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Abstract—A novel Duffing Holmes type autono-
mous chaotic oscillator is described. In comparison
with the well known non autonomous Duffing
Holmes circuit it lacks the external periodic drive,
but includes two extra linear feedback subcircuits,
namely a direct positive feedback loop, and an 
inertial negative feedback loop. SPICE simulation 
and hardware experimental results are presented. 

I. INTRODUCTION

The Duffing Holmes non autonomous oscillator is 
a classical example of a nonlinear dynamical system
exhibiting complex also chaotic behaviour [1 3]. It 
is given by the second order differential equation
with an external periodic drive term:

taxxxbx 1
3 sin . (1)

Three different techniques are used to solve the
Duffing Holmes equation and/or to process its
solutions electronically. The first approach is a
hybrid one making use of integration the equation in

a digital processor and of the digital to analogue
conversion of the digital output for its further 
analogue processing, analysis and display [4, 5]. The
second method employs purely analogue hardware 
based on analogue computer design [6 9]. For
example, analogue computer has been used to 
simulate Eq. (1) and to demonstrate the effect of
scrambling chaotic signals in linear feedback shift 
registers [6 8]. Later analogue computer has been
suggested for demonstration of chaos from Eq. (1)
for the undergraduate students [9]. The third
technique is based on building some specific
analogue electrical circuit imitating dynamical
behaviour of Eq. (1). The Young Silva oscillator 
[10] described in more details in [11] and used to 
demonstrate the effect of resonant perturbations for 
inducing chaos [12, 13] is an example. Recently the 
Young Silva circuit has been essentially modified
and used to test the control methods for unstable 
periodic orbits [14, 15] and unstable steady states 
[16] of dynamical systems. The modified version 
has been characterized in details both numerically
and experimentally in [17].
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Evidently the first and the second techniques are 
rather general and can be applied to other 
differential equations as well. In contrast, the third 
approach is limited to a specific equation. Despite 
this restrict-ion the “intrinsic” electrical circuits have
an attractive advantage due to their extreme
simplicity and cheapness. 

One may think of such analogue electrical 
circuits as of analogue computers. This is true from
a mathematical and physical point of view in the 
sense that the underlying equations are either exactly
the same or very similar also that the dynamical
variables in the both cases are represented by real 
electrical voltages and/or currents. However, the 
circuit architecture of an analogue computer,
compared to an “intrinsic” nonlinear circuit, is rather
different. Any analogue computer is a standard
collection of the following main processing blocks: 
inverting RC integrators, inverting adders, inverting
and non-inverting amplifiers, multipliers, and
piecewise linear nonlinear units. Meanwhile the
specific analogue circuits comprise only small 
number of electrical components: resistors, 
capacitors, inductors, and semiconductor diodes. In 
addition, they may include a single operational 
amplifier (in some cases several amplifiers). The 
differences between the “intrinsic” analogue 
electrical circuits, simulating behaviour of the 
specific dynamical systems, and the common
analogue computers are discussed in [18].

In this paper, we introduce, as an alternative for 
the non autonomous Eq. (1), an autonomous version
of the Duffing type oscillator given by
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or equivalently by a set of three first order 
differential equations 
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Here z is the third independent dynamical variable, 
f is its characteristic rate, and k is the feedback

coefficient. We emphasize in Eq. (2) an opposite 
sign of the damping term, compared to Eq. (1). The
negative damping,  in Eq. (2), or xb by  in 
Eq. (3) yields an additional spiral instability. Also 
we propose a specific electrical circuit imitating
solutions of Eq. (3). 

II. CIRCUITRY

First of all we recall to the non autonomous circuit
shown in Fig. 1 for comparison. The novel 
autonomous circuit is presented in Fig. 2.

Fig. 1. Circuit implementation of the non autonomous
Duffing Holmes oscillator [17].

Fig. 2. Circuit implementation of the autonomous
Duffing Holmes type oscillator. Any of the nodes lettered
as ‘x’, ‘ y’ or ‘z’ can be taken for the output.

The non autonomous oscillator contains a single 
nonlinear positive feedback loop introduced by the
resistor R3, two diodes, and the operational 
amplifier OA1. The external periodic drive is given
by asin t.

The autonomous oscillator lacks the external
periodic drive, but includes two additional linear 
feedback loops. The circuit composed of the OA2
based stage and the resistor R5 introduce the 
positive feedback loop, specifically negative
damping in Eq. (2). While the circuit including the 
OA2 OA3 stages (note a capacitor C1 in the latter 
stage) and the resistor R8 compose the inertial 
negative feedback, specifically the inertial damping
term kz in Eq. (2). 
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III. SIMULATION RESULTS

The oscillator in Fig. 2 has been simulated using the 
ELECTRONICS WORKBENCH package (SPICE based
software) and the results are shown in Figs. 3 5.

Fig. 3. Snapshot of typical chaotic waveform of x(t) from
the autonomous Duffing type oscillator. L = 19 mH, C =
470 nF, C1 = 20 nF, R = 20 , R1 = 30 k , R2 = 10 k ,
R3 = 30 k , R4 = 820 , R5 = 75 k , R6 = R7 = 10 k ,
R8 = 20 k . The OA1 to OA3 are the LM741 type or 
similar operational amplifiers, the diodes are the 1N4148
type or similar general purpose devices.

Fig. 4. Simulated phase portraits and Poincaré section
(bottom right). Element values are the same as in Fig. 3. 

Fig. 5. Simulated power spectrum S from the variable x(t).
Circuit element values are the same as in Fig. 3. 

IV. HARDWARE EXPERIMENTS

The autonomous oscillator has been built using the 
elements described in the caption to Fig. 3. Typical
experimental results are presented in Figs. 6 8.

x(t)

t

Fig. 6. Experimental snapshot of chaotic waveform x(t).
Horizontal scale 2 ms/div. Vertical scale 1 V/div. Element
values are the same as in Fig. 3, except R5 = 68 k .

zy

x x

z y z=0, >0

y x

Fig. 7. Experimental phase portraits and Poincaré section
(bottom right). Circuit element values are the same as in
Fig. 3, except R5 = 68 k .

S, dB 

f

Fig. 8. Experimental power spectrum S from the output
signal x(t). Frequency range 0 to 5 kHz. Horizontal scale
500 Hz/div., resolution 100 Hz. Vertical scale 10 dB/div.
Circuit element values are the same as in Fig. 3, except
R5 = 68 k .
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V. CONCLUDING REMARKS

We have designed and built a novel Duffing
Holmes type autonomous third order chaotic oscil-
lator. In comparison with the common non
autonomous Duffing Holmes type oscillator the 
autonomous circuit has an internal positive feedback 
loop instead of an external periodic drive source. In 
addition, it is supplemented with an RC inertial 
damping loop providing negative feedback. The 
circuit has been investigated both numerically and 
experimentally. The main characteristics, including 
the time series, phase portraits, Poincaré sections, 
and power spectra have been calculated using the 
SPICE based software, also taken experimentally. 
Fairly good agreement between the simulation and 
the hardware experimental results is observed 
(Figs. 3 8). Some discrepancy (about 10%) between 
the model and the hardware prototype, namely 
R5 = 75 k  in the model (Figs. 3 5) and R5 = 
68 k  in the experimental circuit (Figs. 6 8) can be 
explained in the following way. The inductive 
element in the model is an ideal device in the sense 
that L = const. Meanwhile the inductance of a real 
inductor, e.g. a coil wound on a ferrite  core has a 
slight dependence on the current L = L(I).

Finally, we emphasize that the described 
autonomous oscillator is not simply a formal alter- 
native to the classical non autonomous Duffing
Holmes oscillator. An externally driven chaotic 
oscillator has a sharp and  20 dB high peak in the 
power spectrum at the drive frequency f1= 1/2 .
While autonomous oscillator exhibits no peaks but 
essentially smoother spectra (Figs. 5, 8). This feature 
may have an advantage in practical applications. 
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