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Abstract 

Using strong cation exchange simulated moving bed (SMB) chromatography, a nitrogen-phosphate-potassium 

(NPK) fertilizer is produced in a cost-effective manner. The SMB process operated in a non-traditional way is 

divided into production and regeneration sections for exclusion of undesirable ions, and composed of six zones 

including two wash-water zones. This paper addresses modeling, simulation and optimization studies on this ion-

exchange SMB process, based upon experimental data obtained both from a pilot plant and an industrial plant.  

Model parameters which are initialized by empirical equations are identified, comparing simulation results with 

the experimental data. Through sensitivity analysis of the model parameters, their effects on the process 

performance are examined. The simulation results show good agreement with in situ experimental data obtained 

in both the pilot and industrial scale plants. 

This study aims to optimize the SMB process in terms of i) maximization of productivity in the production section 

and ii) minimization of wash-water consumption, thereby resulting in i) increasing the profit and ii) reducing the 

overall operating cost in the downstream processing, respectively. The two objectives are sequentially treated 

within the framework of a multi-level optimization procedure (MLOP) which includes two pre-optimization levels, 

a productivity maximization level and a desorbent (or wash-water) consumption minimization level. In this 

optimization study, it is demonstrated that wash-water consumption can be reduced by 5 % at a 5% higher 

productivity. 
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1. Introduction 

Simulated moving bed (SMB) chromatography is a powerful technique to continuously separate multiple 

components in large amounts and is useful for a preparative scale. Thus, the SMB process constitutes an 

interesting alternative to conventional batch chromatography and has recently gained an increased impact.1 The 

SMB chromatography usually works with the inherent advantage of a high driving force, resulting in low solvent 

consumption, small apparatus scale and high yields. However, in order to fully take advantage of this principle, a 

large number of operational parameters (e.g., flowrates, switching time and column configuration) need to be 

properly adjusted.
2 

For mathematical modeling and computer simulation of SMB systems, several different models are used, 

including true moving bed (TMB) model,3-4 continuous moving bed (CMB) model for linear systems5-6 and 

simulated moving bed (SMB) model
1,7-8

. However, the quality of the solution of the TMB or CMB model is only 

sufficient for a restricted range of applications.1 The SMB model with periodic port movement in the flow 

direction is more realistic than the TMB or CMB models
5
 but requires a longer calculation time.

9
 However, the 

SMB model with periodic port movement may not be suitable for repeated runs in optimization procedures.
4 

A packed-bed chromatographic separation can be described by convection-dominated parabolic partial differential 

equations (PDEs) for mass conservation in the mobile phase, ordinary differential equations (ODEs) for the solute 

adsorption in the stationary phase, and eventually algebraic equations (AEs) for the adsorption isotherm between 

the two phases. Thus, the combined models lead to a nonlinear and coupled partial differential algebraic equation 

(PDAE) system which is often solved, after discretization of spatial derivatives, by ODE or DAE (differential 

algebraic equation) time-integrators (e.g., DASSL
10

) in the framework of the method of lines (MOL).
4-5,8,11-13

 The 

MOL converts the distributed dynamic system into a large system of ODEs or DAEs, which often requires a long 

computational time and may give rise to substantial discretization error.
14 

A conservation element and solution element method,14-17 CE/SE method for short, has been proposed to 

accurately and effectively solve the distributed dynamic system (or PDEs). The CE/SE method enforces both local 

and global flux conservation in space and time by using the Gauss’s divergence theorem, and uses a simple stencil 

structure (two points at the previous time level and one point at the present time level) that leads to an explicit 

time-marching scheme.
17 

A nitrogen-phosphate-potassium (NPK) fertilizer process has been designed and operated by Kemira Denmark 

A/S in a cost-effective manner using simulated moving bed (SMB) chromatography packed with a strong cation-

exchange resin (Dc×Lc = 2m×1.8m, 16 columns). This SMB process exhibits several characteristic features: i) the 
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feed solution is a strong electrolyte, i.e., acid solution of about 10 eqv/l (=equivalent mole/l) with nonlinear 

adsorption isotherms, ii) a non-equilibrium adsorption model should be considered due to a strong mass transfer 

effect within large resin particles, iii) it contains six zones including two wash-water zones for ion-exclusion 

which divide the process into production and regeneration sections (see Fig. 1), iv) the process with 16 columns is 

pre-operated for 5 hours with a switching time of 5 min to reach a cyclic stationary state, v) steep or discontinuous 

concentration profiles appear in several places and vi) a modest purity requirement of the resulting product 

solution is sufficient to minimize losses of valuable components. The features i)-iii) and vi) render this SMB 

process non-standard, thus a model is developed to investigate different aspects of this SMB operation and to 

optimize the process. A nonlinear and nonequilibrium SMB model1,7-8 is developed in this study and the CE/SE 

method14,17 is employed to ensure fast and accurate calculation. 

This article reports both experimental and simulation studies on the non-traditional ion-exchange SMB process for 

chloride-free NPK fertilizer production18. The study aims to optimize the SMB process in order to reduce wash-

water consumption and to increase productivity within a given purity, which will result in reducing the operating 

cost of downstream evaporation and drying processes. 

The remainder of the paper is organized as follows. Section 2 describes the specific SMB process. Section 3 

presents mathematical models and model parameters. Simulation and optimization results are analyzed in section 

4 by comparison with experimental data. The conclusions are drawn in section 5. 

 

 

2. Process description 

While conventional NPK (Nitrogen-Phosphate-Potassium) fertilizers usually contain large amounts of chloride 

arising from the introduction of the necessary potassium content as KCl, the Ca
2+

-H
+
-K

+
 ion-exchange SMB 

process operated at Kemira A/S in Denmark had been designed to produce chloride-free fertilizer.18 The raw 

materials normally used in the manufacturing of NPK fertilizers are nitric acid for nitrogen (N), calcium 

phosphate for phosphate (P) and potassium chloride for potassium (K). The two unwanted elements are calcium 

and chloride. Calcium is removed by cation-exchange between Ca2+ and K+ and the chloride as an anion is 

excluded from the product by separating the production section from the regeneration section. 

A cation exchange reaction between counter-ions Ca
2+

, H
+
 and K

+
 takes place on a strong cation-exchange resin 

(macroporous Purolite 160C, m10675.0d
3

p
−×= , average pore diameter=1.0×10-7 m): 

 +++ +⋅+⋅↔+⋅+ )aq(sin)re(sin)re(2)aq(sin)re(

2

)aq( K3RHRCaHRK3Ca     (1) 
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In Fig. 1, a 16-column arrangement is shown. There are two feed solutions (TS and TK), two wash water solutions 

(V1 and V2), product and regenerated solutions (FS and KK) and two slip water solutions (SV and KV). KV is 

totally recycled to V1. It is important that operating conditions are adjusted such that the KV stream does not 

contain ions (e.g., Ca2+ and Cl-). SV is only used for back-washing (BW). The back-washing column serves to 

remove nitrate ions and to clean the resin particles which could be contaminated by the feed solution impurities. 

After one cycle period, all positions are shifted in the direction of the liquid flow. For this SMB system, several 

rounds (1 round=16 shiftings) are required to reach a periodic stationary state7.  

In the production section (V1-TS-FS-SV) which includes Zone I-II-III, calcium and hydrogen ions (Ca
2+

-H
+
) are 

removed from the feed solution which contains dissolved phosphate rock with nitric acid (TS), through adsorption 

of Ca
2+

 and H
+
 on the resin. At the same time, potassium ions ( +

K ) are desorbed from the resin. Hence, the 

product solution (FS) contains the three desired components NPK ( +−− K,PO,NO 3
43 ). In the regeneration section 

(V2-TK-KK-KV) which includes Zone IV-V-VI, the adsorbed calcium and hydrogen ions ( ++ − HCa
2 ) are 

replaced by potassium ions through feeding the KCl solution (TK). For simplicity, the ternary system is 

considered as a binary system, assuming that the first component is Ca
2+

-H
+
 and the second component is +K . 

This simplifying assumption is reasonable in practice because the main objective of the process is to add K+ into 

the feed solution (TS), while removing both Ca
2+

 and H
+
. The purity of +

K  in the FS solution is one of the most 

important indicators for the process performance. 

The backwashing column (BW) is not modeled in this simulation study. In the model development described 

below 15 columns are considered. These are grouped into 6 zones such as wash water Zone I (3 columns), 

production Zone II (3 columns), slip water Zone III (3 columns), another wash water Zone IV (1 column), 

regeneration Zone V (4 columns) and another slip water Zone VI (1 column), as shown in Fig. 1. The column 

configuration is described by the number of columns for each zone, expressed as [3/3/3-1-1/4/1], which is a 

typical column configuration for the industrial-scale plant. However various modified column configurations are 

possible. The six-zone SMB process is different from a traditional four-zone SMB process in a sense that there 

exist two wash-water zones (zone I and IV in Fig. 1) to enable Cl
--free and NO3

--free operation in the production 

and regeneration sections, respectively. Therefore, the SMB process can be considered as ion-exclusion and ion-

exchange chromatography. 

Typical design parameters, operating conditions and simulation parameters are reported in Tables 1 and 2 for two 

ion-exchange SMB plants; one at pilot- and another at industrial-scale, respectively. The pilot plant is designed for 

identifying optimal operating conditions to be implemented in the real plant. The same feed solution and the same 
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resin type are used in the two plants, which normally are operated at the same shifting time ( min5=τ ). The 

production capacity of the real plant is about 500 times higher than that of the pilot plant. Despite the quite 

different column diameter of the two plants, the operation is carried out at a similar interstitial velocity. 

Eq. (1) shows the exothermic adsorption reaction. For adsorption columns, e.g., zone II in Fig. 1, the temperature 

varies C55T45 o≤≤  but the average temperature is assumed as C50T o= . The resin capacity on the basis of the 

bed volume ( leqvnT /1.00.2 ±= ) is experimentally confirmed. Since the resin concentration (n) is often 

expressed on the basis of the resin particle volume including the pore volume (see Eq. (2) in section 3), the resin 

capacity on the basis of the resin volume ( pT,n ) is shown in Tables 1 and 2. In the following section, a simulated 

moving bed model and the model parameters in Table 1 and 2 are detailed. 

 

 

3. Model development 

When mass transfer resistance in the particle is significant for the adsorption mechanism because of the large resin 

particle diameter, a non-equilibrium model can be employed for chromatographic column models. A packed-bed 

chromatographic adsorption between the stationary and mobile phases for each cation (i.e., Ca2+, H+ and K+) leads 

to a partial differential algebraic equation (PDAE) system involving one partial differential equation (PDE), one 

ordinary differential equation (ODE) and one algebraic equation (AE). The chromatographic column model is: 

)nn(k
1

z

C
D

zz

)Cv(

t

C *

b

b
ax

L −
−

−








∂

∂

∂

∂
=

∂

⋅∂
+

∂

∂

ε

ε
      (2a) 

)nn(k
dt

dn * −=           (2b) 

)C(gn0
* −=           (2c) 

where vL is the interstitial velocity, Dax is the axial dispersion coefficient and εb is the bed voidage. The liquid and 

solid concentrations for each component are C and n, respectively. n
*
 is the equilibrium concentration that is 

normally defined as a function g(C) of the liquid concentration. A conventional linear driving force (LDF) model 

with a lumped mass transport coefficient (k) is employed in Eq. (2b) for the adsorption kinetics. The Peclet 

(
ax

cL

D

Lv
Pe = ) and the Stanton (

L

c

v

kL
St = ) numbers are the important dimensionless groups that determine in the 

numerical characteristics steepness of the concentration profiles and stiffness of the equation system, respectively. 

For example, when Pe is large and St is small, the system will exhibit steep gradients in the spatial direction (z) 
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and non-stiff in time (t). In Eq. (2), two initial conditions (IC, t=0) for two time derivatives and two boundary 

conditions (BC, z=0 or Lc) for the convection and diffusion terms are required.  





∀==

∀==
=

)z,0t(n)0,z(n

)z,0t(C)0,z(C
IC

initial

initial
        (3) 
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
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∀=
∂

∂
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∂
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=−

=

=
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=

t,0
z

C

t,
z

C
DCCv

BC

cLz

0z

axin0zL

       (4) 

where, inC  is the inlet concentration entering the column, which is given by the operating conditions.  

The SMB process is modeled by connecting the column model, Eqs. (2), (3) and (4), with the node model which 

represents the periodic operation through the port switching.
7
 Inlet concentrations (Cin) and a flowrate (Qin) for 

each column are calculated from the outlet concentration ( node
outC ) and flowrate ( node

outQ ) in the node where perfect 

mixing is assumed (see Fig. 2): 

KK
node
inFS

node
inTKTKVVTSTSVV

node
in

node
ininin

KKFSTKVTSV
node
in

node
outin

QCQCQCQCQCQCQCQC

QQQQQQQQQ

⋅−⋅−⋅+⋅+⋅+⋅+⋅=⋅

−−++++=≡

6542232111

65423211

αααααα

αααααα
 

(5) 

where α1-α6 are the logical variables (0 or 1) according to the port switching. Fig. 2 (a) depicts a node connecting 

two columns. The flowrate ( node
outQ ) calculated from the node model determines the flowrate (Qin) of the next 

column. The outlet concentration from the node model is the inlet concentration ( inC ) to the next column. Thus 

this node model together with the switching policy describes the SMB operations model. The two boundary 

conditions, Eq. (4), are employed at the inlet and outlet of each column, as shown in Fig. 2 (b).  

The SMB model contains several model parameters such as bed voidage (εb), axial dispersion coefficient (Dax), 

mass transfer coefficient (k) and adsorption isotherms (n
*
), which may be determined through experiments or 

empirical models.  

The bed voidage (εb) is mainly related to particle packing characteristics in the column. However, in SMB plants 

considerable extra-column volume (or dead volume) including distributors, collectors, connecting pipes and 

valves can be involved.4,20 Beste et al. (2000)4 introduce an effective column length and effective bed voidage: 

S

V
L

S

V
L dead

c
total

eff,c +==          (6) 
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deadcb

total
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VSL

VSL

V

V
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==
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The bed voidage (εb=0.37) is assumed to be constant, ignoring resin shrinking and swelling effects during 

desorption and adsorption. The two effective values are substituted for Lc and εb in Eqs. (2)-(4). The effective bed 

voidage (εb,eff) is larger than the bed voidage (εb) and the resin particles are distributed less densely in simulation 

but to the same extent as in reality. 

The axial dispersion coefficient (Dax) does not have a substantial effect on the solution of the model in general. 

However, axial dispersion will be larger than an expected value obtained from an empirical model for the single 

column, considering that backmixing is substantial in the connecting zones between columns.
19

 In this study, the 

axial dispersion coefficient is estimated for the pilot plant19:  

Dax=0.02⋅vL          (8) 

for the real plant19,  

Dax=0.04⋅vL                                                                                                                                           (9) 

On the basis of these values, the axial Peclet numbers (
ax

Leff,c

D

vL
Pe

⋅
= ) are about 105 and 65 for the two plants. 

It is considered that the Ca
2+

-H
+
-K

+
 ion-exchange adsorption mechanism is controlled by the intra-particle 

diffusion resistance rather than the liquid film resistance, as the diameter of the resin particles used is large. The 

linear driving force model is employed in this study for the intra-particle diffusion (Eq. 2 (b)). The mass transfer 

coefficient is set to 1

prod min4.0k
−=  for the production section and 1

regen min7.0k
−=  for the regeneration 

section.19 The Stanton number (
L

eff,c

v

kL
St = ) varies 8.54.1 ≤≤ St  for the two plants. The sensitivity of the 

process performance to the model parameters will be analyzed in section 4.  

 

3.1 Generalized adsorption rate model 

As mentioned earlier, two wash water zones (zone I and IV in Fig. 1) are arranged in the present SMB plants to 

achieve Cl
--free and NO3

--free operation. The wash-water zones can become a non-adsorption region (or reach a 

quasi-equilibrium state between the liquid and solid phases), when the resin contacts with the aqueous solution 

containing negligible concentration of cations (e.g., 7~6pH = ). Thus both non-equilibrium regions (adsorption 

regions) and equilibrium regions (non-adsorption regions) are present in the NPK SMB unit.  

The LDF model represents intrinsically non-equilibrium adsorption, since the actual resin concentration (
in ) can 

not reach the equilibrium concentration ( *

in ) because of the mass transfer rate (k). When adsorption kinetics has a 

very large mass transfer rate (k), the LDF model is close to an equilibrium model. The difference between the two 
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concentrations ( ii nn −* ) is however large for a small mass transfer rate (k) as in this NPK fertilizer process. A dual 

adsorption kinetics model may therefore be needed as follows: 

 regionsadsorptionfornnk
dt

dn
r ii

i
i )( * −=≡       (10a) 

regionsionnonadsorptfor
dt

dn
r i
i 0=≡        (10b) 

The switch between the above two adsorption rate models presents a state change (or event) whenever a state 

condition is satisfied. The state condition of the present ion-exchange SMB system is determined by the presence 

of cations in the fluid. If there is no cation in the fluid, adsorption or desorption does not occur as shown in Eq. 

(10b). This problem shows a behavior which is analogous to that of a heat conduction problem21 where a material 

undergoes a phase change at different spatial positions in time.  

The discrete events in the partial differential algebraic equation (PDAE) system for the SMB process move 

temporally and spatially. Consequently it is a challenge to detect when and where the adsorption region change 

into the non-adsorption region, and then to interchange the adsorption kinetics. The question is how to simulate 

such discrete events. This problem is dealt with in the presentation of the following numerical solution 

methodology. 

To replace the LDF model Eq. (2b) with Eq. (10) in the PDAE system, switching functions are used to detect the 

discrete event (or state change). A generalized rate equation based on the switching functions is proposed for the 

binary system as follows: 







−=

⋅⋅=

general

A

general

B

Aproductsum

general

A

rr

rr φφ
         (11a) 

where )nn(kdt/dnr A

*

AAA −=≡ from Eq. (2b). The sum kernel (φsum) and product kernel (φproduct) are defined for 

a binary system with A and B components: 

 




=

≤+=

elsewhere,1

0.0CCif,0

sum

BAsum

φ

φ
         (11b) 







=

<⋅=

elsewhere,1

0.0CCif,0

product

BAproduct

φ

φ
        (11c) 

This formulation satisfies the electro-neutrality condition in the solid phase (i.e., ∑ =
i

i 0r ), as will be shown in 

Fig. 7, and is identical to the conventional LDF model, Eq. (2b), in the nonequilibrium zone. It is essential that the 

switching functions Eq. (11b) and Eq. (11c) are applicable to an explicit time integrator such as the conservation 
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element and solution element (CE/SE) method14,17 that is used in this study. An alternative form of the switching 

function
22

 is used for an implicit ODE time integrator such as DASSL
10

.   

The problem type encountered in this ion-exchange SMB unit belongs to the class of discrete events or a hybrid 

problem.28 This problem type is presented by switching between the two kinetic expressions in Eq. (10) and 

implemented using the so-called generalized rate equation in Eq. (11) for the time-marching CE/SE scheme. This 

generalized model is considered as a numerical implementation rather than a physical model, which renders the 

generalized version of the non-equilibrium model (i.e., LDF model) feasible even in equilibrium regions. 

 

3.2 Adsorption isotherms 

The equilibrium concentration (or adsorption isotherm) plays an important role in the column model Eq. (2). The 

adsorption isotherm intrinsically decides separation performance. Remember that the feed solution of the NPK 

ion-exchanger is a concentrated electrolyte solution with cations (Ca
2+, H

+ and K
+) and counterpart anions 

( −
3NO , −3

4PO  and eventually −
Cl ). Due to the strong electrolyte, a nonlinear adsorption isotherm is expected. 

An empirical correlation is proposed for the binary adsorption (Ca
2+

-H
+ and K+) on Purolite 160C resin as a fifth-

order polynomial function fitted to experimental data of a 3.3N solution.  

)x6032.7x882.184x71.177.66474x-2321.2(xnn
4

A

3

A

2

AAAT

*

A +−+=    (12a) 

*

AT

*

B nnn −=           (12b) 

where the subscripts A and B denote the Ca
2+

-H
+ and K+ component, respectively, nT is the resin capacity and 

BA

A
A

CC

C
x

+
=  is the liquid mole fraction of A. Eq. (12b) implies the electro-neutrality condition in the solid 

phase at equilibrium (i.e., ∑ =
i

T

*

i nn ). Eq. (12) is used over the whole concentration range in this study. All 

concentrations are based on equivalent mole concentration (eqv/l). Fig. 3 illustrates experimental points and their 

fitting curve at CA+B=3.3N. 

A more complex model for NPK concentrated solutions can be developed on the basis of thermodynamic 

equilibrium constants for which non-ideality in liquid and resin phases is taken into account.
23

 Activity 

coefficients in the solution are calculated by an extended Debye-Hückel expression and those on the resin by the 

Wilson VLE model under the assumption of an analogy between solute/resin and vapor/liquid system.24 The 

thermodynamic equilibrium model predicts equilibrium concentrations of the three cation components (Ca
2+

-H
+
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and K+) in the concentration range up to 12N within an experimental error that is estimated to be 1-2 % of the total 

resin capacity.
23 

To find dependency of the equilibrium line upon various liquid concentrations, the equilibrium lines are obtained 

on the basis of the thermodynamic equilibrium model23. Fig. 4 demonstrates that the equilibrium concentration of 

A (yA) calculated by the thermodynamic model varies slightly within leqvC BA /103 ≤≤ + . Even though the 

thermodynamic equilibrium model provides more reliable adsorption isotherms over the broad concentration 

range, Eq. (12) is used in this study because i) simulation (e.g., model parameter estimation, sensitivity analysis 

and optimization) with the thermodynamic equilibrium model requires much longer computational time than Eq. 

(12) because of nonlinear iteration procedures in solving the thermodynamic model, ii) Eq. (12) predicts relatively 

well over the interesting concentration range, leqvC BA /0.80.3 ≤≤ + , as shown in Fig. 4, and iii) there is no 

significant difference between simulation results with Eq. (12) and those with the thermodynamic equilibrium 

model as seen in Tables 4 and 5. 

 

4. In situ experiments, simulation and optimization results 

Mathematical models are desired to represent experimental results as closely as possible. Section 3 presents a 

relatively simple SMB model. Therefore, the model should be validated by comparing experimental data and 

simulation results. Once the model is validated and the simulation results are found to agree reasonably with 

experimental data, it can be used for model-based optimization of operating conditions.  

In this section, simulation results and in situ experiments are compared both for the pilot- and industrial-scale 

plants. Due to uncertainty of the model parameters such as resin capacity, bed voidage, dispersion coefficient, 

mass transfer coefficient and adsorption isotherm, then sensitivity analysis is performed for these parameters. 

Experimental and simulation procedures are presented in the following sub-section.  

 

4.1 Experimental and simulation procedures 

The total of 16 tests were carried out by experienced staff at the industrial company on the pilot plant configured 

as [2/5/2-1-1/4/1]. The tests were performed within the feasible operating region, changing the shifting time (or 

cycle time) and the two flowrates (V1 and FS). The 16 tests are composed of four different flowrates of V1 at 

three different cycle times (5, 6, and 7 min) and four different flowrates of FS at the 5-min cycle time, as shown in 

Table 3. Table 1 shows experimental conditions for one of the 16 tests (test # P3 in Table 3). Only one test was 

performed in the industrial-scale plant configured by [3/3/3-1-1/4/1] as reported in Table 2.  
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The feed compositions of TS and TK changed a little according to feed preparation, as shown in Tables 1 and 2. 

However, their fluctuations are small. During the cycle time, V1, V2, TS and TK were injected with a constant 

flowrate and at the same time FS, KK and SV were withdrawn also at a constant flowrate. KV was recycled to V1. 

The fresh V1 flowrate was (V1-KV) due to the recycle flow. 

Before carrying out each test, all the columns were washed out and filled with fresh water. To reach a pseudo 

cyclic steady-state, 3 rounds (48 shiftings) were operated under the same conditions. After the pre-loading, 1 

round (16 shiftings) was performed for the data analysis. Thus, total 4 rounds (about 5 hours) were run for each 

test. Each solution withdrawn at each shifting in the 4
th

 round was collected in four tanks for each of FS, KK, SV 

and KV. The four solutions were subsequently analyzed in the laboratory. As a result, the analyzed concentrations 

were average values over the last round. 

For the key components (A for Ca
2+

-H
+
 and B for K

+
), the purity and the dilution are determined from laboratory 

analysis: 

( )
KKorFSBA

KKorFSinAorB

CC

C
purity

+
=         (13) 

( )
( )

TKorTSBA

KKorFSBA

CC

CC
1dilution

+

+
−=         (14) 

where BA CorC  is the measured average concentration. A high purity of +K  in the FS solution means a high 

quality of the product. The purity of ++ − HCa
2  in the KK solution indicates how much the ++ − HCa

2  ions 

absorbed on the resin are desorbed in the regeneration section. Thus, the higher the purity becomes in the KK 

solution, the higher the purity will be in the FS solution. The dilution indicates a loss of all valuable ions such as 

NPK on ion-form, i.e., −
3NO , −3

4PO  and +
K . 

Two samples of resin particles of the regenerated resin (BW column) and the exhausted resin (V1 column) are 

also analyzed in the laboratory, after finishing a test at the three cycle times (5, 6 and 7 min). Thus, the solid 

concentration of the resin is also an average value for the two columns. 

Simulation is performed for 15 columns, i.e., excluding one backwashing column, during 53 shiftings. The 

simulation parameters are also shown in Table 1 and Table 2. For the sensitivity analysis of the five model 

parameters (see Table 7), at least 10 runs should be done. In the simulations, concentration profiles exhibit steep 

moving fronts in several places, as will be shown in Fig. 6. Thus, a fast and accurate numerical scheme is 

desirable to solve the SMB model Eq. (2)-(5).14 The non-iterative space-time CE/SE method14,25 is used for 

solving the conservation laws represented by partial differential equations in Eq. (2) for each column. 
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At the beginning of the first shifting (i.e., t=0), the liquid concentration of all components is initialized to zero for 

all columns. The resin is initially set to 75% K
+
-form and 25% Ca

2+
/H

+
-form for all columns: 

151k,N1ifor,0)z,0(C)z,0(C mk,iBk,iA ⋅⋅⋅=⋅⋅⋅===      (15a) 

151k,N1ifor,n75.0)z,0(n,n25.0)z,0(n mTk,iBTk,iA ⋅⋅⋅=⋅⋅⋅===                    (15b) 

where Nm is the number of meshes per column and nT is the resin capacity. The assumption Eq. (15b) is somewhat 

unrealistic, because the initial resin concentration profile depends on the previous run and is not uniform (see Fig. 

7). Eq. (15b) is however adopted because of the lack of information on the initial resin concentration. The effect 

of the unrealistic initial condition is negligible after 2 rounds of simulation. Each run is completed after 53 

shiftings (3.5 rounds for 15 columns). 

All simulations are performed on a PC equipped with a single 1.3GHz processor. The number of mesh points per 

column is given to Nm=26 for all the cases and the number of time steps per cycle time is Nt=71. As a result, the 

CFL number 6.0
z

t
vL ≈≡

∆

∆
ν , where 

)1N(
t

t −
=

τ
∆  and 

)1N(

L
z

m

eff,c

−
=∆ . The computational time is less than 1 

minute for each run. It is expected that the effects of the number of mesh points and the CFL number are not 

significant, because for the NPK fertilizer process the Peclet number is not large, 105~65=Pe  and the Stanton 

number is small, 7.5~4.1=St  (see Table 1 and Table 2).
14

 

In the simulation, the average liquid concentrations in the FS and KK solutions are obtained from the numerical 

integration30 of liquid concentrations at the exit of FS and KK columns over the last shifting (i.e., 53rd shifting):  

τ

∆∑
==

t

rd

N

1i
i,k

shifting53,k

tC

C , k=A or B        (16) 

where Nt is the number of time steps. The average resin concentrations are also based on the values at the end of 

the last shifting. The 10th column and the first column are used for the regenerated resin (BW column in the 

experiment) and the exhausted resin (V1 column in the experiment) analyses, respectively. The average resin 

concentrations for each component are obtained as follows.  

 
eff,c

N

1i
i,k

shifting53,k L

zn

n

m

rd

∑
==

∆
, k=A or B        (17) 

In Tables 4 and 5, the two average concentrations ( nandC ) obtained from experiments and simulations are 

reported for the industrial-scale plant. The model parameters mentioned in section 3 were estimated and 
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confirmed on the basis of the 16 pilot-plant experiments, which is essential for model-based simulation and 

optimization. 

 

4.2 Pilot-plant results 

Simulation results performed at the operating conditions shown in Table 1 are illustrated in Lim and Lee (2007)
19

.  

The maximum deviation between simulation and experiment remains within about 10% in absolute deviation for 

the purity of 16 pilot-plant experiments. The trends of the purity variations also exhibit good agreement for all the 

cycle times.
19

  

It is important to notice that this 6-zone SMB process is operated at a relatively low purity (60-70%, see Table 4) 

of the product solution, since the amount of valuable −
3NO  and −3

4PO  in the dilution stream also increase when 

the process is operated at a higher potassium purity.  

In Fig. 5, the operating conditions of the 16 experimental tests are plotted in the space of m2-m5, where m2 is the 

zone II fluid to solid flowrate ratio (
sQ

Q
m 2

2 = ) and m5 is the zone V fluid to solid flowrate ratio (
sQ

Q
m 5

5 = ). Here, 

the most important zones (zone II and zone V) in this two-section SMB process are analyzed within the m-plane 

(i.e., fluid-solid flowrate ratio plane) like Triangle theory
26

 developed on the basis of equilibrium adsorption, 

linear or Langmuir isotherms for the TMB operation. The tests #1-4, #5-8 and #9-12 are performed by changing 

m2 at a constant m5. Purity shows a tendency to decrease as operation moves away from the diagonal line in Fig. 

5.
19

 The tests #13-16 are carried out with constant m2 and m5. The above reported experimental and calculated 

purity trends are compatible with Triangle theory. However, the separation performance measures (purity, 

productivity and desorbent consumption) of this SMB unit are not straightforwardly optimized by the Triangle 

theory, since adsorption isotherms are strongly nonlinear and the process is operated in a non-traditional way. This 

will be further explored below after discussing results from the industrial plant. 

 

4.3 Industrial plant results 

One experiment is carried out in the industrial plant at the experimental (and simulation) conditions given in Table 

2. It is observed that the experimental average liquid concentrations ( jC ) during the whole 4th-round (i.e., from 46 

to 60 shiftings) are in good agreement with the simulation results within a 3% error bound (see Table 4). 

Table 4 reports average concentrations, purity and dilution in the FS and KK solutions at the final shifting. To 

investigate effects of the adsorption isotherm model on the process performance, two simulations with the two-
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component model in Eq. (12) and with the three-component model23 are performed. The two simulation results are 

in good agreement, as shown in Tables 4 and 5. Table 5 summarizes the in situ experimental and simulation 

results of solid concentrations in the BW column (or regenerated resin) and V1 column (or exhausted resin). Some 

differences between experiments and simulations are observed in the average resin concentrations. However, the 

resin utility of the simulation agrees well with that of the experiment. In Table 4 and Table 5, it is demonstrated 

that the polynomial adsorption isotherms Eq. (12) fitted to experimental points represent the rigorous 3-

component model23 well. Note in Tables 4-5 that the concentrations of component A which are obtained from the 

three component-based thermodynamic model
23

 are the sum of those of the two components, Ca
2+

 and H
+
. 

For the final shifting (53rd shifting), liquid and solid concentrations of Ca2+-H+ and K+ are illustrated along the 

column number in Fig. 6 and Fig. 7, respectively, at 3 different times during the 5 min cycle. At the beginning of 

the cycle (t=0), TS and TK are fed at z=3 and z=10, respectively, while FS and KK start to be withdrawn at z=6 

and z=14, respectively. The four positions (z=3, 6, 10 and 14) are depicted as the dashed lines in Fig. 6 and Fig. 7. 

Total concentrations at each axial position are shown in the bold dotted line. Slight overshoots caused by the feed 

is observed at the feed points (z=3 and z=10) in Fig. 6 (a). Discontinuous concentrations at z=2 and z=9 (inlet 

points of the 3rd column and 10th column) in Fig. 6 (a) originate from the concentrations at the feed points (z=3 

and z=10) of the previous cycle. The Ca
2+

-H
+
 concentration at the FS port (z=6) is effectively zero and the K

+
 

concentration is low (i.e., high purity and low concentration of K
+
) due to the one-column advanced operation. 

At the middle of the cycle in Fig. 6 (b), a maximum point of the K+ concentration is reached at z=6 and that of the 

Ca
2+

-H
+
 at z=14. Fig. 6 (c) shows concentration profiles at the end of the cycle (t=5 min). These dynamic 

behaviors during one cycle represent the cyclic stationary state which is repeated over the next cycle. Note that the 

concentration dynamics shown in Fig. 6 and 11 cannot be obtained from TMB3-4 or CMB5-6 models. Indeed, the 

TMB or CMB models provide just one steady state concentration profile along the columns. For nonlinear 

adsorption isotherms, the profile of the TMB models can be quite different from that of the SMB models at the 

middle of the cycle time, which demonstrates that SMB processes have to be described by rigorous dynamic 

models such as the SMB model Eq. (2)-(5).
27 

The cyclic stationary state is shown for resin concentration distributions over the columns in Fig. 7. Owing to the 

counter-current-like flow of the SMB operation, the regenerated resin passing the 7th column (6≤z≤7) contacts 

with the reactive solution at the 6th column (5≤z≤6). The exhausted resin is found at the first column (0≤z≤1). The 

resin concentration profiles give important information on the resin performance and design, since the process 

performance is directly related to resin utility in Fig. 8. The total liquid concentration is constant globally over the 
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production zone II (3≤z≤6) and the regeneration zone V (10≤z≤14) in Fig. 6 (b). The total concentration in the 

solid phase is equal to the resin capacity everywhere in Fig. 7. Thus the electro-neutrality condition in Eq. (11a) 

and Eq. (12) is satisfied both in the liquid and the solid phases. 

It is worth noting that inactive regions (or non-adsorption regions because of equilibrium, 0)CC( BA ≈+ ) are 

found in many places (see Fig. 6) where the resin is saturated with +++ −− KHCa
2  ions (see Fig. 7). The 

equilibrium correlation Eq. (12a) is valid only for 0)CC( BA ≠+ . If Eq. (2) is used for all regions instead of Eq. 

(10) or Eq. (11), a virtual desorption could take place in these inactive regions to satisfy the electro-neutrality 

condition,  as mentioned in Section 3.4. Therefore, unphysical numerical results (e.g., negative concentrations) 

can be obtained by employing the traditional LDF model Eq. (2b). Besides, Eq. (12) is infeasible if negative 

concentrations appear. As a result, it is necessary to use the generalized LDF model Eq. (12) for this ion-exclusion 

and ion-exchange chromatographic system. This generalized LDF model implies the thermodynamic insight that 

there is no apparent adsorption/desorption flux, when 0)CC( BA =+ , due to equilibrium between the liquid and 

solid phases.  

The industrial-scale plant with these operating conditions seems not to be fully exploited, because there are too 

long inactive regions, e.g., zone I (0≤z≤1) and zone III (7≤z≤9), as shown in Fig. 6. It is therefore relevant to 

investigate the potential benefit from optimizing the operating conditions. Such a study on the industrial-scale 

process is presented below. 

 

4.4 Optimization results for industrial-scale process 

Model-based optimization is performed for the industrial-scale six-zone SMB process (see Table 2). The objective 

of the optimization problem is to minimize wash-water consumption, while keeping maximum productivity at the 

given purity level. An optimization procedure (MLOP; multi-level optimization procedure) for this objective is 

presented in Lim (2004)
29

. The four level optimization approach of MLOP may be briefly summarized as follows: 

� Level 1: initialization based on standing wave analysis5 under the assumption of linear adsorption 

isotherms. 

� Level 2: TMB optimization using nonlinear adsorption isotherms and non-equilibrium design. 

� Level 3: SMB optimization for maximization of productivity. 

� Level 4: SMB optimization for minimization of desorbent consumption. 

� If the procedure has converged close to a constant cycle time, it is terminated else go to level 3. 
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Since the operating conditions shown in Table 2 are well adjusted through a  company procedure , the 

optimization with MLOP (multi-level optimization procedure)
29

 starts at level 3. The optimization variables are 

the six flowrates (QV1, QTS, QFS, QV2, QTK and QKK) and the cycle time (τ). Since QV1 includes the recycle flowrate 

(QKV), the net wash-water flowrate at z=0 is assigned as follows: 

 KVVV QQQ
net

−= 11          (18) 

In the optimization problems, 1VQ  is replaced by the new variable 
netVQ 1 . The objective function and the 

constraints at level 3 are specified: 













×−×
=

cbc

BFSFS

x VN

CQ
odMax

)1(
Pr

,

ε
, KKTKFSTS QandQ,Q,Qx =      (19) 

subject to 

0.1Pury65.0 B,FS1 ≤=≤          (20a) 

0.1Pury85.0 A,KK2 ≤=≤         (20b) 

45.0Diluty FS3 ≤=          (20c) 

55.0Diluty KK4 ≤=          (20d) 

75.1Qy max5 ≤=          (20e) 

where  

 
τ

∆∑
==

tN

1i
i,B

B,FS

tC

C  at 53N shift =         (21a) 

 ( )
FSBA

FSinB

B,FS
CC

C
Pur

+
=          (21b) 

( )
KKBA

KKinA

A,KK
CC

C
Pur

+
=          (21c) 

( )
( )

TSBA

FSBA
FS

CC

CC
1Dilut

+

+
−=         (21d) 

( )
( )

TKBA

KKBA
KK

CC

CC
1Dilut

+

+
−=         (21e) 

In Eq. (21a), BFSC ,  is the average concentration of B during the final shifting 53N shift = . In Eqs (21d) and (21e), 

the dilution indicates a loss of all valuable ions such as NPK in the ion-form, i.e., −
3NO , −3

4PO  and +
K , as stated 
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above. Note that the process is operated at relatively low purity to reduce loss of −
3NO , −3

4PO  and +
K , as 

mentioned earlier. The two wash-water flowrates ( 2V1V QandQ
net

) and the cycle time (τ) are kept constant at this 

level. 

The objective function and the constraints at level 4 are given: 

[ ]2V1Vdes
x

QQQMin
net

+= , τ,Q,Qx 2V1V net
=        (22) 

subject to 

0.1Pury65.0 B,FS1 ≤=≤          (23a) 

0.1Pury85.0 A,KK2 ≤=≤         (23b) 

45.0Diluty FS3 ≤=          (23c) 

55.0Diluty KK4 ≤=          (23d) 

75.1Qy max5 ≤=          (23e) 

6129 y. ≤ = odPr           (23f) 

where productivity in the production section ( odPr ) is defined as follows: 

 
cbc

B,FSFS

V)1(N

CQ
odPr

×−×
=

ε
        (24) 

Note that the minimum value of productivity in Eq. (23f) is obtained from the optimization results of level 3. 

Table 6 reports results of MLOP for the NPK ion-exchange SMB process. Operating conditions and simulation 

results corresponding to levels 1-2 are referred to Tables 2 and 4. Levels 3 and 4 are repeated once to ensure a 

converged optimum solution. The values of m2 and m5 at each level are also shown in Table 6. 

At level 3 and level 3 repeated, higher productivities are achieved by increasing QTS and QFS, and by increasing 

QTK, decreasing QKK and increasing QKV (or recycle flowrate). Since 
FSQ  should increase to augment the 

productivity in Eq. (24), QTS and QFS increase. As shown in the plane m2-m5 (see Fig. 5), m5 decreases at a similar 

m2 value (m2=1.35) to increase productivity. Decreasing m5 amounts to increase the residence time in the 

regeneration section, which leads to a higher regeneration ratio of the resin (see also Fig. 8-9).  

At level 4 and level 4 repeated, the desorbent consumption is reduced by adjusting the cycle time, while the 

productivity is maintained. In this case, m2 increases at a similar m5 value (m5=1.52) to decrease wash-water 

consumption (see Fig. 5). Increasing m2 amounts to decrease the residence time in the production section. 

Nevertheless, productivity remains high by keeping a high regeneration ratio of the resin (see Table 6). 
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The optimization result is that wash-water consumption is reduced by 5.4% ( 375.1454.1 →=desQ ) at a 5% higher 

productivity ( odPr = 65.2923.28 → ), compared to the normal operating condition at levels 1-2. 

Fig. 8 and Fig. 9 compare concentration distributions over the columns in the liquid and solid phases, respectively. 

The thin lines indicate component A ( ++ + HCa
2 ) and the bold lines component B ( +K ). Concentration profiles 

are shown at three different times within the 53
rd

 shifting period, i.e., at the beginning (t=0), the middle (t=2/τ) 

and the end (t=τ) of the 53
rd

 cycle. 

Fig. 8 shows that the concentration profiles of A and B are lowered in the production section, while those of A and 

B are raised in the regeneration section. In Fig. 9, the resin is regenerated much more by K
+
 (or B) at the 

optimized flowrates and cycle time than at the normal operating condition. This regenerated resin results in a high 

driving force in the production section, higher productivity and lower desorbent consumption. 

 

4.5 Sensitivity analysis of model parameters 

The sensitivity analysis is presented only for the industrial-scale plant. Table 7 shows nominal values and 

perturbations of the five model parameters: resin capacity (nT), effective bed voidage (εb,eff), mass transfer 

coefficients in the production section (kprod) and in the regeneration section (kregen) and axial dispersion coefficient 

(Dax). 

The resin capacity and the effective bed voidage were determined through experiments by the industrial 

collaborator. Thus, their perturbations can be considered as potential extreme experimental errors. The mass 

transfer coefficients and the axial dispersion coefficient were initialized from empirical correlations, as explained 

in section 3, and were identified through comparing simulation results and experimental data from the pilot plant. 

Since the effect of Lax v/D  on the process performance is small, a large perturbation (±1000 %) is employed. 

Sensitivity (
dx

dy
) of the process performance (y) has the unit according to model parameters (x). However, 

elasticity (
y

x

dx

dy
⋅ ) is dimensionless and therefore it is most useful to reveal which parameters most strongly 

influences the process performance. Table 7 reports sensitivity and elasticity of purity and dilution in the FS 

solution as well as resin utility according to the five model parameters, where elasticity is shown in parenthesis. 

The resin capacity ( Tn ) and the bed voidage ( eff,bε ) affect the purity and the resin utility relatively strongly as 

indicated by their elasticity. As a result, Tn  and eff,bε  should be accurately measured by experiments.  
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Fig. 10 depicts variations of the purity and the resin utility with respect to four model parameters. Experimental 

data are marked in filled circles and squares. Note that purity depends positively on the resin capacity ( Tn ), since 

a higher Tn  implies a higher driving force. However, the resin utility is reduced as Tn  increases. In contrast, these 

relationships are reversed for the bed voidage (see Fig. 10 (a) and (b)). As eff,bε  increases, the interstitial fluid 

velocity ( Lv ) decreases and the ratio of the resin volume to the fluid volume (i.e., 
eff,b

eff,b1

ε

ε−
 in Eq. (2a)) also 

decreases. The former relation results in increasing the resin utility due to the increase of the fluid residence time, 

while the latter relationship decreases the purity because of a reduced resin volume.  

A high mass transfer coefficient means a high adsorption or desorption rate. Therefore, the purity and the resin 

utility increase, as prodk  and regenk  increase, where the effect of prodk  is about twice that of regenk  on the purity 

and the resin utility (see elasticity in parenthesis in Table 7). These elasticities show that a 10% change of the 

mass transfer coefficient of the production section (kprod) results in 1.1 % change of FS purity while a 10% change 

of the mass transfer coefficient of the regeneration section (kregen) results in 0.5 % change of FS purity. 

A low axial dispersion coefficient enhances the process performance on purity and resin utility, even though the 

static effect is small. All of the five model parameters have little effects on the dilution in the FS solution, since 

the dilution is defined as a loss of total ions in Eq. (14). 

Through  this sensitivity analysis, the effects of model parameters on the process performance are identified and it 

is demonstrated that the process performance can be enhanced by adjusting operational conditions to achieve 

higher k  and lower axD . 

 

 

5. Conclusions 

To perform one experimental test of the NPK ion-exchange SMB process, about 5 hours are required to reach a 

cyclic stationary state. In order to find optimum operation conditions for the cycle time and flowrates in a given 

column configuration, many experimental runs must be carried out. Thus, it may take several months to find near 

optimum operation conditions through experiments. 

The non-equilibrium SMB chromatographic model used is characterized by a spatially distributed dynamic system 

for a number of columns. An explicit time-marching scheme, i.e., the so-called conservation element and solution 

element (CE/SE) method, is employed to accurately and effectively solve the distributed model described by 

partial differential equations. The CE/SE method enables accurate and efficient tracking of steep concentration 
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profiles moving along the column axis. Thereby, simulation, parameter estimation and optimization studies can be 

accelerated. When using conventional linear driving force (LDF) models for non-equilibrium adsorption, an 

unphysical desorption can occur in non-adsorption (or inactive) regions of the column where an equilibrium state 

between the liquid and solid phases may exist. The inactive regions appear during operation for the ion-exchange 

SMB process due to the wash-water zones which are included to ensure ion-exclusion. A generalized LDF 

adsorption rate model is used to enable switching between equilibrium and non-equilibrium adsorption models. It 

is demonstrated that the switching functions enables satisfying the electro-neutrality condition in ion-exchange 

chromatography. 

In the simulation study on the six-zone SMB process, less than one minute is needed to obtain the cyclic 

stationary state, i.e., about 1/300 of the experimental time, using the CE/SE method. Model parameters (e.g., mass 

transfer coefficients in production and regeneration sections) are estimated by comparing simulation results with 

the experimental data. The effects of the model parameters on the process performance are examined through 

sensitivity analysis. The obtained model results compare favorably both to pilot- and industrial-scale data.  

Applying MLOP (multi-level optimization procedure) to NPK ion-exchange SMB chromatography, it is shown 

that wash-water consumption can be reduced, while also achieving a higher productivity. It is also observed that 

desorbent consumption can be reduced near the same productivity value adjusting the shifting time thereby also 

reducing the energy consumption in downstream evaporators. 
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Nomenclature 

AE = algebraic equation 

BC = boundary condition 
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C = concentration in fluid phase (eqv/l on liquid volume basis) 

C  = average liquid concentration (eqv/l on liquid volume basis) 

Cin = inlet concentration of fluid at z=0 (eqv/l on liquid volume basis) 

CE/SE = conservation element/solution element 

CMB = continuous moving bed 

DAE = differential algebraic equation 

Dax = axial dispersion coefficient (m
2
/min) 

Dc= column inner diameter (m) 

g(C) = adsorption isotherm function in Eq. (2c) 

IC = initial condition 

k  = overall adsorption rate coefficient (1/min) 

kf  = liquid film mass transfer coefficient (m/min) 

kprod  = mass transfer coefficient in the production section (m/min) 

kregen  = mass transfer coefficient in the regeneration section (m/min) 

Lc = column length (m) 

Lc,eff = effective column length (m) 

LDF = linear driving force 

m2= zone II fluid to solid flowrate ratio ( sQQm /22 = ) 

m5= zone V fluid to solid flowrate ratio (
sQQm /55 = ) 

n = concentration in resin or solid phase (eqv/l on particle volume basis) 

n
*
 = equilibrium concentration in resin or solid phase (eqv/l on particle volume basis) 

n  = average solid concentration (eqv/l on particle volume basis) 

Nm = number of mesh points per column 

NPK = nitrogen-phosphate-potassium 

Nshift = number of shiftings 

nT  = resin capacity (eqv/l on bed volume basis) 

nT,p  = resin capacity (eqv/l on particle volume basis) 

Nt = number of time steps per cycle time 

ODE = ordinary differential equation 

PDAE = partial differential algebraic equation 
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PDE = partial differential equation 

Pe = Peclet number (=vLLc,eff/Dax or vLdp/DL) 

Q = flowrates (m
3
/min) 

Q2 = flowrate of zone II (m3/min) 

Q5 = flowrate of zone V (m
3
/min) 

Qin = inlet flowrate of fluid at z=0 (m
3
/min) 

Qs = flowrate of solid particles, τε /)1( ,, effcceffbs LAQ ⋅⋅−= (m3/min) 

ri = adsorption rate (eqv/l/min) 

ri
general

 = generalized adsorption rate (eqv/l/min) 

S = cross-section area of column (m
2
) 

SMB = simulated moving bed 

St = Stanton number (=kLc,eff/vL) 

t = time (min) 

T = temperature (oC) 

TMB = true moving bed 

Vdead: dead volume (m
3
) 

vL = interstitial fluid velocity (m/min) 

Vliquid: liquid volume (m
3
) 

Vtotal: sum of dead volume and liquid volume (m
3
) 

xA = mole fraction of ++ −HCa
2C to total liquid concentration 

yA = mole fraction of *

HCa
2n ++ −

to total solid concentration 

z = axial direction of column (m)  

Greek letters 

α = logical variables in the node model, Eq. (5) 

εb = interstitial bed voidage 

εb,eff = effective interstitial bed voidage 

φsum = sum kernel in Eq. (11) 

φproduct = product kernel in Eq. (11) 

ν = CFL number 
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τ = cycle time or shifting time 

∆t = uniform time step size (=min) 

∆z = uniform spatial step size (=m) 
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Table 1. Operating conditions and simulation parameters for the pilot SMB plant (V1/TS/FS-V2/TK/KK = 

10.7/2.1/5.6-11.3/3.8/8.8 l/cycle). 

Production section Regeneration section 
 

Zone I Zone II Zone III Zone IV Zone V Zone VI 

Q (l/min) 2.14 2.56
 

1.44 2.26 3.02 1.26 

vL (m/min) 0.494 0.591 0.332 0.521 0.697 0.291 

Dax (m
2/min) 0.02vL

 0.02vL 0.02vL 0.02vL
 0.02vL

 0.02vL
 

k (min
-1

) 0.40 0.40 0.40 0.70 0.70 0.70 

Pe (Lc,effvL/Dax) 105 105 105 105 105 105 

St (Lc,effk/vL) 1.71 1.43 2.54 2.83 2.12 5.07 

Length (Lc,eff, m) Dc (m) Bed voidage (εb,eff) Column number 

Column information 

2.107* 0.1 0.5522** 15 (2/5/2-1/4/1)*** 

V1  TS V2 TK Inlet concentration 

(Cin, eqv/l) Cin,A= Cin,B= 0 Cin,A=9.93, Cin,B=0.01 Cin,A= Cin,B= 0 Cin,A= 0.11, Cin,B=3.82 

Mesh number (Nm) Shifting time (τ, min) Shifting number (Nshift) Resin capacity (nT,p) Simulation 

parameters 26  5 53 3.17
****

 

* Lc=1.492 m 

** εb=0.37 and Vdead= 4.77  litters 

*** one backwashing column is not taken into account.  

**** )
1

(,

b

T
pT

n
n

ε−
=  has the units [eqv/l] on the basis of the particle volume, where )1.00.2( ±=Tn  is on the basis of the 

bed volume. 
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Table 2. Operating conditions and simulation parameters for the industrial-scale SMB plant (V1/TS/FS-V2/TK/KK 

= 4.7/1.17/2.03-5.33/2.20/4.77 m
3
/cycle). 

Production section Regeneration section 
 

Zone I Zone II Zone III Zone IV Zone V Zone VI 

Q (m
3
/min) 0.94 1.174

 
0.768 1.066 1.506 0.552 

vL (m/min) 0.541 0.676 0.442 0.614 0.868 0.318 

Dax (m
2/min) 0.04vL

 0.04vL 0.04vL 0.04vL
 0.04vL

 0.04vL
 

k (min
-1

) 0.40 0.40 0.40 0.70 0.70 0.70 

Pe (Lc,effvL/Dax) 65 65 65 65 65 65 

St (Lc,effk/vL) 1.93 1.54 2.36 2.97 2.10 5.73 

Length (Lc,eff, m) Dc (m) Bed voidage (εb,eff) Column number 

Column information 

2.605* 2.0 0.5527** 15 (3/3/3-1/4/1)*** 

V1  TS V2 TK Inlet concentration 

(Cin, eqv/l) Cin,A= Cin,B= 0 Cin,A=10.37, Cin,B=0 Cin,A= Cin,B= 0 Cin,A=0, Cin,B=3.884 

Mesh number (Nm) Shifting time (τ, min) Shifting number (Nshift) Resin capacity (nT,p)
 

Simulation 

parameters 26  5 53 3.17
****

 

* Lc=1.85 m 

** εb=0.37 and Vdead= 2.37 m3 

*** one backwashing column is not taken into account.  

**** )
1

(,

b

T
pT

n
n

ε−
=  has the units [eqv/l] on the basis of the particle volume, where )1.00.2( ±=Tn  is on the basis of the 

bed volume. 
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Table 3 Experimental task matrix in the pilot plant (ref: Kemira A/S internal report). 

Production section Regeneration section 

test # 

cycle 

time, sec 
V1 

l/cycle 

TS 

l/cycle 

FS 

l/cycle 

SV 

l/cycle 

V2 

l/cycle 

TK 

l/cycle 

KK 

l/cycle 

KV 

l/cycle 

P1 300 13.0 2.1 5.6 9.5 11.3 3.8 8.8 6.3 

P2 300 11.4 2.1 5.6 7.9 11.3 3.8 8.8 6.3 

P3 300 10.7 2.1 5.6 7.2 11.3 3.8 8.8 6.3 

P4 300 10.0 2.1 5.6 6.5 11.3 3.8 8.8 6.3 

P5 360 13.0 2.5 6 9.5 11.3 4.3 8.8 6.8 

P6 360 11.4 2.5 6 7.9 11.3 4.3 8.8 6.8 

P7 360 10.7 2.5 6 7.2 11.3 4.3 8.8 6.8 

P8 360 10.0 2.5 6 6.5 11.3 4.3 8.8 6.8 

P9 420 13.0 2.9 6.4 9.5 11.3 4.8 9.3 6.8 

P10 420 11.4 2.9 6.4 7.9 11.3 4.8 9.3 6.8 

P11 420 10.7 2.9 6.4 7.2 11.3 4.8 9.3 6.8 

P12 420 10.0 2.9 6.4 6.5 11.3 4.8 9.3 6.8 

P13 300 10.7 2.1 5.1 6.2 11.3 3.8 8.3 6.8 

P14 300 10.7 2.1 5.6 6.7 11.3 3.8 8.3 6.8 

P15 300 10.7 2.1 6.1 7.2 11.3 3.8 8.3 6.8 

P16 300 10.7 2.1 6.6 7.7 11.3 3.8 8.3 6.8 
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Table 4. In situ experimental data and simulation results for average liquid concentrations, purity and dilution in 

the industrial-scale SMB plant. 

Concentration in FS Concentration in KK 

 A 

(eqv/l) 

B
 

(eqv/l) 

Purity  

(%) 

Dilution 

(%) 

A 

(eqv/l) 

B
 

(eqv/l) 

Purity 

(%) 

Dilution 

(%) 

Experimental data 2.23 3.74 62.7 42.2 1.59 0.20 88.8 53.9 

Simulation with Eq. (12) 2.23 3.82 63.2 41.8 1.60 0.21 88.3 53.5 

Simulation with a thermodynamic 

equilibrium model 

2.21 3.83 63.5 41.8 1.61 0.21 88.6 53.5 

 

 

Table 5. In situ experimental data and simulation results for average resin concentrations and resin utility in the 

industrial-scale SMB plant. 

Resin of BW column Resin of V1 column 

 A 

(eqv/l) 

B
 

(eqv/l) 

% in 

K
+
-form 

A 

(eqv/l) 

B
 

(eqv/l) 

% in 

K
+
-form 

Resin utility* 

(%)
 

Experimental data 0.67 2.46 78.6 2.79 0.37 11.7 66.9 

Simulation with Eq. (12) 0.51 2.68 84.0 2.63 0.56 17.6 66.4 

Simulation with a thermodynamic 

equilibrium model 

0.43 2.76 86.7 2.57 0.62 19.5 67.2 

*
 Resin utility= (% in K

+
-form)BW column - (% in K-form)V1 column. 

 

 

Table 6. Results of the MLOP for the NPK ion-exchange SMB process. 

Variables[1] Simulation results  

netVQ 1  TSQ  
FSQ  2VQ  

TKQ  
KKQ  m2 m5 τ (min) PurFS (%) ProdFS Qmax

 [2] 

Objective 

functions 

1-2 level 0.388 0.234 0.406 1.066 0.440 0.954 1.30 1.67 5.00 

 

63.2 

 

28.23 

 

1.51 

 

Prod=28.23[3]  

Qdes=1.454[4] 

3rd level ″ [5] 0.236 0.409 ″ 0.481 0.944 1.36 1.71 ″ 65.0 29.19 1.547 Prod =29.19 
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   Qdes =1.454 

4th level 0.458 0.236 0.409 0.923 0.481 0.944 1.24 1.51 4.87 

 

65.0 

 

29.12 

 

1.40 

 

Prod =29.12 

Qdes =1.381 

3rd level 

repeated 

″ 0.239 0.428 ″ 0.505 0.879 1.34 1.54 ″ 65.0 

 

29.68 1.43 Prod =29.68 

Qdes =1.381 

4th level: 

repeated 

0.456 ″ ″ 0.919 ″ ″ 1.34 1.54 4.88 65.0 29.64 1.42 Prod =29.65 

Qdes =1.375 

[1] all flowrates has the units [ 13
minm

−⋅ ] 

[2] [ ])(),(max 21max TKVTSV QQQQQ ++=  

[3]
 productivity has the units [ 31

mminmol
−− ⋅⋅ ] based on the total resin volume ( ccbS SNL)1(V ε−= ) 

[4] 21 VVdes QQQ
net

+=  

[5] This is the same value as that of the cell just above. 
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Table 7. Sensitivity and elasticity of model parameters on purity, dilution in the FS solution and resin utility. 

 nT εb,eff kprod kregen Dax/vL 

Nominal value 2.0 0.5527 0.4 0.7 0.04 

Minimum value 1.9
 

0.5327 0.38 0.65 0.004 

Maximum value 2.1 0.5727 0.42 0.75 0.4 

Perturbation (%) ±5.0 ±3.6 ±5.0 ±7.1 ±1000 

Purity in FS 10 (0.32) -40 (-0.35) 17.5 (0.11) 5 (0.05) -37.5  (-0.02) 

Dilution in FS 0 (0) 0 (0) 0 (0) 0 (0) 2.5 (0.002) 

Sensitivity
*
 

(Elasticity**) 

Resin utility -25 (-0.75) 98 (0.81) 17 (0.10) 6.2 (0.06) -56.5 (-0.03) 

* sensitivity=
valuealminnox

dx

dy

=

, where x is the model parameters and y  is the purity, dilution or resin utility. 

** elasticity=

valuealminnox
valuealminnox

x/dx

y/dy

xlnd

ylnd

==

=  
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Fig. 1 16 column configuration (3/3/3-1-1/4/1) for a NPK ion-exchange SMB process. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

(a) Flowrates at the node                               (b) Node and column boundary conditions (BC) 

 

Fig. 2. Node and column configurations in this 6-zone SMB process model. 
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Fig. 3 Experimental points and their fitting curve at C=3.3 eqv/l, where 
BA CCC +=  and 

T

*

AA n/ny = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Equilibrium curves based on a thermodynamic equilibrium model according to total liquid concentration 

(C), where 
BA CCC +=  and 

T

*

AA n/ny = . 
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Fig. 5 Flowrate ratio analysis of II and V zones for 16 experimental tests in pilot plant and model-based 

optimization results in industrial plant. 
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Fig. 6 Liquid concentration distribution of Ca
2+

-H
+
 ions (circles), K

+
 ions (solid line) and total concentration 

(dotted line) over 15 columns at three different times within one 5 min  cycle (ν=0.6, Nm=26 and Nshift=53). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Solid concentration distribution of Ca
2+

-H
+
 ions (circles), K

+
 ions (solid line) and total concentration (dotted 

line) over 15 columns at three different times within one cycle (ν=0.6, Nm=26 and Nshift=53). 
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Fig. 8 Comparison of SMB simulation results for the liquid phase at level 2 (solid lines) and level 4 repeated 

(dashed lines) at three different times within 53
rd

 shifting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Comparison of SMB simulation results for the solid phase at level 2 (solid lines) and level 4 repeated 

(dashed lines) at three different times within 53rd shifting. 
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Fig. 10 Variation of purity in FS (circles) and resin utility (squares) with model parameters (filled circles and 

filled squares are experimental points). 

 


