
International Journal of Information Security manuscript No.
(will be inserted by the editor)

A Calculus for Control Flow Analysis of Security Protocols

Mikael Buchholtz, Hanne Riis Nielson, Flemming Nielson?

Informatics and Mathematical Modelling, Technical University of Denmark, Richard Petersens Plads bldg. 321, DK-2800
Kongens Lyngby, Denmark, {mib, riis, nielson}@imm.dtu.dk

Received: date / Revised version: date

Abstract The design of a process calculus for ana-
lysing security protocols is governed by three factors:
how to express the security protocol in a precise and
faithful manner, how to accommodate the variety of at-
tack scenarios, and how to utilise the strengths (and
limit the weaknesses) of the underlying analysis method-
ology. We pursue an analysis methodology based on con-
trol flow analysis in flow logic style and we have previ-
ously shown its ability to analyse a variety of security
protocols [7]. This paper develops a calculus, LySans,
that allows for much greater control and clarity in the
description of attack scenarios, that gives a more flexi-
ble format for expressing protocols, and that at the same
time allows to circumvent some of the “false positives”
arising in [7].

1 Introduction

Security protocols are used to establish secure communi-
cation in untrusted computer networks. A security pro-
tocol describes a sequence of messages, which should be
exchanged between network nodes, or principals, in order
to achieve some security goal intended by the protocol.
Such protocols usually rely on cryptographic techniques
to prevent undesired tampering with messages and are
sometimes called cryptographic protocols.

Figure 1 depicts a typical scenario for the use of a
security protocol. Here a number of principals, I1, I2, . . .,
are connected to a common network, known as the ether,
over which they exchange messages using the protocol.
Apart from these principals, there may also be trusted
third parties or servers, S, malicious attackers, M , and
other agents that have access to the ether.

? This work is partially funded by the Information Society
Technologies programme of the European Commission, Fu-
ture and Emerging Technologies, under the IST-2001-32072
project DEGAS.

I1

I2

. . .
Ii+1

Ii

S

M

. . .ether

Fig. 1 A network scenario making use of a security protocol.

We are interested in ensuring that the security goals
are met even in a “worst-case scenario”. Such a scenario
would for example allow an arbitrary number of princi-
pals to be running an arbitrary number of instances of
the protocol at the same time through a network pop-
ulated by an arbitrary number of attackers. The setup
depicted in Figure 1 is rather classical in that it has a
fixed structure, and the attackers are operating as sepa-
rate entities rather than being embedded in the princi-
pals.

Our goal is to develop a calculus that will allow us to
describe various classes of attack scenarios rather than
having to rely on a fixed setup as the one in Figure 1. We
may then study protocols e.g. together with an outside
attacker or together with “dishonest principals” that ap-
pear to the rest of the system as genuine principals but
contain code for implementing actions not expected of
principals (as might be the result of a genuine principal
being infected with a virus), or any combination of these
attack scenarios.

In future work we also anticipate the need to con-
sider dynamically changing networks in order to model
future and emerging wireless technologies and mobile in-
frastructure. We believe that the foundations laid in this
work will prove sufficiently flexible to deal also with these
issues, e.g. by the incorporation of mobility primitives,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13722813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mikael Buchholtz et al.

≡≡≡≡V

≡≡≡≡V

L

κ |= L

P1

κ |= P1

P2

κ |= P2

Fig. 2 Instantiation, L V Pi, and analysis, κ |= L and
κ |= Pi (for i = 1, 2). The analysis component κ stays invari-
ant under the instantiation.

but this development is well beyond the scope of the
present paper.

1.1 Protocols and Attack Scenarios

The first step of our approach is to encode protocols in a
suitable programming formalism in the form of a process
calculus. To be a bit more precise the process calculus
has two “levels”:

– The meta-level (to be denoted L) describes an overall
system scenario that we have in mind, whereas

– the object-level (to be denoted P) describes a con-
crete system falling within a given system scenario.

Because of the ellipses (· · ·) in Figure 1, the figure should
be viewed as an informal way of expressing a meta-level
process. The formal meta-level process will make clear
a number of issues regarding the protocol as well as the
places where the system is open to attack; hence this
will be the step where most care is needed in modelling
security protocols.

As part of our development we will formalise an in-
stantiation relation that non-deterministically evolves a
meta-level process into an object-level process (L V P)
as sketched in Figure 2; we will also formalise a semantics
that expresses how object-level processes execute into
each other (P → P ′) and as sketched in Figure 3 there
may be many different executions of the protocol de-
pending on the principals involved.

1.2 Control Flow Analysis

The second step of our approach amounts to carrying out
an analysis of processes at both meta-level and object-
level. For this we rely on techniques from control and
data flow analysis [30] that allow us to make fully auto-
matic analyses. As such, these techniques show promise
not only as methods for general protocol analysis but
also as techniques that may be used to validate actual
implementations of security protocols.

To be more specific, the central piece of information
that the analysis captures is the set of messages that are
sent on the network. In the analysis they are collected in

P P ′

P ′′
1

P ′′
2

〈A, NA〉

〈B, NB〉

〈C, NC〉

〈NB〉

〈NC〉

κ |= P κ |= P ′
i κ |= P ′′

i

Fig. 3 Semantics, P → P ′, and analysis, κ |= P . The anal-
ysis component κ stays invariant under the semantic execu-
tions. (Here κ will include all the message sent on the net-
work, i.e. {〈A, NA〉, 〈B, NB〉, 〈C, NC〉, 〈NB〉, 〈NC〉} ⊆ κ.)

an analysis component called κ. Technically, the analysis
is given as judgements of the form

κ |= L κ |= P

that describe that κ is a valid analysis of the meta-level
process L and of the object-level process P , respectively.
Typical analyses will contain more analysis components
but they are not needed at the current level of exposition.

These judgements should be viewed as conditions for
when the analysis information correctly describes the
process; hence they are boolean valued predicates in-
tended to give true. This is quite similar to type check-

ing : given a type and a process does the type describe
the process? At a later stage in the development we will
then be able to rely on techniques from control and data
flow analysis that allow us to make fully automatic anal-
yses with a low computational complexity; hence we will
be able to compute the best κ given L or P . This is quite
similar to type inference (except that for some type sys-
tems the computational complexity is intractable).

We need to ensure that the analysis is semantically
correct and there are two components to this. First we
need to ensure that if κ describes a meta-level process L
(i.e. κ |= L) and if the meta-level process can be instan-
tiated to an object-level process P (i.e. L V P), then
κ also describes the object-level process P (i.e. κ |= P);
this is depicted in Figure 2. Secondly, we need to ensure
that if κ describes an object-level process P (i.e. κ |= P)
and if the object-level process P executes into another
object-level process P ′ (i.e. P → P ′) then κ also de-
scribes the object-level process P ′ (i.e. κ |= P ′); this is
illustrated in Figure 3.

Let us concentrate our explanation around the more
familiar case of Figure 3 which goes under the name
“subject reduction”. The idea is that we want to find
one particular κ that describes the process during all
steps of all executions. This is done by letting κ be a
conservative over-approximation to the set of messages
that are communicated on the network. Thus, κ will be a
component that contains all the messages that are actu-
ally sent on the network but, possibly, also may include

A Calculus for Control Flow Analysis of Security Protocols 3

additional messages even though they, in fact, will not
be communicated. We often refer to values that “unnec-
essarily” end up in the analysis result as false positives

and we say that an analysis is more precise than another
if it gives fewer false positives.

It is important to stress that the approximations are
conservative in the sense that they cannot give false neg-

atives. That is, it will never be the case that the process
communicates a message that does no show up in κ. In
other words, the analysis always “errs on the safe side”
and hence it is the absence of offending information in
κ that will allow us to guarantee a security property of
a protocol.

1.3 Security Properties

Analysis of security protocols amounts to ensuring cer-
tain security goals in all instances of an attack scenario.
To give a simple and typical example, an attack scenario
often takes the form of an attacker M running in paral-
lel with the genuine part P of the system. Rather than
writing M | P , where P is known but M is not, we shall
make use of a meta-level process L = (• | P). The con-
trol flow analysis of L will then have to take care of all
potential attackers M that may be placed for •.

The traditional approach to this problem is to adapt
the famous Dolev-Yao conditions [13] to the setting at
hand. The formal correctness of the Dolev-Yao condi-
tions, as captured by the notion of “hardest attacker”
[32,31,7], is that when κ describes • then it also de-
scribes any attacker M , i.e. κ |= • implies κ |= M (and
that for some choice of M this is actually a biimpli-
cation). This resembles what Cervesato shows in [11]
though his approach works directly on the semantics of
Multiset Rewriting systems (MSR) while our approach
uses a finitary analysis that additionally leads to a de-
cidable validation procedure.

The next step then amounts to utilising the control
flow information for validating the security goals of the
protocols. For properties related to secrecy this is rather
straightforward:

1. Partition the values into secret and public.
2. Calculate κ for the protocol together with the Dolev-

Yao condition as indicated by the meta-level process
describing the protocol scenario.

3. Secrecy is guaranteed if no secret values are in clear
in κ.

For properties related to authenticity and integrity a lit-
tle more work is needed. In [7] annotations on the origins
and destinations of encryptions were used to ensure au-
thenticity issues; similar annotations can be added to
the calculus developed here. Also there is the prospect
of developing more flow-dependent analyses that more
directly deal with transaction based authentication; but
this is beyond the scope of the present paper.

2 State of the Art

The literature contains very many approaches to the
modelling and analysis of cryptographic protocols using
notations ranging from process calculi to domain spe-
cific languages and using techniques ranging from logical
theories over type systems to flow analysis. It is hardly
possible to give full credit to all of these approaches in a
short paper and in this overview we limit our attention
to some of the more influential developments based on
process calculi, type systems, and control flow analysis.

2.1 Calculi for Security Protocols

The use of process calculi for security protocol analysis
initially proved its worth when Lowe [21] found a new at-
tack on Needham-Schroeder’s public key protocol [28] by
encoding and analysing it in CSP. Following this initial
work numerous other calculi have been used for mod-
elling and analysing security protocols. For example:

– VSPA [17] is a value passing variant of CCS [26] ex-
tended to incorporate two security levels.

– The Spi-calculus [4] extends the π-calculus [27] with
cryptographic primitives.

– The Applied π-calculus [3] extends the π-calculus
with a general notion of terms.

– LySa [7] is a variant of the Spi-calculus with pattern
matching.

An obvious strength of process calculi for modelling
security protocols is their inherent handling of concur-
rency and communication. Usually, communication takes
place on named channels and one or more designated
channels are used to model the ether to which attackers
have access. All other channels may be used freely for
local or secret communication or for “signals” used in
analysis. The use of additional channels requires a small
argument to ensure that these do not constitute covert
channels. In LySa, on the other hand, there is only one

global ether for communication and, hence, local com-
munication is excluded.

Though concurrency and communication consistently
model principals connected to a common network none
of the calculi directly incorporate a notion of principals.
In particular, there is no syntactic way to distinguish lo-
cal, concurrent computations taking place at a principal
from global communication on the ether.

Cryptographic primitives, such as encryption, signa-
tures, and hash values, are important ingredients for
modelling security protocols. In the calculi they give rise
to terms where constants and variables are composed
using function symbols. For example, an encrypted mes-
sage m under a key k may be modelled as E(k,m), or
the hash value of v may be modelled as H(v). VSPA
and CSP allow terms to be composed and decomposed

freely. This means that attackers have to behave in a

4 Mikael Buchholtz et al.

disciplined manner so they will not decompose a mes-
sage such as E(k,m) (i.e. decrypt it) without knowing
the key. In contrast, all other calculi handles this prob-
lem by making such unwanted manipulations of terms
semantically impossible.

The Applied π-calculus, for example, introduces a
general notion of terms and equips the term algebra with
an equational theory. This equivalence relation is used
to semantically describe the interdependency of various
function symbols and an attacker is free to do everything
within the limitations of this semantics. Quite similar is
the calculus in [2] where the interdependency of function
symbols is described as constructors and destructors.

In the Spi-calculus and in LySa a fixed set of term
constructs are chosen and their meaning is “hard-wired”
into the semantics. Since there are no additional require-
ments on the terms they are elements of a free term al-
gebra, and this simplifies the analysis of the calculus.

2.2 Analysis of Security Protocols

In previous work [7,8], we have applied techniques from
control flow analysis to get an automated validation pro-
cedure for security protocols. Other automated analysis
techniques that work with language based formalisms
have objectives quite similar to ours.

For example, the type systems [1,19] for the Spi-
calculus can also be automated and type checking may
be done in polynomial time in the size of the process.
However, type inference seems significantly more expen-
sive (i.e. to take exponential time). In comparison, our
approach is more in the flavour of type inference while
retaining a polynomial worst-case complexity.

The general idea in these type system approaches is
that any process that type checks will have a particular
property. Similarly to our approach these techniques are
also semantically incomplete, so there exists processes
with this nice property that may fail to type check. For
example, in [19] protocols must use a certain kind of
nonce handshake to type check though there are plenty
of other ways to attain the desired authenticity property.

Another type system based approach from [2] is shown
to correspond to protocol analysis based on Horn-clauses
[5,6]. This may be seen as an implementation of type
inference that apparently terminates quickly on many
examples, though termination in general is not guaran-
teed. Interestingly, our implementations [33,7] also use
Horn-clauses though they are guaranteed to terminate
in polynomial time.

Many classical analysis techniques for process cal-
culi rely on relating processes by means of equivalence
or refinement relations. In manual approaches, reasoning
with such relations can be used to show quite strong se-
curity properties, e.g. [4,18]. Equivalence and refinement
relations are also central to a number of automated ap-
proaches.

t ::= n Name
| x Variable
| T(t1, · · · , tk) Tuple
| . . .

Table 1 Some of the basic terms.

The analyses of CSP [21,37], for example, use re-

finement relations between processes to specify security
properties. The refinements are automatically checked
by state space exploration, and though it is only done
for limited scenarios, with few principals, few runs, etc.
the approach is frequently successful [24]. Information
flow analysis [16] of VSPA is another example and here
security properties are formulated in terms of process
equivalences. It has been adapted to the analysis of se-
curity protocols [17,14] and gives an automatic valida-
tion procedure which is exponential in the size of the
processes though a compositional algorithm [17] often
behaves better in practice.

3 Principled Language Design

We are now ready to embark on the design of LySans

that addresses the three main goals of this paper as an-
nounced in the abstract: to express the security protocol
in a precise and faithful manner, to accommodate the
variety of attack scenarios, and to utilise the strengths
(and limit the weaknesses) of the underlying analysis
methodology.

In this section, we describe the basic building blocks
of LySans and the motivation for including them; this
draws upon our needs as presented in Section 1 and ex-
isting ingredients as surveyed in Section 2. Some fea-
tures of the calculus, like parallel composition and re-
cursion, are sufficiently standard that we will postpone
their treatment to Section 4, where the formal syntax
and semantics is presented. In Section 5 we shall jus-
tify that the last of our design goals is meet and there
we briefly outline an analysis of LySans. Appendix A
contains a number of elaborate examples of the use of
LySans, Appendix B contains the formal definition of
a notion of well-formed processes, while Appendices C
and D contain additional formal definitions for Sections
4 and 5 and are published in electronic form.

3.1 Terms and Patterns

To model cryptographic primitives, we use terms, t, which
consist of names, n, variables, x, and composite terms as
shown in Table 1. As in the Spi-calculus and in LySa we
use a fixed number of designated function symbols (or
constructors) for constructing composite terms; we shall
see in Section 3.3 that this suffices for directly capturing
the main security mechanisms: shared key encryption,

A Calculus for Control Flow Analysis of Security Protocols 5

p ::= n Matches name
| x Matches value of variable
| T(p1, · · · , pk) Matches tuple when

p1, · · · , pk match components
| Matches anything
| p%x Binds variable x when p matches
| . . .

Table 2 Some of the basic patterns.

public key encryption, private key signatures and hash
values. For now we focus on the simple case of tuples
which are constructed using the function symbol T, i.e.
T(t1, · · · , tk) represents a tuple of the k terms t1, · · · , tk.

In order to decompose a composite term and extract
the individual components we shall use pattern match-
ing since it proved to interact well with the analysis of
LySa [7]. This is an alternative to the explicit use of
destructors and is by no means novel when considering
security protocols (see e.g. [23,18]). The pattern match-
ing mechanism suggested here is, however, much more
general than what has previously been suggested in pro-
cess calculi and it has been carefully tailored to assist
our flow analysis as we will see in Sections 3.2 and 5. We
shall write

t as p. P

to denote the attempted matching of a term t against a
pattern p before continuing with the remainder P of the
computation. As usual there are two aspects of pattern
matching: (1) it is a test that only succeeds on terms
of a suitable form and hence may prevent P from being
executed, and (2) it is an extraction operation that maps
constituent components to variables that may be used in
P . We shall decide to follow the tradition of most process
calculi and refrain from using a notation like t as P or Q
that includes an explicit clause, Q, for error handling.

The first aspect of matching is handled by effectively
allowing terms to be used as patterns as shown in Table 2.
For example, the pattern n matches the term n while
the pattern T(n1, n2) matches exactly the pair T(n1, n2).
Furthermore, a pattern may be an applied occurrence of
a variable x and only matches the value that the variable
is bound to. For example, the pattern matching

n as x

will succeed if x is bound to the name n at run-time and
it will fail otherwise. A pattern can also be a wild-card,
written as underscore ’ ’ that matches any term. Hence,
the matching t as always succeeds. As we shall see in
Section 3.3 we will need to be careful with the wild-card
pattern when dealing with the cryptographic primitives.

The second aspect of matching is handled by letting
patterns contain defining occurrences of variables. In-
spired by the notation of [23] we write p%x for a pat-
tern that on success will bind the matched value to the

v1
v2
v3
v4
v5
v6...
vk

vi as p%x P

Fig. 4 Pattern matching only succeeds on some values; here
it fails on v2 and v5.

variable x. For example, the pattern matching

n as %x

will bind n to the variable x because the wild-card pat-
tern always succeeds. The %-notation syntactically dis-
tinguishes binding occurrences of variables from applied
occurrences of variables and its scope extends as far to
the right as possible.

It is clear from Tables 1 and 2 that for each com-
posite term there is a corresponding composite pattern.
The composite patterns provide a mechanism for decom-
posing terms by demanding subpatterns to be matched.
Thus a tuple T(t1, · · · , tk) successfully matches the pat-
tern T(p1, · · · , pk) whenever all the terms t1, · · · , tk suc-
cessfully match the respective subpatterns p1, · · · , pk. As
an example, the matching

T(n1, n2) as T(n1, %x)

succeeds since the first component of T(n1, n2) matches
the value n1. At the same time the tuple will be decom-
posed and the variable x will be bound to the second
component, i.e. x will be bound to n2.

3.2 Pattern Matching and the Analysis

In the explanation above we have made it clear that in
some runs of the matching construct, t as p.P , the test
will succeed and the process P will be executed; in others
the test will fail and the process P will be prevented from
executing.

Turning to the analysis we do not consider a single
run of the matching construct but rather all runs at the
same time as explained in Section 1.2. If there is at least
one value for which the test succeeds, then the process P
following the pattern matching must be analysed as well.
However, pattern matching is also used to bind values
to variables. This means that in addition to the network
component κ we shall need an environment ρ for keeping
track of which values may be bound to what variables.
This component should contain all the successful bind-
ings to the variables and, in the interest of a precise
analysis, we should avoid to include bindings from un-
successful matchings. For example, when analysing the
situation of Figure 4 we would expect that the analysis

6 Mikael Buchholtz et al.

v1...
vj
...

vk

ρ(x) ρ(x′)

vi as x%x′ P

Fig. 5 The analysis may allow a more precise set of values
for x′ over those of x in the context of analysing the pattern
x%x′.

information ρ(x) associated with x contains v1, v3, v4,
v6 etc. but we would prefer it not to include v2 and v5.

To understand this point it is useful to consider the
pattern x%x′. Semantically it will bind x′ to the value
that matches x; in other words, x′ will be equal to x in all
successful matchings and hence it might seem that the
simpler pattern x would serve equally well. It is when we
consider the analysis that we see the merits of using the
pattern x%x′. So suppose that the values v1, · · · , vk are
matched against x in different runs but that the match-
ing only succeeds for the values vj , · · · , vk as illustrated
by Figure 5. Then ρ(x) will contain the values vj , · · · , vk

but it may also contain other values like vk+1, · · · , vn.
However, the analysis can be constructed such that ρ(x′)
only contains the values that successfully match at this
particular point and hence ρ(x′) may be a strict subset
of ρ(x); this will allow us to obtain a considerably more
precise analysis.

3.3 Cryptographic Primitives

We now return to the interesting problem of how best
to represent the cryptographic primitives in as direct a
way as possible. We shall consider shared key and pub-
lic key encryption, private key signatures, and hashing.
In each case we shall define the syntax of terms (to be
summarised in Table 3) and we shall take care to define
the syntax of patterns in such a way that we capture
the security mechanisms in an appropriate manner (to
be summarised in Table 4).

Shared key cryptography (or symmetric key cryptogra-
phy) is used to encrypt values under a key, which is
shared in the sense that it is used both for encryption
and decryption. We model an encrypted value as the
composite term

Et0(t1, · · · , tk)

meaning that the terms t1, · · · , tk have been encrypted
under the key t0.

Example 1 In the Needham-Schroeder symmetric key pro-
tocol (see [28] or Appendix A.3) the server S constructs
an encrypted message to be sent to A to assist him in

establishing the desired communication link with B. In
our calculus this encrypted message can be written as

EKA
(NA, B,KAB ,EKB

(KAB , A))

where KA is the master key shared between S and A,
KB is the master key shared between S and B, KAB is
the newly constructed session key to be shared between
A and B, and NA is a nonce to guard against replay
attacks. �

The secrecy of values encrypted under a shared key
relies on the assumption that finding any one of t0, or
t1, · · · , tk from Et0(t1, · · · , tk) is a computationally hard

problem unless the key t0 is known. In our approach
we shall model computationally hard problems as being
semantically impossible; in other words we shall be using
perfect cryptography.

Syntactically, decryption amounts to pattern match-
ing against a composite pattern of the form

Ep0
(p1, · · · , pk)

Semantically, it is ensured that the pattern matching
only succeeds if t0 matches the pattern p0. To correctly
model perfect cryptography it is therefore essential that
we restrict the syntax of the pattern p0 by demanding
that it contains no wild-card patterns. As an example, if
p0 was the pattern %x then not only would decryption
always succeed but the key would be bound to x and
could be used also for subsequent encryption.

Example 2 Continuing Example 1 the encrypted mes-
sage can be decrypted by the recipient using the pattern:

EKA
(NA, B, %xK , %x)

The pattern introduces variables xK and x for the com-
ponents not already known and hence xK will be bound
to the session key KAB and x will bound to the en-
crypted message EKB

(KAB , A). �

Public key cryptography (or asymmetric cryptography)
is used to encrypt values under a public key, m+, whereas
decryption is performed with respect to a private key,
m−. We model an encrypted value as the composite term

Pm+(t1, · · · , tk)

meaning that the terms t1, · · · , tk have been encrypted
under the public key m+.

The secrecy of values encrypted under a public key
relies on the assumption that finding any one of m+ or
t1, · · · , tk from Pm+(t1, · · · , tk) is a computationally hard
problem unless the private key m− is known.1Additionally

1 Some implementations of public key cryptography in-
clude hints about the public key m+ in the ciphertext. To
model such implementations one may want to include m+ in
clear along with the ciphertext.

A Calculus for Control Flow Analysis of Security Protocols 7

it is assumed that finding the private key m− is com-
putationally hard even if the public key m+ is already
known. As above our approach will be based on perfect
cryptography.

Syntactically, decryption amounts to pattern match-
ing against a composite pattern of the form:

Pm−(p1, · · · , pk)

Semantically, it is ensured that the pattern matching
only succeeds if the public encryption key m+ is in bi-
jective correspondence with the private decryption key
m−. Semantically, we only allow a bijective correspon-
dence to exist between pairs of names such as m+ and
m−. Thus, all public and private keys will, in effect, be
names and in Section 3.4 we describe how such a corre-
spondence may be introduced.

We allow a slightly more general syntax where terms
have the form Pt0(t1, · · · , tk) and patterns have the form
Pp0

(p1, · · · , pk) and we again have to restrict the pattern
p0 so that it contains no wild-card patterns. Since all
key pairs consist of names, however, we will semantically
ensure that no decryption can succeed if composite terms
are used for keys.

Example 3 Let us consider one of the messages exchanged
in the Needham-Schroeder public key protocol [28] given
in full in Appendix A.4. The principal A sends a message
to B encrypted with B’s public key K+

B :

PK
+

B
(NA, A)

To decrypt the message B can use the pattern

PK−

B
(%xNA

, %xA)

and the variables xNA
and xA will be bound to the nonce

created by A and the name of A. �

Signatures. Sometimes digital signatures are presented
as the dual notion of public key encryption: one uses
the private key for encryption and the public key for de-
cryption. In our view this is an oversimplification due to
the symmetry between encryption and decryption in the
RSA approach [36] and we observe that this symmetry
is indeed not inherent in the ElGamal [15] approach.

So we shall decide to be very careful in modelling
digital signatures in the proper abstract way. We write

Sm−(t1, · · · , tk)

for the sequence t1, · · · , tk of messages signed under the
private key m−.

The corresponding pattern used for checking the sig-
nature is

Sp0
(p1, · · · pk)

Conceptually, this should be viewed as a test that only
succeeds when the correct signature has been used in
which case the content of the signed message may be

decomposed. It is important to stress that knowledge of
the key is not required in order to learn the content of
a message. For example, in

Sm−(n) as S (%x)

the name n is bound to x even though it was signed un-
der a private key, m−, for which the public key, m+, was
unknown. On the other hand, even though the pattern
matching succeeds, it does not convey any trust in the
authenticity of the message.

To obtain trust in the authenticity of the message,
knowledge of the key is essential. For example, in

Sm−(n) as Sm+(%x)

we not only get access to the contents of the message
but get the additional assurance that the message was
signed with the private key, m−, corresponding to the
public key, m+, known by us. Thus if the owner of the
key pair (m−,m+) has exercised due care in only making
the public key known to others we can indeed be sure of
the authenticity of the message.

At the syntactic level this means that the pattern p0

allowed in signature verification is more permissive than
for public key cryptography. In particular we shall have
to allow the pattern to be a wild-card pattern. However,
there are still restrictions that need to be enforced, such
as disallowing a pattern like %x, because it would allow
us to learn a new key.

Example 4 Let us return to the Needham-Schroeder pub-
lic key protocol of Example 3. In other messages the
principal A obtains its knowledge about B’s public key
through a signed message sent by the server:

SK
−

S
(K+

B , B)

The principal A can extract the public key using the
pattern

SK+

S
(%xKB

, B)

and A will then be entitled to trust that xKB
is bound

to B’s public key and that only B will be able to decrypt
a message of the form PxKB

(NA, A). �

Cryptographic hash values. We shall use the term

H(t1, · · · , tk)

for the one-way cryptographic hash value calculated from
the sequence of terms t1, · · · , tk. Correspondingly, there
is a pattern

H(p1, · · · , pk)

that allows to check hash values.
However, the very idea of a cryptographic hash value

is that it is “one-way” i.e. that it should not be possible
to learn the parts from which it is composed. This once
more calls for demanding that patterns must not include
a wild-card — this time for all the subpatterns p1, · · · , pk.

8 Mikael Buchholtz et al.

Example 5 Consider a version of the Otway-Rees proto-
col [35] based on hashing [25] (given in full in Appendix
A.5). Here the server S sends a message to principal B
containing among others the two messages:

· · · ,EKB
(KAB), H(KB , NB , A,EKB

(KAB)), · · ·

At this point in the protocol, B already has knowledge
of NB and A and of course it also knows the master key
KB so we can use the pattern

· · · ,EKB
(%xKAB

)%x, H(KB , NB , A, x), · · ·

to extract not only the session key (in the variable xKAB
)

but also to check on the hash value (using the encrypted
value EKB

(KAB) bound to x). �

3.4 Names and Name Generation

All keys, whether private, public or shared, must be in-
troduced in such a way that we can control which part
of the system that has initial knowledge about the keys.
Following the π-calculus tradition, we shall use restric-
tions for this. So (ν m)P may be used to construct a new
fresh symmetric key m that is initially only known in P .

Private and public keys are modelled in the calcu-
lus as two names m− and m+, respectively, and we will
need to ensure that there is a clear bijective correspon-
dence between them. Hence we introduce a new kind
of restriction operator (ν±m)P that introduces the two

names m+ and m− in the process P at the same time.
Semantically speaking, all names in the calculus con-

sist of a base name, m, and a tag, τ , and is typically writ-
ten as mτ . The base name is simply an identifier such
as S,KA, or pkB from some infinite set. On the other
hand, there are finitely many tags and they are used to
describe what the name may be used for: if the name is
a public key then it will be tagged with +, i.e. it will
be a name m+, while it will be tagged with − if it is
a private key. Since all names need a tag, we introduce
the tag ε that will be used on names that are neither
a public nor a private key. Names may be α-renamed
but this must be done in such a way that only the base
name is changed whereas the tag is unchanged. However,
the details of the tagging scheme should not distract us
when presenting the overall design of our calculus. We
therefore write names as m rather than mτ when the
choice of tag is not crucial.

The restriction operator (ν±m)P , thus, introduces
two names with the same base name m but with differ-
ent tags. Similarly to the π-calculus, the semantics will
ensure that the names cannot be forged and they are
therefore suitable to be used as keys. The only other re-
striction operator allowed is (νεm)P . The fact that the
sets of tags {+,−} and {ε} used by the two restriction
operators are disjoint turns out to simplify some of the
more technical parts of the development and for this rea-
son we do not want to allow more permissive forms of
restriction.

N1

S

· · ·

RT

I1

〈· · ·〉

N2

I2

(· · ·)

↑

↑ ↓

↓

Fig. 6 Principal I1 sends a message to principal I2 situated
in another sub-network.

3.5 Principals and Communication

The notion of a principal is a central aspect of security
protocols and should consequently also be a central as-
pect in any formalism designed to model such protocols.
As noted in Section 2 other process calculi, however, ne-
glect having a clear notion of a principal as a distinct
entity in the calculus. We instead choose to model prin-
cipals explicitly by introducing a notion of a boundary

as known from Mobile Ambients [10]. A principal named
n that is running the process P will be written as n [P].
Using this notation we can e.g. specify the scenario de-
picted in Figure 1 as the process

I1 [P1] | I2 [P2] | · · · | S [PS] | · · · | M [PM]

which clearly expresses that process P1 is running as a
principal called I1 while the process PS is running as a
principal called S, etc.

Another example of network boundaries is illustrated
on Figure 6 where two sub-networks N1 and N2 contain
different principals. The network N1, for example, con-
tains a principal I1 and a server S that, in turn, contains
a routing table RT . In this way, the ambient boundaries
are also able to describe various kinds of structure on a
network.

Position Based Communication. Mobile Ambients [10]
only allows communication to take place locally within
a single ambient. This form of communication seems too
restrictive for our purposes since we use ambients to rep-
resent principals and inter-principal communication is a
main focus. One solution is to adopt a π-calculus no-
tion of channels that offers great flexibility but in a way
that does not respect the boundaries; indeed, what is
a boundary worth if the boundary does not offer some
degree of isolation? Instead we adopt position based com-
munication that describes how messages are routed rela-
tively to the current position. For example, on Figure 6
the principal I1 might want to communicate with the
principal I2; given the topology the message would have
to go up, up, down and down.

We shall use η for describing such a communication

path (e.g. η = ↑.↑.N2.I2) and in principle we could al-
low communication paths to be elements of a regular

A Calculus for Control Flow Analysis of Security Protocols 9

language defined over directions and names. For our im-
mediate goal of modelling security protocols in scenar-
ios like the one in Figure 1 it suffices with just two
types of communication path. One allows communica-
tion from a principal to one of its neighbours (including
itself), written l, and the other allows local communica-
tion within a principal, written ◦. Hence, in the sequel η
will be either l or ◦. Examples of other communication
directions used for other purposes may be found e.g. in
Boxed Ambients [9].

Output works by sending sequences of terms, i.e. it
is polyadic, and is written:

〈t1, · · · , tk〉
η

Input receives sequences of terms and binds variables
accordingly. For this we use the variable binding mecha-
nisms already introduced, namely pattern matching, and
write it as:

(p1, · · · , pk)η

This is similar to, although much more flexible, than the
approach taken in LySa.

Example 6 A server, such as the one in Figure 1, may
have a database of all the keys, Ki, that it shares with
the principles Ii. One way of coding this is as a process

Database = !〈I1,K1〉
◦ | !〈I2,K2〉

◦ | . . .

that uses local communication to send pairs consisting
of a principal name and the corresponding key; the use
of ! denotes replication and means that the pairs of val-
ues can be sent as many times as necessary. Look-up
in this database can then be done as local input such
as (I1, %xK)◦ that will bind xK to K1 when placed in
parallel with Database.

The encoding of databases uses local communication
only and, hence, cannot be confused with the global com-
munication used for the encoding of the messages from
the protocol itself. �

In terms of security this means that our analysis
of security protocols will always permit attacks due to
communication (unless of course the right cryptographic
techniques are used as part of the communication); with
the advent of mobile and wireless infrastructures we be-
lieve this to be the better design over some of the alter-
natives surveyed in Section 2.

3.6 Attack Scenarios

All the features described above are concerned with mod-
elling specific principals engaged in a particular run of
the protocol and this constitutes the so-called object-level

of the calculus. This addresses two of our design goals
concerned with faithful modelling of protocols while hav-
ing their analysis in mind. The remaining design goal
is to accommodate the variety of different scenarios in
which the protocol may be deployed and will be the topic
of this section.

Scenarios. To describe scenarios, we introduce a meta-

level. Meta-level processes, L, extend the object-level
with a number of indexing constructs. First, it intro-
duces indexing sets, S, declared by the construct:

let X = S in L

The indexing sets are allowed to be infinite and can then
be used in a construct (ν ···

i∈X mi) for creating a family
of new names and in a parallel construct ‖i∈X Li for
creating a family of parallel processes. Further, all names
and variables may be indexed with one or more indices.

This allows us to specify the network scenario of Fig-
ure 1 as follows (with N being the natural numbers):

let X = N in •
| (νε

i∈X Ii) (νεS)
(‖i∈X Ii [Pi]) | S [PS]

Here • denotes the presence of the attacker and we use
(νε

i∈X Ii) to create the names Ii of the principals whereas
the object-level construct (νεS) is used to create the
name of the server. The attacker, the principals, and the
server all run in parallel; the names of the principals and
the server are initially only known to the honest part of
the scenario.

We may model a variation of the scenario where for
example I0 is a dishonest principal. To do so we single
out the treatment of I0:

let X = N \ {0} in •
| (νε

i∈X Ii) (νεS)
I0 [P0 | •] |
(‖i∈X Ii [Pi]) | S [PS]

where again • indicates the potential actions of an at-
tacker. This has far reaching consequences because now
the names of all principals are known to the attacker and
there is no way to control how the names will be used.

It should be clear that a meta-level process specifies
an attack scenario i.e. it specifies all the different object-
level processes in which the protocol may be deployed.
Though there will typically be infinitely many object-
level processes that fall within this scenario (there may
e.g. be infinitely many combinations of principals that
could use the protocol) each such object-level process
will be finite.

To make this relationship clear we shall write L V P
(L is instantiated by P) whenever the object-level pro-
cess P is one of the finite processes falling within the
attack scenario described by the meta-level process L.
The meta-level processes will have no dynamic seman-
tics, i.e. they cannot themselves be executed. Instead
they will be instantiated to object-level processes that
may then be executed.

The meta-level can be used to specify scenarios with
an arbitrary number of principals. For example, the con-
struct let X = S in L may be instantiated by any object-
level process obtained by choosing a finite subset of S

10 Mikael Buchholtz et al.

and using this set for X when instantiating L. To see
this in practice, consider the meta-level process of only
honest principals found above. This process may be in-
stantiated to the following object-level process by taking
X = {1, 2}:

Pattacker |
(νεI1) (νεI2) (νεS)

I1 [P1] | I2 [P2] | S [PS]

Here Pattacker can be any attacker process and P1 and P2

are appropriately instantiated versions of Pi. Similarly,
the meta-level process may also be instantiated using
any other subset of N.

Indexed names. In order to control the way in which
the processes P1 and P2 are obtained from Pi we shall
allow to use indexed names. As an example, suppose that
Ii [Pi] takes the form

Ii [(νεm) 〈mε〉l]

and that X = {1, 2}; then the corresponding instantia-
tion is

I1 [(νεm) 〈mε〉l] | I2 [(νεm) 〈mε〉l]

where each of I1 and I2 generates a new name m that
is sent on the ether. Semantically, the two occurrences
of m are clearly distinct; from the point of view of the
analysis they are much harder to distinguish unless we
force the two occurrences to be α-renamed apart.

To achieve this, we let Ii [Pi] take the form

Ii [(νεmi) 〈mε
i 〉

l]

where names are indexed; taking X = {1, 2} the corre-
sponding instantiation is

I1 [(νεm1) 〈mε
1〉

l] | I2 [(νεm2) 〈mε
2〉

l]

and now an analysis is likely to provide more precise
results by taking advantage of the fact that the names
are not the same i.e. that they have been “α-renamed
apart”.

Similarly, the analysis may more easily distinguish
between different variables if they are also α-renamed
apart and for this reason, we allow indices on variables
as well as on names.

In closing it is important to stress that many of the
considerations of how to choose the syntax so as to as-
sist the analysis are of a general nature; in other words,
they are also likely to assist reasoning based on other ap-
proaches than the control flow analysis approach taken
in this paper (e.g. type systems).

4 Syntax and Formal Semantics

Having presented the main ingredients and design con-
siderations for LySans we need to synthesise a formal
syntax and to present its formal semantics.

t ::= n Name
| x Variable
| T(t1, · · · , tk) Tuple
| H(t1, · · · , tk) Hash value
| Et0(t1, · · · , tk) Shared key encryption
| Pt0(t1, · · · , tk) Public key encryption
| St0(t1, · · · , tk) Private key signature

Table 3 Terms; t.

p ::= n Matches name
| x Matches value of variable
| Matches anything
| p%x Bind variable when p matches
| T(p1, · · · , pk) Matches tuple
| H(cp1, · · · , cpk) Checks hash value
| Ecp0

(p1, · · · , pk) Shared key decryption
| Pcp0

(p1, · · · , pk) Public key decryption
| Ssp0

(p1, · · · , pk) Verify signature

cp ::= n | x | Constructive pattern —
p%x | . . . as p but no wild-card

sp ::= | cp Signature pattern

Table 4 Patterns; p.

4.1 Terms and Patterns

Syntax. The basic building blocks of the calculus are
names n ∈ Name and variables x ∈ Var; both Name

and Var are infinite sets. Names are tagged and may be
written mτ though we often leave out the tag when it
is unimportant. Both names and variables may be in-
dexed with zero, one, or more indices. We often write
a sequence of indices as i instead of the more elaborate
i1 · · · ik. Indices are primarily of interest for the meta-
level and we leave them out entirely at other places
where they are unimportant.

The syntax of terms, t ∈ Term, is given in Table 3.
Patterns, p ∈ Pat, closely correspond to terms with the
addition of a wild-card and a variable binding mecha-
nism as shown in Table 4. As mentioned earlier, there
are restrictions on which patterns that are allowed in
decryptions, in verification of signatures and in checking
of hash values. Syntactically, this is handled by adopt-
ing two restricted classes of patterns. A constructive pat-

tern, cp, is as an ordinary pattern except that it is not
allowed to use the wild-card ’ ’. A signature pattern, sp,
is slightly more liberal as it is either a wild-card or a con-
structive pattern; thus in contrast to the general patterns
the wild-card can only occur at the top-level. We believe
that these decisions present the right way to model the
standard security mechanisms.

Semantics. In the tradition of process calculi we shall
employ a reduction semantics on closed processes. Hence

A Calculus for Control Flow Analysis of Security Protocols 11

(Name) θ ` n B n : θ (Var) θ ` v B x : θ if v = θx (Wild) θ ` v B : θ

(Tup)
∧k

i=1 θi−1 ` vi B pi : θi

θ0 ` T(v1, · · · , vk) B T(p1, · · · , pk) : θk

(Hash)
∧k

i=1 θi−1 ` vi B pi : θi

θ0 ` H(v1, · · · , vk) B H(p1, · · · , pk) : θk

(SDec)
θ ` v0 B p0 : θ0, ∧k

i=1θi−1 ` vi B pi : θi

θ ` Ev0
(v1, · · · , vk) B Ep0

(p1, · · · , pk) : θk

(PDec)
θ ` m−

B p0 : θ0, ∧k
i=1θi−1 ` vi B pi : θi

θ ` Pm+(v1, · · · , vk) B Pp0
(p1, · · · , pk) : θk

(Sign)
θ ` m+

B p0 : θ0, ∧k
i=1θi−1 ` vi B pi : θi

θ ` Sm−(v1, · · · , vk) B Sp0
(p1, · · · , pk) : θk

(Bind)
θ ` v B p : θ′

θ ` v B p%x : θ′[x 7→ v]

Table 5 Semantics of pattern matching; θ ` v B p : θ′.

the semantics of terms will be values, ranged over by
v ∈ Val, which are merely terms with no variables.

Pattern matching needs to produce a substitution, or
an environment,

θ : Var → Val

for recording the values bound to variables as a result
of the matching. We write [] for the empty environment
and θ[x 7→ v] for the environment that is as θ except
that it maps x to v. Eventually these environments will
be used to substitute values for variables in the process
following the matching.

When a value v is matched against a pattern p it
will be relative to an environment that maps all applied

occurrences of variables in p to their values. Further-
more, the matching will give rise to an extension θ′ of
the environment that additionally maps the defining oc-

currences of the variables in p to their values. Thus, the
judgements of the semantics take the form:

θ ` v B p : θ′

The semantics of pattern matching is shown in Table 5.
It imposes a left-to-right scoping of variables such that a
binding occurrence affects applied occurrences occurring
to the right. In the case of public key decryption and
verification of digital signatures we must take care to
ensure that the keys used are indeed tagged as required
and that they belong to the same key pair.

Example 7 The semantics of pattern matching is best ex-
plained through a few examples. The name A success-
fully matches the pattern x in the environment [x 7→ A]:

[x 7→ A] ` A B x : [x 7→ A]

Since no new variables are bound in the matching the
environment is not updated. The name B successfully
matches the pattern %x:

θ ` B B %x : θ[x 7→ B]

Here θ needs to be updated to record that x is mapped
to B.

For composite values, the left-to-right scoping may
sometimes prove useful. For example, the message m
in the tuple T(k,Ek(m)) may successfully be decrypted
using the pattern T(%x,Ex(%y)) since the matching
of the first part of the tuple results in a environment
[x 7→ k] that is used when matching the second part of
the tuple.2

In the case of public key decryption, a value Pk+(A)
encrypted under a public key, matches a pattern of the
form Pk−(A):

θ ` Pk+(A) B Pk−(A) : θ

In particular, the first premise of the rule (PDec) suc-
ceeds since

θ ` k−
B k− : θ

The semantics of signatures works in a similar fashion.�

4.2 Object-Level Processes

Syntax. Processes are built from patterns and terms
using the grammar in Table 6. Names are bound by re-
striction that may either bind one name, mε, or two
names, m+ and m−, depending on the choice of T . Vari-
ables may be bound in patterns and therefore pattern
matching and input both serve as binders of variables. A
name or a variable that is not bound is called free and we
write fn(P) and fv(P) for the free names and variables,
respectively, of the process P . The definitions of these

2 Note that a message such as T(Ek(m), k) cannot benefit
from the left-to-right scoping. It may instead be rearranged
to fit the above format or, alternatively, it may be decom-
posed in two subsequent matchings, the first one matching
T(Ek(m), k) against T(%z, %x) and the next one matching
z against Ex(%y).

12 Mikael Buchholtz et al.

P ::= P1 | P2 Parallel composition
| !P Replication
| 0 Terminated process
| (νT m) P Restriction/name generation
| n [P] Ambient/principal
| t as p.P Pattern matching
| 〈t1, · · · , tk〉

η.P Output
| (p1, · · · , pk)η.P Input

T ::= ε General names
| ± Public/private key pair

η ::= ◦ Local communication
| l Global communication

Table 6 Processes; P .

functions may be found in the electronic Appendix C
and they are standard except that fv has to cater for the
left-to-right scoping of variables defined in patterns. For
example, in the pattern T(p1, p2) variables defined in p1

are not free in p2. Consequently, fv(T(p1, p2)) is given as

fv(T(p1, p2)) = fv(p1) ∪ (fv(p2) \ dv(p1))

where dv(p) gives the variables defined in p i.e. the defin-
ing variables in subpatterns of p that have the form p′%x.

Semantics. The semantics uses α-conversion of vari-
ables and names; as already explained, names keep their
tag unchanged and only have their base name modified.
As an example, the bound name m+ may be substituted
for n+ but not for n−.

Substitutions are extended homomorphically to terms,
patterns, and processes and we write Pθ for the process
that is as P except that all free variables that are defined
by θ are replaced by their values. As usual, substitutions
perform α-conversion of bound names in P when neces-
sary to avoid capture of the names in θ.

The semantics of processes is then given by a reduc-
tion relation P → P ′ that describes how the process
P evolves into the process P ′. The reduction relation
is given as the smallest relation on closed processes that
fulfils the rules in Table 7. We shall now briefly comment
on some of the rules.

The semantics of pattern matching is used in the rule
(Match). Since the semantics of processes is substitution
based all variables in the term t will have been substi-
tuted with their values before the pattern matching is
performed. The rule (Com) says that any two processes
directly next to each other may communicate using ei-
ther local communication or global communication; the
latter corresponds to a principal that talks to itself via
the network. On the other hand, two principals resid-
ing at different principals may only communicate using
global communication as expressed in the rule (Glob).
In order to bring processes on a form where they match
the rules in Table 7, a structural congruence is defined

in Table 8. The structural congruence is used in the rule
(Con), which as the remaining rules is standard. In the
definition of the structural congruence we slightly abuse
notation by pretending that T is a set of tags: ε is {ε}
and ± is {+,−}.

4.3 Canonical Names, Variables, and Indices

As mentioned above the semantics makes extensive use
of α-renaming. This presents an obstacle to the analy-
sis because it would naturally collect sets of names and
this becomes meaningless when the identity of names is
not preserved. To solve this problem, which is standard
for congruence based semantics, we conceive that every
name n has a canonical name, written bnc, that does not
change when α-renaming is performed. (We sometimes
say that we performed disciplined α-renaming to stress
this point.) Thus, if n is α-renamed to m then their
canonical names must be same, i.e. bnc = bmc. Simi-
larly, each variable x has a canonical variable, written
bxc, that is stable under α-renaming.

We take care, that tags are not changed in the process
of finding a canonical name and, thus, bmτc preserves
the tag τ . Furthermore, the indexed names and variables
inherit the canonical structure of the index sets. Thus
bmic = bnjc holds if and only if both bic = bjc and
bmc = bnc; and similarly for variables.

Canonical names and variables are, thus, a central,
though standard, aspect in an analysis of congruence
based semantics. Semantic correctness is ensured by cal-
culating over-approximations of what can happen when
one name is substituted for the other and vice versa. The
assignment of canonical names and variables will conse-
quently be a key parameter in controlling the precision
of the analysis: the more different canonical names and
variables there are, the more distinguishing power the
analysis has i.e. the more precise it becomes.

As a novelty, we additionally use assignment of canon-
ical indices in indexing sets to decide the precision of the
analysis of meta-level processes. As described earlier, in-
dexing sets, S, of the meta-level may be infinite but in
order to cope with this in the analysis we shall require
that there is a corresponding finite set of canonical in-

dices, bSc.
As an example the set N of indices of principals of a

previous example will have to be mapped to a finite set
of canonical indices; if bic = bjc then the analysis will
not be able to tell the corresponding principals Ii and
Ij apart. However, if bic 6= bjc then the analysis gives
information differentiating Ii and Ij .

4.4 Meta-Level Processes

Indices on names and variables are particularly of in-
terest for the meta-level. When a meta-level process is
instantiated the intent is that all indices will be replaced

A Calculus for Control Flow Analysis of Security Protocols 13

(Par)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(New)
P → P ′

(νT m) P → (νT m) P ′

(Amb)
P → P ′

n [P] → n [P ′]
(Match)

∅ ` t B p : θ

t as p.P → Pθ

(Com)
∅ ` t1 B p1 : θ1 θ1 ` t2 B p2 : θ2 · · · θk−1 ` tk B pk : θk

〈t1, · · · , tk〉
η.P1 | (p1, · · · , pk)η.P2 → P1 | P2θk

(Glob)
∅ ` t1 B p1 : θ1 θ1 ` t2 B p2 : θ2 · · · θk−1 ` tk B pk : θk

n1 [〈t1, · · · , tk〉
l.P1 | Q1] | n2 [(p1, · · · , pk)l.P2 | Q2] → n1 [P1 | Q1] | n2 [P2θk | Q2]

(Con)
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′

Table 7 Reduction relation for processes; P → P ′.

P ≡ P

P1 ≡ P2 ⇒ P2 ≡ P1

P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3

P1 ≡ P2 if P1 and P2 are α-equivalent
P1 ≡ P2 ⇒ P1 | P3 ≡ P2 | P3

P1 ≡ P2 ⇒ !P1 ≡ !P2

P1 ≡ P2 ⇒ (νT m) P1 ≡ (νT m) P2

P1 ≡ P2 ⇒ n [P1] ≡ n [P2]

P1 | P2 ≡ P2 | P1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)
P | 0 ≡ P

!P ≡ P | !P

(νT m) 0 ≡ 0

(νT m) (P1 | P2) ≡ P1 | (νT m) P2 if {mτ | τ ∈ T} ∩ fn(P1) = ∅
(νT1m1) (νT2m2) P ≡ (νT2m2) (νT1m1) P

n [(νT m) P] ≡ (νT m) n [P] if n 6∈ {mτ | τ ∈ T}

Table 8 Structural congruence for processes; P ≡ P ′.

L ::= let X = S in L Declare indexing set
| (νT

i∈X
mji) L Indexing restriction

| ‖i∈X L Indexing parallel
| (νT m) L Ordinary restriction
| L1 | L2 Ordinary parallel
| n [L] Ambient
| P Object-level process
| • Open to attack

Table 10 Meta-level processes; L.

by elements from suitable indexing sets. We can view the
result of this substitution as an injective syntactic con-
catenation of indices with the names and the variables,
respectively. Conceptually, we may then think of the re-
sulting object-level process as not containing indices at
all.

Syntax. Indexing sets are introduced by a let-construct
as shown in the grammar for meta-level processes in Ta-
ble 10. We leave the details of the notation for indexing
sets unspecified (i.e. the syntax of S is unspecified) and
in examples we use standard notation for sets and oper-
ations on them.

We have indexed versions of the constructs for re-
striction and parallel composition. For restriction the in-
dexed base name mji has an index composed of j and

i. Here, j is a string of indices that have been defined
previously, while i is a string of indices from the current
indexing sets X = X1 · · ·Xk. In indexed parallel compo-
sition we define a parallel process for each element in the
indexing set.

Additionally, meta-level processes can be constructed
from object-level processes, ordinary parallel composi-
tion and restriction, and the ambient construct. Finally,
the symbol • signifies the places where the attacker may
be placed and hence where the system is open to attack.

Well-formedness. The syntax is overly liberal in a num-
ber of respects and when analysing systems this may
pose undesired complications. As an example, indexing
sets may be used without having been defined, and in-
dices may be used that have not been previously intro-
duced. More fundamentally, we wish to be able to under-
stand the scope rules also at the meta-level; in particular,
we would like to avoid the possibility that a name is free
in one instantiation and bound in another.

14 Mikael Buchholtz et al.

(Let)
Γ [X 7→ S′],N ` L V P

Γ,N ` let X = S in L V P
if S′ ⊆fin S

(INew)
Γ,N ∪ {mτ | m ∈ {maa1

· · ·maaj} ∧ τ ∈ T} ` L V P

Γ,N ` (νT

i∈X
mai) L V (νT maa1

) · · · (νT maaj) P
if Γ (X) = {a1, · · · , aj}

(IPar)
Γ,N ` L〈i 7→ a1〉 V P1 · · · Γ,N ` L〈i 7→ aj〉 V Pj

Γ,N `‖i∈X L V P1 | · · · | Pj

if Γ (X) = {a1, · · · , aj}

(MNew)
Γ,N ∪ {mτ | τ ∈ T} ` L V P

Γ,N ` (νT m) L V (νT m) P
(MPar)

Γ,N ` L1 V P1 Γ,N ` L2 V P2

Γ,N ` L1 | L2 V P1 | P2

(MAmb)
Γ,N ` L V P

Γ,N ` n [L] V n [P]
(Proc) Γ,N ` P V P

(Atcr) Γ,N ` • V P for an arbitrary P such that

– there are no free variables in P ,
– all free names in P come from N , and
– all variables created in P have x• as canonical variable,
– all names generated in P have n

ε
•, n

+
• , or n

−
• as canonical name.

Table 9 Instantiation relation between meta-level processes and object-level processes; Γ,N ` L V P

This motivates introducing a well-formedness require-
ment that ensures that all object-level or meta-level pro-
cesses are fully closed; this means that not only are there
no free variables, also there are no free names. This does
not present a limitation in our ability to deal with open
systems because our approach is to insert • at all points
where the system is open to attack.

The well-formedness requirement is formalised as well-
formedness predicates on each of the syntactic categories.
The formalisation may be found in Appendix B and in
the remainder of this paper we tacitly assume that all
syntactic constructs are well-formed.

Instantiation. The semantics of meta-level processes is
given by an instantiation relation

Γ,N ` L V P

that holds between a meta-level process L and any one
of possibly infinitely many object-level processes P . The
component Γ is a mapping from indexing set identifiers
to the sets they denote; we shall write Γ [X 7→ S] and
Γ (X) for updating and querying these mappings, respec-
tively. The component N collects the free names of the
process P .

The instantiation relation is defined as the smallest
relation satisfying the rules in Table 9. The rule (Let)
chooses a finite subset S ′ of the indexing set S and up-
dates the environment accordingly. This is the only con-

struct that chooses any subsets and this ensures that the
same subset will be chosen throughout the meta-level
process.

The rule (INew) generates a new restriction for each
name in the indexing set bound to X; these names are
potentially free names in the process obtained by instan-
tiating the body of the restriction so the N component of
the premise of the rule is extended to capture this. Fur-
thermore, we write Γ (X) for the set Γ (X1)×· · ·×Γ (Xk)
when X = X1 · · ·Xk. If the indexing set is empty then
the restriction instantiates simply as the process P ob-
tained from L.

The indexed parallel composition construct instanti-
ates a process for each element in the set bound to X as
described by the rule (IPar). In each such process P all
indices are substituted with different elements from the
indexing set. Here, we write P 〈i 7→ a〉 for the process
that is as P except all indices i are substituted by a.
If the indexing set is empty then the indexing parallel
instantiates as 0.

The rules (MPar), (MAmb), and (MNew) simply re-
quire that the meta-level processes are instantiated while
(Proc) says that any object-level part of a meta-level
process immediately instantiates.

The rule (Atcr) allows • to be replaced by any pro-
cess P that satisfies a number of conditions. First it is
required that P does not have any free variables; this
is quite natural given that the meta-level does not con-

A Calculus for Control Flow Analysis of Security Protocols 15

tain any binding constructs for variables. Next P may
have free names but they all have to come from N , the
set of names that are bound by the context of P ; this
turns out to account for all the names around because
of the well-formedness conditions and our insistence on
only dealing with systems that are fully closed. As for
the names and variables created by P we shall fix their
canonical identity as follows: all variables x have the
same canonical variable bxc = x• and all names nτ have
the same canonical name reflecting their tag bnτc = nτ

• .

5 Validating the Design

As already announced in the abstract, there are three
factors governing the design of process calculi for ana-
lysing security protocols. The first two concern the faith-
ful modelling of protocols and attack scenarios. In Sec-
tion 3 we have given many examples to validate that our
design indeed meets these requirements. More examples
are given in Appendix A, where a number of protocols
known from the literature are encoded in full.

The last test of the design of LySans is the extent to
which it allows to exploit the strengths (and at the same
time to limit the weaknesses) of our approach to static
analysis. To do so, we outline an analysis of LySans and
perform an in-depth analysis of how to use the features
of the calculus in order to increase the precision of this
analysis. The interested reader may enjoy the definition
of the analysis in full in the electronic Appendix D.

5.1 Overview of the Analysis

Terms. A term t without any variables describes a sin-
gle value; in the analysis we shall be interested in track-
ing only the canonical value (i.e. the value where all
names have been replaced by their canonical represen-
tatives). If there are variables in a term t then it may
describe a large set of values. To make this precise we
need an abstract environment ξ that maps variables to
sets of canonical values, and we then define the set ξ[[t]]
of canonical values denoted by the term t. The definition
amounts to a straightforward structural induction on t.

Patterns. When matching a term t to a pattern p we
shall take the approach that we match each canonical
value v in ξ[[t]] to the pattern p. This is performed by
means of a judgement of the form

ξ |= v B p : s

that will admit v as an element of the set s of success-
fully matched values whenever v matches the pattern.
The definition is in the form of a flow logic and may be
viewed as an inductive definition in the structure of the
pattern p.

The Need for Two Stages. Looking carefully at the se-
mantics for pattern matching in Table 5 and its use in
the semantics of processes in Table 7 we observe that
there are two stages in this process: first a set of candi-
date values are bound to variables in the substitution θ
and secondly, if the substitution “survives until the end”
(i.e. there is a judgement of the form ∅ ` t B p : θ) the
values are substituted into the process following the pat-
tern matching. This means that there may be bindings
of values to variables in θ that do not “survive until the
end” and hence are not substituted into the process.

To deal with these two stages without incurring a
major loss of precision we shall decide to use two abstract
environments:

– σ records the set of canonical values that a variable
may be bound to in some θ during the first stage of
the process, and

– ρ records the set of canonical values that may be sub-
stituted for a variable in some process in the second
stage of the process.

Both of these can be used in place of ξ in the function
ξ[[t]] and judgement ξ |= v B p : s explained above.
Intuitively we would expect that each ρ(x) is a subset of
σ(x).

Example 8 Consider the pattern matching

x as T(%y, b)

and imagine that it is analysed in a context where

ρ(x) = {T(c, a),T(d, a),T(e, a)}

Semantically, the pattern matching would not succeed
because none of the tuples that may be bound to x match
the entire pattern. Without a two stage approach, i.e.
using ρ also for σ, the analysis would bind variables “on-
the-fly” and show that ρ(y) = {c, d, e}. Thanks to the
two stage approach, i.e. distinguishing between ρ and σ,
we obtain σ(y) = {c, d, e} but ρ(y) = ∅. �

Processes. The judgement for analysing object-level pro-
cesses then takes the form

(ρ, σ, κ) |=n P

where we already introduced κ in Section 1 as the mech-
anism used to record the sequences of values communi-
cated. Local communication within an ambient will be
recorded in κ using the canonical name of the ambient
to identify where the communication takes place while
global communication is recorded with the special sym-
bol l. Formally, κ is a mapping from the canonical names
of ambients and l to the set of sequences of canonical
values communicated at that location. That is, κ(l) con-
tains the messages sent on the global network while κ(n)
contains messages communicated inside an ambient with
the canonical name n. The superscript n indicates the

16 Mikael Buchholtz et al.

canonical name of the immediately enclosing ambient of
the process P and is used to decide in which ambient
local communication occurs. Furthermore, the analysis
takes care of the two stages of the analysis of matching
with respect to σ and ρ as well as ensuring that a process
is only analysed if indeed it is reachable.

The definition of (ρ, σ, κ) |=n P is in the form of a
flow logic and may be viewed as an inductive definition in
the structure of the object-level process P . Technically,
the flow logic definition specifies when ρ, σ, and κ accept-
ably describes behaviour of the process P . Alternatively,
one may think of judgements in an operational manner
as something that given a process P returns a ρ, σ, and
κ that describes how P may behave when placed inside
the ambient n. Readers familiar with type systems may
like to parallel these two points of view with whether
your regard a typing judgement to be a specification of
type checking or a means of type inference.

The judgement (ρ, σ, κ) |=n P is intended to yield
true when the information in ρ, σ, and κ correctly de-
scribes the process P (placed in the context ρ) as well
as the processes it may evolve to. Hence, we need to en-
sure that the definition of (ρ, σ, κ) |=n P (as given in
the electronic Appendix D) correctly captures the for-
mal semantics of Table 7. This amounts to formalising
the intentions of Figure 3:

Theorem 1 (Subject reduction) if (ρ, σ, κ) |=n P
and P → P ′ then (ρ, σ, κ) |=n P ′

The result is proved by induction on the inference P → P ′.

Meta-Level Processes. The judgement for meta-level pro-
cesses takes the form

(ρ, σ, κ) |=n
Γ,N L

and has two subscripts not present in the case of object-
level processes. One is the environment Γ that records
the bindings of meta-level expressions of the form let X =
S in L; more precisely it will map X to the set of canon-
ical names in S. The other is the set of canonical names
N that have been defined so far; it is augmented when-
ever we have a binding construct of the form (νT

i∈X
mbi)

or (νT m) ; this component is essential in order to for-
mulate the Dolev-Yao condition for the places where the
(otherwise closed) system may be open to attack.

As before, the definition of (ρ, σ, κ) |=n
Γ,N L is in the

form of a flow logic and may be viewed as an inductive
definition in the structure of the meta-level process L.
Semantic correctness means that the definition captures
all processes that may arise as instantiations in the sense
of Table 9. This amounts to formalising the intentions
of Figure 2:

Theorem 2 if (ρ, σ, κ) |=n
Γ,N L and Γ ′,N ′ ` L V P

where bΓ ′(X)c ⊆ Γ (X) for all X and bN ′c ⊆ N then

(ρ, σ, κ) |=n P

The result is proved by induction on the inference Γ ′,N ′ `
L V P . The conditions relating Γ and N to Γ ′ and N ′

state that the analysis uses canonical names while the
semantics does not. The use of subset is necessary since
instantiation may non-deterministically choose a subset
of indices in the let-construct while the analysis has to
consider the largest of these sets.

5.2 Rebinding Variables in Pattern Matching

In the remainder of this section we study how to exploit
the annotations of our calculus in the interest of increas-
ing the precision of the analysis. As a first example, we
show how our carefully designed pattern matching mech-
anism may aid the analysis in this respect. Consider
a process that tests whether the variable y contains a
hashed value of the variable x and then sends the hashed
value on the local network:

H(x) as y.〈y〉◦.0

Now, let us assume that the analysis has already deter-
mined that the variable x may be bound to the value a
and that y may be bound to either H(a) or H(b). Seman-
tically, the matching can succeed only when y is bound
to H(a) and only this value can be sent on the network.
In the analysis, the information will be represented in
the component ρ as:

ρ(x) = {a}
ρ(y) = {H(a),H(b)}

Consequently, the analysis determines that the pattern
matching succeeds for the value H(a) and that the con-
tinuation, i.e. the process 〈y〉◦.0, should be analysed.
Since no binding takes place in the pattern there are
no changes to ρ, and in particular ρ(y) is unchanged.
Consequently, the analysis of the output would deter-
mine that all values in ρ(y) may be sent on the local
network, i.e. that both H(a) and H(b) may be sent.

Alternatively, we may change the process and use the
ability to rebind variables as part of pattern matching:

H(x) as y%y′.〈y′〉◦.0

Semantically, no change has taken place. However, since
a variable binding is introduced, the analysis may give
a more precise analysis result for this new process. If we
analyse the process using the same ρ as before the anal-
ysis will once more determine that the pattern match
succeeds for H(a). However, the variable y′ only needs
to be bound to this value:

ρ(y′) = {H(a)}

The analysis will then be able to determine that only
H(a) can be sent on the network.

The problem described in this example came up when
validating versions of the Otway-Rees protocol with hash-
ing [25] (see also Appendix A) using the techniques of

A Calculus for Control Flow Analysis of Security Protocols 17

[7]. Unfortunately, the more restrictive syntax of pat-
tern matching incorporated in LySa does not allow re-
binding of variables and therefore the problem remained
unsolved in [7].

5.3 Arbitrarily Many Principals

The analysis of meta-level processes allows for analyses
of systems with arbitrarily many principals and, thereby,
overcomes a weakness of [7] where some representative
number had to be chosen ad-hoc. The novel idea pre-
sented in this paper is that the meta-level may describe
arbitrarily large system by allowing infinite sets to be
used in the let-construct though these sets must have a
finite canonical partitioning that is used by the analysis.
The assignment of canonical values does not affect cor-
rectness of the analysis but is merely a mechanism for
controlling its precision. Thus, the analysis result will be
a valid estimate of what happens in systems of arbitrary
size.

Example 9 As a simple example, we may stipulate that
all elements of the infinite set of natural numbers N have
the same canonical representative, e.g. bNc = {?}.

Next, consider a very simple “protocol” with arbi-
trarily many principals and where each Ii creates a new
secret name si and sends it encrypted with its private
key on the global ether. This is described by the meta-
level process:

L
def
= let X = N in

(νε
i∈X Ii)

(ν±
i∈X Ki)

‖i∈X Ii [(νεsi) 〈PK+

i
(si)〉l]

We analyse it using the meta-level analysis:

(ρ, σ, κ) |=>
[], ∅ L

The analysis of the let-construct will update the (empty)
environment with [X 7→ {?}], since the canonical set of
X is {?}. Next, the analysis of the indexed parallel com-
position will analyses the principal Ii with i substituted
for each of the (canonical) elements in {?}. In turn, this
gives that the network component is

κ(l) = {PK+
?
(s?)}

and it follows that terms with PK+
?
(s?) as their canonical

representative may be sent on the global network.
It is important to note that this value is a canoni-

cal representative that not only describes messages like
PK

+

3

(s3) and PK
+

7

(s7) but also messages like PK
+

3

(s7)

and PK
+

7

(s3). Despite this over-approximation of the

behaviour of processes the analysis result does provide
valuable information about the system. For example, it
makes it clear that no instance of L may send any si in
clear on the network. �

5.4 Attack Scenarios

Our calculus is unique in admitting explicit syntax for
the positions where a system may be open to attack. This
gives a great variation in the classes of attack scenarios
that can be considered and we shall illustrate this by
means of two variations of Example 9.

Example 10 The traditional scenario is that the attacker
is placed in parallel with the protocol:

• | L

This means that the attacker has no initial knowledge
of the identity of the principals nor of their keys. An
analysis of this process takes the form

(ρ, σ, κ) |=>
[], ∅ • | L

and will result in a different result from before because
the attacker can interact with the instances of L. For
example, although κ(l) still contains PK+

?
(s?) it also

contains elements that the attacker may send on the net-
work. Nonetheless, the network component still does not
contain s? in clear and this means that the attacker is not
able to break the secrecy properties of the protocol. �

Example 11 As a different scenario, we may place the
attacker so that it has initial knowledge of the keys and
the identity of the principals:

L′ def
= let X = N in

(νε
i∈X Ii)

(ν±
i∈X Ki)

• |
‖i∈X Ii [(νεsi) 〈PK

+

i
(si)〉l]

This time an analysis of L′ will yield a network compo-
nent that contains s?. It follows that we cannot guar-
antee that no si is sent in clear on the network. This is
semantically the best we can hope for because the at-
tacker has initial knowledge of the keys K−

i and hence
can decrypt the messages PK+

i
(si), obtain the contents

si and then send it in clear on the network. �

5.5 Variations of the Analysis

The analysis we have given in the electronic Appendix
D is a relatively simple analysis. Our intention is that
this analysis should only serve as a proof-of-concept that
LySans indeed does fulfils our third design goal and
easily gives a more precise analysis as presented earlier
in this section. Below we briefly touch on some of the
shortcomings of the analysis and suggest improvements
that may be pursued in future work.

One disadvantage of the current analysis is that the
communication box of an ambient is linked so closely to
the name of the principal in which it resides. This means

18 Mikael Buchholtz et al.

that mere knowledge of that name will allow the attacker
to influence the communication taking place in that com-
munication box; e.g. by creating its own principal with
that name and perform the communications there. It is
possible to code the protocols in such a way that they
are hardened against this problem, e.g. by distinguish-
ing between their “real name” (which is kept secret) and
their “official name” (which is made public). However, a
better choice is to modify the analysis. A standard tech-
nique is to use labels on all ambients and to use the label
as the “real name”. This works because the labels can-
not be manipulated by any process and, in particular,
the attacker may only create ambients labelled with a
special label, say l•.

Another disadvantage of the current analysis is that
it analyses the rebinding construct, p%x, in an indepen-
dent attribute manner rather than a relational manner.
This means that not all of the protocols encoded in Ap-
pendix A can be analysed to give results that are as
precise as those in [7]. To obtain the same precision as
in [7], one alternative is to change the encoding of the
protocols in Appendix A to be more in the flavour of [7].
Another alternative is to develop an analysis that allows
to deal with the rebinding construct, p%x, in a relational
manner, written p

�
x. We leave the development of this

analysis as future work.

6 Perspectives

Let us reconsider the objectives of our development and
show that they are met by the calculus designed here.
We claim that it is quite natural to express security pro-
tocols in a precise and faithful manner. One reason is
the careful consideration of the cryptographic primitives
and the decomposition of cryptographic entities using
different kinds of patterns. This not only gives a precise
account of symmetric encryption but also of asymmetric
encryption and digital signatures, capturing their dif-
ferent flavour, and hashing. Another is the meta-level
processes that make it straightforward to analyse sys-
tem scenarios in such a way that the results carry over
to arbitrarily large systems falling within the scenario.

We also claim that our calculus is unique in the flex-
ibility with which a variety of different attack scenar-
ios can be described. This is due to the incorporation
of explicit syntax, •, for where the system is open to
attack. It makes it possible to discuss at the syntactic
level such fine distinctions as the ones between a mali-
cious attacker and a dishonest principal. Also it makes
it possible to study how systems should be “hardened”
when the attack scenario becomes more demanding on
the system, e.g. because the attacker is given more initial
information. It would even be possible to add additional
syntax for classes of attackers with more limited abili-
ties, e.g. passive attackers, if necessary to describe the
attack scenarios at hand.

Finally, we believe that our calculus goes a long way
towards allowing the protocol designer to present the
analysis in such a way that the strengths of the underly-
ing analysis technology are best exploited. This should
be viewed as a handle that assists the protocol designer
in adapting the precision of the analysis without requir-
ing deep knowledge of how to specify and implement
analyses. This will not least be of interest for future de-
velopments where we may need to develop more powerful
analyses as discussed in Section 5.5.

Surely much work needs to be done. The examples in
the paper already indicate the ability to ensure secrecy
properties and following the approach of [7] it should be
straightforward to add annotations that will allow us to
deal with origin and destination authenticity. As in [7]
this may be seen as a kind of message authentication ex-
cept that the property is non-injective [22] in the sense
that it does not require a strict one-to-one correspon-
dence between origin and destination of messages. We
plan also to address non-injective session based authen-
ticity whereas the stronger one-to-one correspondence
properties are likely to require a more complex analy-
sis; however, we do not foresee any need to make major
changes in the calculus. Implementation of the analysis
developed in the electronic Appendix D, using the tech-
niques of [33,7], remains to be done but is well beyond
the scope of the present development.

Opening up for dynamically changing networks, in
order to model the emerging wireless and mobile infras-
tructure, there may well be a need to extend the cal-
culus with new constructs. We believe that the mobil-
ity capabilities of Mobile Ambients [10] could easily be
adapted although we might find it more appropriate to
use one of the many variations to be found in the lit-
erature (e.g. [10,20,34]). Some of these contain syntax
for directly dealing with access control, whether discre-
tionary or mandatory, and would show the way towards
a calculus that treats network security and access control
as equally important features of Global Computing.

Acknowledgements. Discussions with Pierpaolo Degano
and Chiara Bodei on modelling and analysing security
protocols have helped to form many of the ideas pre-
sented in this paper.

References

1. M. Abadi. Secrecy by typing in security protocols. Jour-
nal of the ACM, 5(46):749–786, 1999.

2. M. Abadi and B. Blanchet. Analyzing security protocols
with secrecy types and logic programs. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2002), pages
33–44. ACM Press, 2002.

3. M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of

A Calculus for Control Flow Analysis of Security Protocols 19

Programming Languages (POPL 2001), pages 104–115.
ACM Press, 2001.

4. M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols – The Spi calculus. Information and
Computation, 148(1):1–70, 1999.

5. B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In Proceedings of the 14th Com-
puter Security Foundations Workshop (CSFW 2001),
pages 82–96. IEEE Computer Society Press, 2001.

6. B. Blanchet. From secrecy to authenticity in security pro-
tocols. In Static Analysis, 9th International Symposium
(SAS 2002), volume 2477 of Lecture Notes in Computer
Science, pages 342–359. Springer Verlag, 2002.

7. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and
H. Riis Nielson. Automatic validation of protocol narra-
tion. In Proceedings of the 16th Computer Security Foun-
dations Workshop (CSFW 2003), pages 126–140. IEEE
Computer Society Press, 2003.

8. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson.
Flow Logic for Dolev-Yao secrecy in cryptographic pro-
cesses. Future Generation Computer Systems, 18(6):747–
756, 2002.

9. M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambi-
ents. In Theoretical Aspects in Computer Science (TACS
2001), volume 2215 of Lecture Notes in Computer Sci-
ence, pages 37–63. Springer Verlag, 2001.

10. L. Cardelli and A. D. Gordon. Mobile Ambients. Theo-
retical Computer Science, 240(1):177–213, 2000.

11. I. Cervesato. Data access specification and the most
powerful symbolic attacker in MSR. In Proceedings of
the International Symposium on Software Security (ISSS
2002), volume 2609 of Lecture Notes in Computer Sci-
ence, pages 384–416. Springer Verlag, 2003.

12. J. Clark and J. Jacob. A survey of authentica-
tion protocol literature: Version 1.0. http://www-
users.cs.york.ac.uk/∼jac/papers/drareviewps.ps, 1997.

13. D. Dolev and A. C. Yao. On the security of public key
protocols. In 22nd Annual Symposium on Foundations
of Computer Science, pages 350–357. IEEE, 1981.

14. A. Durante, R. Focardi, and R. Gorrieri. A compiler
for analyzing cryptographic protocols using noninterfer-
ence. ACM Transactions on Software Engineering and
Methodology, 9(4):488–528, 2000.

15. T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985.

16. R. Focardi and R. Gorrieri. A classification of security
properties for process algebras. Journal of Computer Se-
curity, 3(1):5–33, 1995.

17. R. Focardi and R. Gorrieri. The compositional security
checker: A tool for the verification of information flow
security properties. IEEE Transactions on Software En-
gineering, 23(9), 1997.

18. C. Fournet and M. Abadi. Hiding names: Private au-
thentication in the applied pi calculus. In Proceedings of
the International Symposium on Software Security (ISSS
2002), volume 2609 of Lecture Notes in Computer Sci-
ence, pages 317–338. Springer Verlag, 2003.

19. A. D. Gordon and A. Jeffrey. Authenticity by Typing for
Security Protocols. In Proceedings of the 14th Computer
Security Foundations Workshop (CSFW 2001), pages
145 –159. IEEE, 2001.

20. F. Levi and D. Sangiorgi. Controlling interference in
ambients. In Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2000), pages 352–364. ACM Press, 2000.

21. G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems, volume
1055 of Lecture Notes in Computer Science, pages 147–
166. Springer Verlag, 1996.

22. G. Lowe. A hierarchy of authentication specifications. In
Proceedings of the 10th Computer Security Foundations
Workshop (CSFW 1997), pages 31–43. IEEE Computer
Society Press, 1997.

23. G. Lowe. Casper: A compiler for the analysis of secu-
rity protocols. Journal of Computer Security, 6(1):53–84,
1998.

24. G. Lowe. Towards a completeness result for model check-
ing of security protocols. Journal of Computer Security,
7(2-3):89–146, 1999.

25. W. Mao and C. Boyd. Methodical use of cryp-
tographic transformations in authentication protocols.
IEE Proceedings of Computers and Digital Techniques,
142(4):272–278, 1995.

26. R. Milner. Communication and Concurrency. Prentice
Hall Series in Computer Science. Prentice Hall, 1989.

27. R. Milner, J. Parrow, and D. Walker. A calculus of Mo-
bile processes (I and II). Information and Computation,
100(1):1–77, 1992.

28. R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers. Commu-
nications of the ACM, 21(12):993–999, 1978.

29. F. Nielson and H. Riis Nielson. Infinitary control flow
analysis: a collecting semantics for closure analysis. In
Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL
1997), pages 332–345. ACM Press, 1997.

30. F. Nielson, H. Riis Nielson, and C. Hankin. Principles
of Program Analysis. Springer Verlag, 1999.

31. F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating
firewalls using flow logics. Theoretical Computer Science,
283(2):381–418, 2002.

32. F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G.
Jensen. Validating firewalls in Mobile Ambients. In
CONCUR 1999 – Concurrency Theory, volume 1664
of Lecture Notes in Computer Science, pages 463–477.
Springer Verlag, 1999.

33. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic
analysis in cubic time. Electronic Notes in Theoretical
Computer Science, 62, 2002.

34. H. Riis Nielson, F. Nielson, and M. Buchholtz. Security
for mobility. In Proceedings of FOSAD 2001, Lecture
Notes in Computer Science. Springer Verlag, To appear.

35. D. Otway and O. Rees. Efficient and timely mutual au-
thentication. ACM Operating Systems Review, 21(1):8–
10, 1987.

36. R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126, 1978.

37. A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, 1998.

38. B. Schneier. Applied Cryptography. John Wiley & Sons,
1994.

20 Mikael Buchholtz et al.

A Example Protocols

Below we present a number of encodings of standard
protocols as meta-level processes in LySans. First we
consider a simple protocol with just one message.

A.1 ISO Symmetric Key One-Pass Unilateral

Authentication Protocol

The protocol is described in [12] by the narration

A → B : m2,EKAB
(NA, B,m1)

where m1 and m2 are messages, NA is a nonce and it is
assumed that the principals A and B already share the
key KAB .

The protocol may be used in a scenario where arbi-
trarily many principals may use it to communicate with
one another any number of times:

let X = N in

•
| (νε

i∈X Ii) (νε
i j∈X X Kij)

‖i∈X Ii [‖j∈X ! Init(Ii, Ij)
| ‖j∈X ! Resp(Ii, Ij)]

Here, a new name Ii is generated for each principal along
with a shared key Kij for each pair of principals. At each
principal, i.e. inside the ambient Ii [· · ·], the protocol is
run both as initiator and responder.

For the encoding of the initiator and the responder
we shall follow [7] and include the source and destination
addresses (A and B above) as the first two elements of
the message. The initiator part of the protocol Init(Ii, Ij)
can be coded as follows:

(νεNA
ij) (νεm1ij) (νεm2ij)

〈Ii, Ij ,m2ij ,EKij
(nA

ij , Ij ,m1ij)〉l. · · ·

The corresponding responder code Resp(Ij , Ii) is then

(Ii, Ij , %x2
ij ,EKij

(%xA
ij , Ij , %x1

ij))
l. · · ·

and the variables x1
ij and x2

ij will eventually contain the
messages m1ij and m2ij . At completion of the protocol
the principal may engage in other matters described by
a process placed at the ellipses (· · ·).

A.2 ISO Symmetric Key One-Pass Unilateral

Authentication Protocol using Cryptographic Check

Functions

The above protocol also exists in a version where it
uses cryptographic check functions [12]. A cryptographic
check function is a key-dependent function fK(t) that
returns a hash value for data t in a manner determined
by the key K. In [12] the protocol is specified by:

A → B : NA, B,m2, fKAB
(NA, B,m1)

Here it is assumed that both A and B know the message
m1 before the protocol is run.

A standard technique for defining a cryptographic
check function, fK(t) (see e.g. [38]) is to use a one-way
hash function that gives a hash value for the combination
of the key K and the argument t. In LySans we can
model this as H(t,K).

The overall setting of the protocol is now slightly
different from before as the message m1 is known to
both principals before the protocol is initiated. We can
code this as

let X = N in

•
| (νε

i∈X Ii) (νε
i j∈X X Kij) (νε

i j∈X X m1ij)

‖i∈X Ii [‖j∈X ! Init(Ii, Ij)
| ‖j∈X ! Resp(Ii, Ij)]

where the initiator Init(Ii, Ij) and the responder Resp(Ij , Ii)
are specified by

(νεNA
ij) (νεm2ij)

〈Ii, Ij , N
A
ij , Ij ,m2ij ,H(NA

ij , Ij ,m1ij ,Kij)〉l. · · ·

and

(Ii, Ij , %xA
ij , Ii, %x2

ij ,H(xA
ij , Ij ,m1ij ,Kij))

l. · · ·

respectively. To show the diversity of the calculus let
us also specify a scenario where everyone, including the
attacker, knows the messages m1 used by the principals:

let X = N in

(νε
i j∈X X m1ij)

•
| (νε

i∈X Ii) (νε
i j∈X X Kij)

‖i∈X Ii [‖j∈X ! Init(Ii, Ij)
| ‖j∈X ! Resp(Ii, Ij)]

The code for the initiator and responder is unchanged.

A.3 Needham-Schroeder symmetric key protocol

The classical protocol narration [28] is written as follows:

1. A → S : A,B,NA

2. S → A : EKA
(NA, B,K,EKB

(K,A))
3. A → B : EKB

(K,A)
4. B → A : EK(NB)
5. A → B : EK(NB−1)

Here the two principals A and B are assumed to share
master keys KA and KB with the server S. The protocol
is initiated by A and S will then create the session key K
and send it appropriately encrypted to A who forwards
an encrypted message with the key to B. The protocol
concludes by resolving a nonce challenge issued by B.

A Calculus for Control Flow Analysis of Security Protocols 21

In LySans the protocol can be written as follows:

let X = N in

•
| (νε

i∈X Ii) (νε
i∈X Ki)

‖i∈X Ii [‖j∈X !Init(Ii, Ij) | !Resp(Ii)]
| S [!Server | Database]

where Init(Ii, Ij) is the code for Ii initiating the proto-
col with Ij , Resp(Ii) is the code for Ii when acting as
a responder, and Server is the code for the server; as
we shall see it will communicate locally with the com-
ponent Database. The individual components are pre-
sented below; the rightmost numbers refer to the corre-
sponding step in the protocol narration given above. For
Init(Ii, Ij) we have:

(νεNA
ij) 〈Ii, S, Ii, Ij , N

A
ij 〉

l. (1)

(S, Ii,EKi
(NA

ij , Ij , %yK
ij , %yij))

l. (2)

〈Ii, Ij , yij〉l. (3)
(Ij , Ii,EyK

ij
(%zB

ij))
l. (4)

〈Ii, Ij ,EyK
ij

(T(zB
ij , 1))〉

l. · · · (5)

The code Resp(Ij) for the responder role is:

(%xA
j , Ij ,EKj

(%xK
j , xA

j))l. (3)

(νεNB
j) 〈Ij , x

A
j ,ExK

j
(NB

j)〉l. (4)

(xA
j , Ij ,ExK

j
(T(NB

j , 1)))l. · · · (5)

The Server code is as follows:

(%xA, S, xA, %xB , %xN)l. (1)
(xA, %xKA)◦. (xB , %xKB)◦.

(νεK)
〈S, xA,ExKA (xN , xB ,K,ExKB (K,xA))〉l (2)

In the second line the server consults a Database to ob-
tain the master keys of the principals of the system; the
code is as follows

‖i∈X ! 〈Ii,Ki〉◦

meaning that it constantly is willing to inform about the
master keys for the various principals.

A.4 Needham-Schroeder asymmetric key protocol

There also exists a version of the Needham-Schroeder
protocol relying on asymmetric key cryptography [28].
The protocol narration is as follows:

1. A → S : A,B
2. S → A : SK−

S
(K+

B , B)

3. A → B : PK+

B
(NA, A)

4. B → S : B,A
5. S → B : SK−

S
(K+

A , A)

6. B → A : PK+

A
(NA, NB)

7. A → B : PK+

B
(NB)

Both the principals A and B use the server S to obtain
knowledge about each others public key (steps 1/2 and
4/5); the server signs its response with its private key
thereby increasing the principals trust in the informa-
tion. The remaining steps represent a nonce challenge
relying on asymmetric key cryptography.

We shall use a scenario similar to the one above

let X = N in

•
| (ν±KS)

(νε
i∈X Ii) (ν±

i∈X Ki)
‖i∈X Ii [‖j∈X !Init(Ii, Ij) | !Resp(Ii)]

| S [!Server | Database]

so initially we make sure that the keys are in place (and
they are not known to the attacker). As before each prin-
cipal is ready to interact with any principal any number
of times.

The definitions of Init(Ii, Ij), Resp(Ii), Server and
Database reflect the details of the protocol and are spec-
ified below. For Init(Ii, Ij) we have

〈Ii, S, Ii, Ij〉l. (1)
(Ii, S,SK+

S
(%y+

j , Ij))
l. (2)

(νεNA
ij) 〈Ii, Ij ,Py+

j
(NA

ij , Ii)〉l. (3)

(Ij , Ii,PK
−

i
(NA

ij , %vij))
l. (6)

〈Ii, Ij ,Py+

j
(vij)〉l. · · · (7)

so in step (2) the public key of the recipient is learnt in
the variable y+

j . For Resp(Ij) we have

(%zA
j , Ij ,PK−

j
(%zN

j , zA
j))l. (3)

〈Ij , S, Ij , z
A
j 〉l. (4)

(S, Ij ,SK+

S
(%u+

j , zA
j))l. (5)

(νεNB
j) 〈Ij , z

A
j ,Pu+

j
(zN

j , NB
j)〉l. (6)

(zA
j , Ij ,PK−

j
(NB

j))l. · · · (7)

and here the public key of the initiator is learnt in the
variable u+

j . Finally, for Server and Database we have

(%x, S, x, %x′)l. (1/4)

(x′, %xK+

)◦.

〈S, x,SK
−

S
(xK+

, x′)〉l (2/5)

and

‖i∈X ! 〈Ii,K
+
i 〉◦

respectively.

A.5 Otway-Rees with hashing

In [25], Mao and Boyd describe how to encode protocols
using cryptographic check functions rather than asym-
metric key cryptography. One of the protocols that they

22 Mikael Buchholtz et al.

consider is the Otway-Rees protocol [35]:

1. A → B : M,A,B,NA

2. B → S : M,A,B,NA, NB

3. S → B : M,EKA
(K),H(NA, B,EKA

(K),KA)
EKB

(K),H(NB , A,EKB
(K),KB)

4. B → A : M,EKA
(K),H(NA, B,EKA

(K),KA)

Here M , NA and NB are nonces, KA and KB are mas-
ter keys between the principals and the server and K is
the session key created by the server. Again, the overall
encoding takes the form:

let X = N in

•
| (νε

i∈X Ii) (νε
i∈X Ki)

‖i∈X Ii [‖j∈X !Init(Ii, Ij) | !Resp(Ii)]
| S [!Server | Database]

where the idea behind the abbreviations is as above. The
initiator code Init(Ii, Ij) is given by

(νεMij) (νεNA
ij) 〈Ii, Ij ,Mij , Ii, Ij , N

A
ij 〉

l. (1)
(Ij , Ii,Mij ,EKi

(%uKij
)%uij ,

H(NA
ij , Ij , uij ,Ki))

l. · · · (4)

The responder part Resp(Ij) is:

(%xA, Ij , x
M
j , xA, Ij , x

N
j)l. (1)

(νεNB
j) 〈Ij , S, xM

j , xA
j , Ij , x

N
j , NB

j 〉l. (2)
(S, Ij , x

M
j , %zj , %z′j ,

EKj
(%zK

j)%z′′j ,H(NB
j , xA

j , z′′j ,Kj))
l. (3)

〈Ij , x
A
j , xM

j , zj , z
′
j〉

l. · · · (4)

Finally, the server part uses a database similar to the one
for the Needham-Schroeder symmetric key protocol and
is coded as follows:

(%yB , S, %yM , %yA, yB , %yN , %yN ′

)l (2)
(yA, %yKA)◦. (yB , %yKB)◦.

(νεK) 〈S, yB , yM ,
EyKA (K),H(yN , yB ,EyKA (K), yKA),

EyKB (K),H(yN ′

, yA,EyKB (K), yKB)〉l (3)

B Well-formedness of Meta-level Processes

Any well-formed meta-level process must be fully closed
meaning that there are no free names and no free vari-
ables. Note that since the attacker is part of the meta-
level process, this does not mean that the overall meta-
level process represents a closed system; it just means
that the protocol designer specifically tells where the
system is open for attack and that the system is closed
otherwise. The aim of the well-formedness condition is
to ensure that names, variable, indices, and indexing set
identifiers only are used after they have been introduced.

Example 12 The meta-level process

let X = {a} in

let X ′ = {a, b} in

(νε
i∈X Ii) ‖i′∈X′ Ii′ [0]

is not well-formed since (by taking X to be {a} and X ′ to
be {b}) it instantiates to the process (νεIa) Ib [0] where
Ib is free. It does not matter that the meta-level process
also instantiates to (νεIa) Ia [0] where the name Ia is in-
deed restricted, since we require that all instances must
be closed. On the other hand, the meta-level process

let X = {a, b} in

(νε
i∈X Ii) ‖i′∈X Ii′ [0]

is well-formed since the same indexing set identifier is
used both in restriction and in parallel composition and
this ensures that Ii′ is bound in all instances.

The overall idea in the formalisation of the well-
formedness requirement is to collect the sets of names,
variables, etc. that have been introduced and then to
check that applied occurrences of these entities are in-
deed included in these sets. For this, we define a judge-
ment in Table 13 of the form

N,V `∆
δ L

where N is a set of names, V is a set of variables, and ∆
is a set of indexing identifiers. All these sets have been
previously defined and may be used in L.

The indices that have been previously introduced are
represented by δ as a mapping of indices to indexing set
identifiers. As usual, we write [] for the empty mapping,
δ[i 7→ X] for update, and δ(i) for querying a mapping.
We shall frequently want to check whether all indices
in a sequence i = i1 · · · ij have been define i.e. whether
they are all in the domain of δ. For this, we introduce
the predicate i E δ that holds whenever {i1, · · · , ik} ⊆
dom(δ). Checks of the correct use of indices on names
and variables are only done at defining occurrences.

If the variable xi, for example, is in a defining posi-
tion and the index i has been introduced then V is up-
dated to include xi. This updated set is then consulted
whenever an applied occurrence of a variable is found
and, in particular, the variable xi will be allowed.

For names, we update the set N in a similar fash-
ion whenever a name is defined by the ordinary restric-
tion operator. When the name mi is introduced using
the indexed restriction operator with i ∈ X we shall in-
clude mX in N to signify that m has been introduced
for all indices in X. Correspondingly, we define a set-
membership operator that respects the declarations in
δ: we let n ∈δ N mean that

(1) n is of the form mi1···ik
, and

(2) there is a unique mj1···jl
in N ,

(3) and that k = l and ∧k
o=1(jo = io ∨ jo = δ(io))

A Calculus for Control Flow Analysis of Security Protocols 23

Well-formedness of terms are given as the judgement

N, V `δ t

that holds if fn(t) ⊆δ N and fv(t) ⊆ V .

Well-formedness of patterns are given as the judgement

N, V `δ p : V
′

that holds if fn(p) ⊆δ N , fv(p) ⊆ V , dv(p) ⊆ V ′, and for all
xi ∈ V ′ it holds that i E δ and that no xj is in V .

Table 11 Well-formedness of terms and patterns; N, V `δ t and N, V `δ p : V ′, respectively.

N, V `δ P1 N, V `δ P2

N, V `δ P1 | P2

N, V `δ P

N, V `δ!P
N, V `δ 0

n ∈δ N N, V `δ P

N, V `δ n [P]

N ∪ {mτ
i
| τ ∈ T}, V `δ P

N, V `δ (νT mi) P
if i E δ and

∀δ′ : ∀τ ∈ T : mτ
δ′ 6∈ N

N, V `δ t N, V `δ p : V ′ N, V ∪ V ′ `δ P

N, V `δ t as p.P

N, V `δ t1 · · · N, V `δ tk N, V `δ P

N, V `δ 〈t1, · · · , tk〉
η.P

N, V `δ p1 : V1 N, V ∪ V1 `δ p2 : V2 · · · N, V ∪ V1 ∪ · · · ∪ Vk−1 `δ pk : Vk N, V ∪ V1 ∪ · · · ∪ Vk `δ P

N, V `δ (p1, · · · , pk)η.P

Table 12 Well-formedness of processes; N, V `δ P .

N, V `∆∪{X}
δ L

N, V `∆
δ let X = S in L

if bSc is finite.
N, V `∆

δ[i7→X] L

N, V `∆
δ ‖i∈X L

if X ∈ ∆

N ∪ {mτ

jX
| τ ∈ T}, V `∆

δ L

N, V `∆
δ (νT

i∈X
mji) L

if X ∈ ∆∗
and j E δ and

∀δ′ : ∀τ ∈ T : mτ
δ′ 6∈ N

N, V `∆
δ L1 N, V `∆

δ L2

N, V `∆
δ L1 | L2

N ∪ {mτ
i
| τ ∈ T}, V `∆

δ L

N, V `∆
δ (νT mi) L

if i E δ and

∀δ′ : ∀τ ∈ T : mτ
δ′ 6∈ N

n ∈δ N N, V `∆
δ L

N, V `∆
δ n [L]

N, V `δ P

N, V `∆
δ P

Table 13 Well-formedness of meta-level processes; N, V `∆
δ L.

For example, checking well-formedness of

(νε
i∈X Ii) ‖i′∈X Ii′ [0]

will firstly update N with IX , secondly update δ with
[i′ 7→ X], and finally check that Ii′ ∈δ N at the applied
occurrence of Ii′ in the ambient construct. The check
succeeds since (1) Ii′ has the right form, (2) correspond-
ingly IX is in N , and (3) X is equal to δ(i′). Furthermore,
we will write ⊆δ for its point-wise extension.

The well-formedness condition ensures not only that
names and variables are introduced before they are used
but also that base names and variables are not redefined.
This is ensured by the side-conditions ∀δ′ : ∀τ ∈ T :

mτ
δ′ 6∈ N to the rules for restriction in Table 12 and

Table 13 .
The definition of well-formedness for the object-level

processes uses a corresponding judgement N,V `δ P
defined in Table 12. It works in a similar fashion except
that the component ∆ is not needed since object-level
processes do not use indexing set identifiers. The defini-
tion of N,V `δ P relies on well-formedness judgements
for terms and patterns as defined in Table 11.

Accompanying this paper are appendices C
and D to be published in electronic form.

24 Mikael Buchholtz et al.

C Free Names and Free Variables

Free names and free variables are given by the functions
fn and fv, respectively. They are defined structurally on
the syntax of terms, patterns, and object-level processes.
The definition does not distinguish between patterns,
constructive patterns and signature patterns but regards
them as instances of the same syntactic category.

The definition of free names is straightforward and is
given in Table 14. The definition of free variables in Table
15 and has to ensure left-to-right scoping of variables
defined in patterns as discussed in the main text. For
this, the definition uses the function dv(p) that collects
the variables that occur in a defining position in the
pattern p.

D Control Flow Analysis

Recall from the main text that the analysis is based on
canonical names and canonical variables both of which
are stable under α-conversion. The canonical operator,
b·c, defined on variables and names is extended homo-
morphically to all syntactic categories and it is extended
in a point-wise manner to sets of entities from these cat-
egories. We write bNamec for the set {bnc | n ∈ Name}
and similarly bValc for {bvc | v ∈ Val}.

Patterns. The analysis will work with abstract envi-
ronments of the functionality:

ξ, σ, ρ : bVarc → P(bValc)

The clauses for the analysis of pattern matching have
the form

ξ |= v B p : s

and express the matching of the value v ∈ bValc against
the pattern p ∈ Pat; the set s ⊆ bValc is an over-
approximation of the set of values that matches p. Hence
s will contain v if the match of v against p is successful;
otherwise it is not necessarily the case. The judgements
are defined in Table 16 and briefly explained below.

First consider the judgement for matching a value
v against the pattern n. Here it is required that if v
matches the canonical name of n then v must also be in
s. If v does not equal bnc then there are no requirements
on s.

The clause for matching a value v and binding of
a variable in the pattern p%x first checks whether v
matches p in the analysis. The successful matches are
reported in s′ and hence the elements of s′ will not only
be potential values bound to x but they are also poten-
tial successful matches of p%x. Clearly, we do not want
to require that the pattern matching must succeed for
all s′; hence s′ is existentially quantified in the manner
of [29].

The analysis of matching of the value v against one
of the composite patterns all have the same form. First

they require that v has a particular form where each
subterm matches the corresponding subpattern. Only if
all these matches succeed then it is required that v is in
the set s of successful matches.

Terms. The analysis of pattern matching is concerned
with a single value but in general the analysis has to be
concerned with terms. Therefore we shall need a way of
finding the set ξ[[t]] ⊆ bValc of values that a term may
denote for a given abstract environment ξ. The definition
is given in Table 17 and amounts to a straightforward
structural induction. Note that if t has no free variables
then ξ[[t]] = {btc}.

Object-level processes. The analysis of object-level pro-
cesses uses a network component of the functionality

κ : (bNamec ∪ {l}) → P(bValc∗)

where l is an element not in bNamec. Intuitively, κ(n)
describes the communication that takes place inside all
ambients with the canonical name n while κ(l) describes
the communication on the global network. Thus, local
communication within several ambients with the same
canonical names will be represented by the same com-
ponent in the analysis. Similarly, all communication on
the global ether is recorded in κ(l) though semantically
there may be different “global” networks at different lev-
els in the ambient hierarchy. In both cases this may result
in over-approximations.

The analysis is defined by the judgements in Table
18 of the form:

(ρ, σ, κ) |=n P

Here, n ∈ (bNamec ∪ {>}) is the name of the ambient
where the process P is located and > is an element not
in bNamec indicating that P is at the top level. As ex-
plained in Section 5 the analysis operates with two ab-
stract environments: σ contains the potential bindings
for which the pattern matching will succeed whereas ρ
is a refined version of σ eliminating some of the non-
successful bindings.

The clauses of Table 18 are defined in a structural
way with output, input and matching being the interest-
ing ones. First consider the clause for output. The sets
ρ[[ti]] contain the potential values of the terms ti that
may be sent on the ether and the clause simply checks
that they are present in κ for the appropriate entry and
for this we use the auxiliary function c(η, n) defined by

c(η, n) =

{

bnc if η = ◦
l if η =l

The clause for input begins by demanding that all in-
formation in ρ also have to be present in σ and that all
potential values to be input by the process are present
in the κ component. For each combination we first use
the σ component to approximate the potential successful

A Calculus for Control Flow Analysis of Security Protocols 25

Processes Patterns

fn(P1 | P2)
def
= fn(P1) ∪ fn(P2)

fn(!P)
def
= fn(P)

fn(0)
def
= ∅

fn((νT m) P)
def
= fn(P) \ {mτ | τ ∈ T}

fn(n [P])
def
= {n} ∪ fn(P)

fn(t as p.P)
def
= fn(t) ∪ fn(p) ∪ fn(P)

fn(〈t1, · · · , tk〉
η.P)

def
= fn(t1) ∪ · · · ∪ fn(tk) ∪ fn(P)

fn((p1, · · · , pk)η.P)
def
= fn(p1) ∪ · · · ∪ fn(pk) ∪ fn(P)

Terms

fn(n)
def
= {n}

fn(x)
def
= ∅

fn(T(t1, · · · , tk))
def
= fn(t1) ∪ · · · ∪ fn(tk)

fn(H(t1, · · · , tk))
def
= fn(t1) ∪ · · · ∪ fn(tk)

fn(Et0(t1, · · · , tk))
def
= fn(t0) ∪ · · · ∪ fn(tk)

fn(Pt0(t1, · · · , tk))
def
= fn(t0) ∪ · · · ∪ fn(tk)

fn(St0(t1, · · · , tk))
def
= fn(t0) ∪ · · · ∪ fn(tk)

fn(n)
def
= {n}

fn(x)
def
= ∅

fn()
def
= ∅

fn(p%x)
def
= fn(p)

fn(T(p1, · · · , pk))
def
= fn(p1) ∪ · · · ∪ fn(pk)

fn(H(p1, · · · , pk))
def
= fn(p1) ∪ · · · ∪ fn(pk)

fn(Ep0
(p1, · · · , pk))

def
= fn(p0) ∪ · · · ∪ fn(pk)

fn(Pp0
(p1, · · · , pk))

def
= fn(p0) ∪ · · · ∪ fn(pk)

fn(Sp0
(p1, · · · , pk))

def
= fn(p0) ∪ · · · ∪ fn(pk)

Table 14 Free names; fn(P), fn(t), fn(p).

Processes Terms

fv(P1 | P2)
def
= fv(P1) ∪ fv(P2)

fv(!P)
def
= fv(P)

fv(0)
def
= ∅

fv((νT m) P)
def
= fv(P)

fv(n [P])
def
= fv(P)

fv(t as p.P)
def
= fv(t) ∪ fv(p) ∪ (fv(P) \ dv(p))

fv(〈t1, · · · , tk〉
η.P)

def
= fv(t1) ∪ · · · ∪ fv(tk) ∪ fv(P)

fv((p1, · · · , pk)η.P)
def
= ∪k

i=1(fv(pi) \ ∪
i−1
j=1dv(pj))

∪ (fv(P) \ (∪k
i=1dv(pi))

fv(n)
def
= ∅

fv(x)
def
= {x}

fv(T(t1, · · · , tk))
def
= fv(t1) ∪ · · · ∪ fv(tk)

fv(H(t1, · · · , tk))
def
= fv(t1) ∪ · · · ∪ fv(tk)

fv(Et0(t1, · · · , tk))
def
= fv(t0) ∪ · · · ∪ fv(tk)

fv(Pt0(t1, · · · , tk))
def
= fv(t0) ∪ · · · ∪ fv(tk)

fv(St0(t1, · · · , tk))
def
= fv(t0) ∪ · · · ∪ fv(tk)

Patterns Defined variables

fv(n)
def
= ∅

fv(x)
def
= {x}

fv()
def
= ∅

fv(p%x)
def
= fv(p)

fv(T(p1, · · · , pk))
def
= ∪k

i=1(fv(pi) \ ∪
i−1
j=1dv(pj))

fv(H(p1, · · · , pk))
def
= ∪k

i=1(fv(pi) \ ∪
i−1
j=1dv(pj))

fv(Ep0
(p1, · · · , pk))

def
= ∪k

i=0(fv(pi) \ ∪
i−1
j=0dv(pj))

fv(Pp0
(p1, · · · , pk))

def
= ∪k

i=0(fv(pi) \ ∪
i−1
j=0dv(pj))

fv(Sp0
(p1, · · · , pk))

def
= ∪k

i=0(fv(pi) \ ∪
i−1
j=0dv(pj))

dv(n)
def
= ∅

dv(x)
def
= ∅

dv()
def
= ∅

dv(p%x)
def
= dv(p) ∪ {x}

dv(T(p1, · · · , pk))
def
= dv(p1) ∪ · · · ∪ dv(pk)

dv(H(p1, · · · , pk))
def
= dv(p1) ∪ · · · ∪ dv(pk)

dv(Ep0
(p1, · · · , pk))

def
= dv(p0) ∪ · · · ∪ dv(pk)

dv(Pp0
(p1, · · · , pk))

def
= dv(p0) ∪ · · · ∪ dv(pk)

dv(Sp0
(p1, · · · , pk))

def
= dv(p0) ∪ · · · ∪ dv(pk)

Table 15 Free variables; fv(P), fv(t), fv(p). Note that patterns have left-to-right scoping of variables.

matches (in s1) and subsequently we use the ρ compo-
nent to pinpoint a subset s2 of s1. Only if that set is
non-empty we require that the continuation P should
be analysed.

The clause for pattern matching is analogous to the
one for input. So first we state a condition forcing infor-
mation from ρ also to be present in σ. We then consult
all the potential values ρ[[t]] of the term t and check, us-

ing σ, whether the match succeeds and we then refine
the set s1 of successful matches using the abstract envi-
ronment ρ. Only if the resulting set s2 is non-empty we
require that the continuation should be analysed.

Meta-level processes. A meta-level process is analysed
with judgements of the form

(ρ, σ, κ) |=n
Γ,N L

26 Mikael Buchholtz et al.

ξ |= v B n : s iff v = bnc ⇒ v ∈ s

ξ |= v B x : s iff v ∈ ξ(bxc) ⇒ v ∈ s

ξ |= v B : s iff v ∈ s

ξ |= v B p%x : s iff ∃s′ : ξ |= v B p : s′ ∧ s′ ⊆ ξ(x) ∧ s′ ⊆ s

ξ |= v B T(p1, · · · , pk) : s iff v = T(v1, · · · , vk) ⇒
∃s1 : ξ |= v1 B p1 : s1 ∧ (v1 ∈ s1 ⇒

∃s2 : ξ |= v2 B p2 : s2 ∧ (v2 ∈ s2 ⇒
· · · ∃sk : ξ |= vk B pk : sk ∧ (vk ∈ sk ⇒

T(v1, · · · , vk) ∈ s) · · ·))

ξ |= v B H(p1, · · · , pk) : s iff v = H(v1, · · · , vk) ⇒
∃s1 : ξ |= v1 B p1 : s1 ∧ (v1 ∈ s1 ⇒

∃s2 : ξ |= v2 B p2 : s2 ∧ (v2 ∈ s2 ⇒
· · · ∃sk : ξ |= vk B pk : sk ∧ (vk ∈ sk ⇒

H(v1, · · · , vk) ∈ s) · · ·))

ξ |= v B Ep0
(p1, · · · , pk) : s iff v = En(v1, · · · , vk) ⇒

∃s0 : ξ |= n B p0 : s0 ∧ (n ∈ s0 ⇒
∃s1 : ξ |= v1 B p1 : s1 ∧ (v1 ∈ s1 ⇒
· · · ∃sk : ξ |= vk B pk : sk ∧ (vk ∈ sk ⇒

En(v1, · · · , vk) ∈ s) · · ·))

ξ |= v B Pp0
(p1, · · · , pk) : s iff v = Pm+(v1, · · · , vk) ⇒

∃s0 : ξ |= m−
B p0 : s0 ∧ (m− ∈ s0 ⇒

∃s1 : ξ |= v1 B p1 : s1 ∧ (v1 ∈ s1 ⇒
· · · ∃sk : ξ |= vk B pk : sk ∧ (vk ∈ sk ⇒

Pm+(v1, · · · , vk) ∈ s) · · ·))

ξ |= v B Sp0
(p1, · · · , pk) : s iff v = Sm−(v1, · · · , vk) ⇒

∃s0 : ξ |= m+
B p0 : s0 ∧ (m+ ∈ s0 ⇒

∃s1 : ξ |= v1 B p1 : s1 ∧ (v1 ∈ s1 ⇒
· · · ∃sk : ξ |= vk B pk : sk ∧ (vk ∈ sk ⇒

Sm−(v1, · · · , vk) ∈ s) · · ·))

Table 16 Analysis of pattern matching; ξ |= v B p : s.

ξ[[n]]
def
= {bnc}

ξ[[x]]
def
= ξ(bxc)

ξ[[T(t1, · · · , tk)]]
def
= {T(v1, · · · , vk) | v1 ∈ ξ[[t1]], · · · , vk ∈ ξ[[tk]]}

ξ[[H(t1, · · · , tk)]]
def
= {H(v1, · · · , vk) | v1 ∈ ξ[[t1]], · · · , vk ∈ ξ[[tk]]}

ξ[[Et0(t1, · · · , tk)]]
def
= {Ev0

(v1, · · · , vk) | v0 ∈ ξ[[t0]], · · · , vk ∈ ξ[[tk]]}

ξ[[Pt0(t1, · · · , tk)]]
def
= {Pv0

(v1, · · · , vk) | v0 ∈ ξ[[t0]], · · · , vk ∈ ξ[[tk]]}

ξ[[Et0(t1, · · · , tk)]]
def
= {Ev0

(v1, · · · , vk) | v0 ∈ ξ[[t0]], · · · , vk ∈ ξ[[tk]]}

Table 17 Evaluating a term given the environment ξ; ξ[[t]].

where as before n ∈ bNamec ∪ {>} is the enclosing am-
bient or the special element > and also the components
ρ, σ and κ are as above. The component Γ is a mapping
of indexing set identifiers (i.e. X’s) to sets of canonical
indices whereas the component N ⊆ bNamec contains
the set of (canonical) names that are allowed within L.
The judgements for the analysis of the meta-level pro-
cesses are defined in Table 19 and we shall comment on
the clauses below.

Most of the clauses amount to a straightforward struc-
tural induction on the form of the processes. In the case
of the let-construct the environment Γ is updated so that
X is mapped to the canonical set of indices associated

with S whereas the N component is unchanged. In the
case of the indexing restriction construct the Γ compo-
nent is unchanged but the N component is modified to
reflect the new names introduced by the construct. The
same holds for the classical restriction construct.

The analysis of the indexing parallel construct de-
mands that the meta-level process can be analysed for
each of the finitely many canonical indices of relevance;
an appropriate number of copies of the process is then
constructed and analysed. The ordinary parallel compo-
sition of two processes is analysable if both components
are.

A Calculus for Control Flow Analysis of Security Protocols 27

(ρ, σ, κ) |=n P1 | P2 iff (ρ, σ, κ) |=n P1 ∧ (ρ, σ, κ) |=n P2

(ρ, σ, κ) |=n !P iff (ρ, σ, κ) |=n P

(ρ, σ, κ) |=n
0 iff true

(ρ, σ, κ) |=n (νT m) P iff (ρ, σ, κ) |=n P

(ρ, σ, κ) |=n n′ [P] iff (ρ, σ, κ) |=bn′c P

(ρ, σ, κ) |=n 〈t1, · · · , tk〉
η.P iff ∀v1 ∈ ρ[[t1]], · · · , vk ∈ ρ[[tk]] :

v1 · · · vk ∈ κ(c(η, n)) ∧
(ρ, σ, κ) |=n P

(ρ, σ, κ) |=n (p1, · · · , pk)η.P iff ∃s1, s2 : (
∀x : ρ(x) ⊆ σ(x) ∧

∀v1 · · · vk ∈ κ(c(η, n)) :
σ |= T(v1, · · · , vk) B T(p1, · · · , pk) : s1 ∧
∀v ∈ s1 : ρ |= v B T(p1, · · · , pk) : s2 ∧

s2 6= ∅ ⇒ (ρ, σ, κ) |=n P)

(ρ, σ, κ) |=n t as p.P iff ∃s1, s2 : (
∀x : ρ(x) ⊆ σ(x) ∧

∀v1 ∈ ρ[[t]] : σ |= v1 B p : s1 ∧
∀v2 ∈ s1 : ρ |= v2 B p : s2 ∧

s2 6= ∅ ⇒ (ρ, σ, κ) |=n P)

Table 18 Analysis of object-level processes; (ρ, σ, κ) |=n P .

(ρ, σ, κ) |=n
Γ, N let X = S in L iff (ρ, σ, κ) |=n

Γ [X 7→bSc], N L

(ρ, σ, κ) |=n
Γ, N (νT

i∈X
mbi) L iff (ρ, σ, κ) |=n

Γ, N∪{bmτ

ba
c | τ∈T∧a∈Γ (X)}

L

(ρ, σ, κ) |=n
Γ, N ‖i∈X L iff ∧a∈Γ (X) (ρ, σ, κ) |=n

Γ, N L〈i 7→ a〉

(ρ, σ, κ) |=n
Γ, N L1 | L2 iff (ρ, σ, κ) |=n

Γ, N L1 ∧ (ρ, σ, κ) |=n
Γ, N L2

(ρ, σ, κ) |=n
Γ, N (νT m) L iff (ρ, σ, κ) |=n

Γ, N∪{bmτ c | τ∈T} L

(ρ, σ, κ) |=n
Γ, N n′ [L] iff (ρ, σ, κ) |=bn′c

Γ, N L

(ρ, σ, κ) |=n
Γ, N P iff (ρ, σ, κ) |=n P

Table 19 Analysis of meta-level processes; (ρ, σ, κ) |=n
Γ, N L.

Finally, the analysis of the ambient process requires
that the encapsulated process is analysable but in a mod-
ified context. The final clause of Table 19 simply exploits
the analysis of the object-level processes.

The Attacker. In the specification of the protocol the
presence of the attacker is indicated by • and, hence, we
are going to specify a number of clauses that at the level
of the analysis describes what the attacker might do.
We shall follow the Dolev-Yao approach [13] and specify
the different abilities of the attacker separately. We also
investigated this approach in [7] where we proved that
this formulation corresponds to the notion of a “hardest”
attacker [31] i.e. it corresponds to the combination of
analysis result for all processes that may take the place
of the attacker.

The clause defining the analysis of the attacker is
given in Table 20 and consists of seven components.
Conceptually, these Dolev-Yao conditions are written as
if an attacker stores its knowledge in private variables
and uses this knowledge to send messages, generate new

knowledge, etc. These variables will all be represented
by a single canonical variable x• and, thus, ρ(x•) con-
tains the complete knowledge of the attacker seen from
the point of view of the analysis.

The first two components express that the attacker
has knowledge of all the free names (as specified by N)
and that it can construct new names provided they have
one of three canonical names {nε

•, n
+
• , n−• }.

The next four clauses express that the attacker can
construct new composite values from his knowledge, that
he can destruct composite values that he may happen
to know (provided that he also has knowledge of the
required keys), he can eavesdrop on all communication
(including local communication if he knows the ambient
names) and finally that he can manufacture messages
to be sent on these networks as well. Note that these
four conditions are written to hold for all natural num-
bers k. However, when a particular processes is analysed,
this may be limited to be the largest arity used in pro-
cess that is under attack (and is larger than some fixed

28 Mikael Buchholtz et al.

(ρ, σ, κ) |=n
Γ, N • iff N ⊆ ρ(x•) ∧ knows bound names where it is placed

{nε
•, n

+
• , n−

• } ⊆ ρ(x•) ∧ create own names

∀k ≥ 0 : ∀v0 ∈ ρ(x•), · · · , vk ∈ ρ(x•) : construct composite values
T(v1, · · · , vk) ∈ ρ(x•) ∧
H(v1, · · · , vk) ∈ ρ(x•) ∧
Ev0

(v1, · · · , vk) ∈ ρ(x•) ∧
Pv0

(v1, · · · , vk) ∈ ρ(x•) ∧
Sv0

(v1, · · · , vk) ∈ ρ(x•) ∧

∀v ∈ ρ(x•) : destruct (i.e. match and learn) composite values
∀k ≥ 0 : ∀v0, · · · , vk :

(v = T(v1, · · · , vk) ∨
(v = Ev0

(v1, · · · , vk) ∧ v0 ∈ ρ(x•)) ∨
(v = Pm+(v1, · · · , vk) ∧ m− ∈ ρ(x•)) ∨
v = Sv0

(v1, · · · , vk))

⇒ ∧k
i=1 vi ∈ ρ(x•)) ∧

∀c ∈ {l, nε
•, n

+
• , n−

• } ∪ N : input – globally, and locally in all ambients it may create
∀k ≥ 1 : ∀v1 · · · vk ∈ κ(c) :

∧k
i=1 vi ∈ ρ(x•) ∧

∀c ∈ {l, nε
•, n

+
• , n−

• } ∪ N : output
∀k ≥ 1 : ∀v1 ∈ ρ(x•), · · · , vk ∈ ρ(x•) :

v1 · · · vk ∈ κ(c) ∧

ρ(x•) ⊆ σ(x•)

Table 20 Analysis of the attacker i.e. of an arbitrary process fulfilling the conditions of the instantiation relation in Table 9.

minimum) without restraining the attackers ability to
influence the process in question.

The final condition simply imposes the condition also
enforced in the other clauses, namely that information
in the more precise ρ component of the analysis also is
present in the σ component.

