useful for extracting
intensity pro�les over time from biomedical data such
as PET imaging [18, 19, 20]. Here, potential delays in
the onset of the various pro�les can be handled by the
ShiftNMF model. Consequently, ShiftNMF might be
useful for a wide range of data where NMF has previ-
ously been applied.

2. METHOD AND RESULTS

2.1. Notation

In the following U will denote a matrix in the time
domain, while eU denotes the corresponding matrix in
the frequency domain. U and eU denotes 3-way arrays
in the time and frequency domains respectively. Fur-
thermore, eUH denotes the conjugate transpose of eU
while U � V denotes the direct product, i.e. element-

wise multiplication. Also, w = 2p f�1
M and eU( f ) = U �

e�i2p
f�1
M t where e�i2p

f�1
M t denotes element wise rais-

ing the elements, i.e.(e�i2p
f�1
M t )n,d = e�i2p

f�1
M t n,d. Fi-

nally, let Ud denote the dth column, Un,: the nth row
and Un,d a given element of U.

2.2. Multiplicative updates

Multiplicative updates were introduced in [2, 4] to solve
the NMF model. Given a cost function C(H ) over the

non-negative variables H, de�ne ¶C(H )+
¶H d,m

and ¶C(H )�
¶H d,m

as

the positive and negative part of the derivative with
respect to H d,m. Then the multiplicative update has
the following form

H d,m H d,m

0@ ¶C(H )�
¶H d,m

¶C(H )+
¶H d,m

1Aa

. (3)

A small constant # = 10�9 is added to the numera-
tor and denominator to avoid division by zero or forc-

ing H d,m to zero. If the gradient is positive ¶C(H )+
¶H d,m

>

¶C(H )�
¶H d,m

, hence,H d,m will decrease and vice versa if the

gradient is negative. Thus, there is a one-to-one rela-
tion between �xed points and the gradient being zero.
The attractive property of multiplicative updates is that
they automatically ensure non-negativity as the up-
dates is based on multiplication, division and raising
to the power of purely non-negative variables. a is
a "step size" parameter that potentially can be tuned.
Notice, when a ! 0 only very small steps in the neg-
ative gradient direction are taken. In [4] it was proven
that for the least squares error and Kullback-Leibler
divergence a = 1 will keep decreasing the cost func-
tion.

2.3. Algorithm for ShiftNMF

Consider the ShiftNMF model as stated in both the
time and frequency domain (using the DFT)

V n,m = å
d

Wn,dH d,m�t n,d
+ En,m, (4)

eV n, f = å
d

Wn,d eH d, f e
�i2p

f�1
M t n,d + eEn, f . (5)

In matrix notation the model is in the frequency do-
main stated as

eV f = fW( f ) eH f + eE f . (6)



Fig. 2. The true factors forming a synthetic data set. To
the left, the strength of the mixing W of each source is
indicated in gray color scale. In the middle, the three
sources are shown and to the right is given the time
delays of each source to each channel.

We focus here on minimizing the least squares error

CLS(W, H) = 1
2 å

n,m
(V n,m�å

d

Wn,dH d,m�t n,d
)2

= 1
2M
keV f �fW( f ) eH f k2

F.

The algorithm will be based on alternatingly solving
for W, H and t .

2.3.1. W update:

Let eH (n)
d, f denote the delayed version of the source sig-

nal eH d, f to the nth channel, i.e. eH (n)
d, f = eH d, f e

�i2p
f�1
M t n,d.

Then equation 4 can be restated as

V n,: = Wn,:H (n) + En,:, (7)

Notice, since H (n) corresponds to H where each source
has been shifted a given amount H (n) is still non-negative.
Thus, this is the regular NMF problem which can be
solved by the least squares NMF-update as given in
[4]

Wn,d = Wn,d
V n,:H

(n)T

d,:

Wn,:H (n)H (n)T

d,:

. (8)

Thus, the W update follows straight-forward from the
update of regular NMF and will keep decreasing the

Fig. 3. The synthetic dataset generated from the fac-
tors given in �gure 2 when mixed into each of the 9
sensors.

cost function for a = 1. The H update is however
slightly more complicated.

2.3.2. H update:

Consider the model as stated in the frequency domain
given in equation 6. Calculating the gradient of the
least squares cost function in the frequency domain
gives [21]

G f = ¶CLS

¶eH f
= � 1

M
fW( f )H (eX f �fW( f ) eH f ). (9)

By taking the inverse DFT of the gradient in the fre-
quency domain the corresponding gradient in the time
domain is obtained. Splitting the gradient in the fre-
quency domain into what constitutes the positive and
negative part of the corresponding gradient in the time-
domain gives

eG+
f = 1

M
fW( f )HfW( f ) eH f , (10)

eG�
f = 1

M
fW( f )H eX f . (11)

Consequently, by taking the inverse DFT of eG+
f andeG�

f the corresponding positive and negative part of
the gradient in the time-domain can be found. As a
result, H can be updated using multiplicative updates
as

H d,n = H d,n

 
G�

d,n

G+
d,n

!a

. (12)



Fig. 4. Results obtained by regular instantaneous
NMF for the synthetic data given in �gure 3. To the
left, the strength of the mixing W of each source is in-
dicated in gray color scale. In the middle, the three
sources are shown. Clearly, since the model can't ac-
count for the shifts in the data the sources estimated
are mixtures of the 3 true sources. Notice, only 68 % of
the variance of the data is accounted for.

Due to interpolation G�
d,n and G+

d,n can potentially take
small negative values. In these rare cases these val-
ues are for stability reasons treated as zero. Since the
gradient is interpolated through the DFT the step size
a has to be tuned in order to guarantee that the cost
function decreases.

2.3.3. t update:

The delays t are unconstrained. Consequently, we
will estimate these by the Newton-Rhapson method
as also proposed in [14]. The least square error for the
ShiftNMF model as stated in equation 7, is given by

CLS = 1
2M å

f

(eV f �fW( f ) eH f )H (eX f �fW( f ) eH f ).
De�ne TND�1 = vec(t ), i.e. the vectorized version of
the matrix t such that Tn+(d�1)N = t n,d. Let further

eQn,d, f = fW( f )
n,d
eH d, f , eE f = eV f �fW( f ) eH f . (13)

Fig. 5. The estimated factors obtained by a ShiftNMF
analysis of the synthetic data given in �gure 3. To the
left, the strength of the mixing W of each source. In the
middle, the three sources are shown and to the right is
given the time delays of each source to each channel.
Clearly, the model with shifts has correctly recovered
the components of the synthetic data hence accounts
for all the variance in the data.

Then the gradient of CLS with respect to t n,d is given
as

gn+(d�1)N = ¶CLS
¶Tn+(d�1)N

= ¶CLS
¶t n,d

(14)

= �1
M å

f

2w=[ eQn,d, f eE�n, f ] (15)

The Hessian has the following structure

Bt,t 0 = � �2
M å f w2<[ eQn,d, f

eQ�
n0 ,d0 , f

] if n 6= n0 ^ d 6= d0

�2
M å f w2<[ eQn,d, f (

eQ�
n0 ,d0 , f

+ eE�
n0 , f

)] if n = n0 ^ d = d0

where t = n + (d� 1)N and t 0 = n0 + (d0 � 1)N. As
a result, t can be estimated by the Newton-Raphson
method as

T  T � hB�1g, (16)

where h is a step size parameter that is tuned to keep
decreasing the cost function.

The above iterative update is sensitive to local min-
ima. However, we found that estimating the delays by
the following cross-correlation procedure reduced the
effect of local minima. LeteRn, f = eV n, f � å

d6=d0

fW( f )
n,d
eH d, f , (17)



Fig. 6. Four runs illustrating how using the cross-
correlation (CC) procedure every 20 iteration in com-
bination with the Newton-Raphson (NR) update (blue
curve) rather than relying solely on the NR update
to estimate the delays (red curve) improves the al-
gorithm from getting stuck in suboptimal solutions.
Whereas the NR method alone does not identify the
global minima, this is found in 3 out of the 4 trials
when re-estimating the delays using the CC proce-
dure. Notice, how the sudden jumps in the curves
using the CC procedure are initiated at the iterations
where the cross-correlation was used to re-estimate
the delays.

i.e. the signal at the nth sensor at frequency f when
projecting all but the d0 source out of eV. Then the
cross-correlation between the d0 source and nth sen-
sor is given as ec f = eR�

n, f
eH d0, f , such that t n,d can be

estimated as

t = arg max
m

cm, t n,d0 = t � (M + 1). (18)

I.e. as the delay corresponding to maximum cross-
correlation between the sensor and source. The value

of Wn,d0 corresponding to this delay is given by

Wn,d0 = ct

H d0,:H T
d0,:

. (19)

Thus, to avoid being stuck in suboptimal solutions t
was re-estimated by the cross-correlation procedure
above every 20th iteration. In �gure 6 is demonstrated
how indeed using the above cross-correlation approach
improves the algorithm in �nding the global optimum.

In �gure 4 is shown the components found using
a regular instantaneous NMF analysis. In �gure 5 the
results obtained by the ShiftNMF algorithm.

3. DISCUSSION

Clearly, the ShiftNMF algorithm correctly identi�ed
the components of the synthetic data set (see �gure
5) whereas the regular instantaneous NMF failed to
identify the correct component since the delays could
not be accounted for ( see �gure 4). Furthermore, as
shown in �gure 6 using the cross-correlation approach
as described in the section on the t update improved
the component identi�ability and avoided the algo-
rithm to get stuck in many of the local minima.

Presently, the data had a unique decomposition since
it was based on sparse sources, i.e. sources with many
zero values. However, neither the NMF model [22]
nor the ShiftNMF model is in general unique. In these
situations additional constraints such as sparseness [23,
24] have proven useful. Furthermore, prior informa-
tion such as smoothness has also been proposed to im-
prove the component identi�cation [16]. The present
algorithm for ShiftNMF can straight forward be ex-
tended to incorporate these constraints in order to im-
prove the identi�cation where the model in general is
not guaranteed to �nd a unique decomposition. How-
ever, the component identi�cation is in general dif�-
cult when the components are not sparse or the prob-
lem ill conditioned.

The DFT is based on the implicit assumption that
the signals are periodic. In general, this is not the case.
However, by zero padding the ends or introducing a
window function periodicity can be enforced. Both
windowing and zero padding will favor small delays
and particularly windowing is also computationally
expensive.

Presently, we derived an algorithm for blind (un-
supervised) identi�cation of sources and their respec-
tive mixing and delays. However, when analyzing for
instance spectra of mixed source pro�les the spectrum
of the sourcesH are often known a priori. By keeping
H �xed the algorithm presently derived can be used
supervised. Hence, to estimate how much the various



known sources are present in each sensor as well as
to what extent the sources have been delayed to the
sensors. Future work should investigate the potential
usefulness of this.

The present work investigated synthetic data. Cur-
rent work focus on real data applications. It is our be-
lief the algorithm derived will be useful for a range
of data where NMF previously has been employed.
Here accounting for delays can potentially improve
component identi�cation. The approach used to form
the multiplicative updates by �nding the positive and
negative parts of the gradient using the spectral rep-
resentation is valid due to Parseval's identity stating a
correspondence between the cost function in the time
and frequency domain. This correspondence does not
exist for cost functions such as the Kullback-Leibler di-
vergence. Thus, future work should investigate how
the ShiftNMF model can be estimated for other cost
functions than least squares. However, for least squares
minimization the technique is applicable to other types
of algorithms such as projected gradient [25] as well as
the deconvolution extension (NMFD) [6]. This should
also be investigated in future work.
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