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Generation of Statistical

Scenarios of Short-term

Wind Power Production

Pierre Pinson, George Papaefthymiou, Member, IEEE, Bernd Klockl, Member, IEEE, and Henrik Aa. Nielsen

Abstract— Short-term (up to 2-3 days ahead) probabilistic
forecasts of wind power provide forecast users with a paramount
information on the uncertainty of expected wind generation.
Whatever the type of these probabilistic forecasts, they are
produced on a per horizon basis, and hence do not inform on the
development of the forecast uncertainty through forecast series.
This issue is addressed here by describing a method that permits
to generate statistical scenarios of wind generation that accounts
for the interdependence structure of prediction errors, in plus
of respecting predictive distributions of wind generation. The
approach is evaluated on the test case of a multi-MW wind farm
over a period of more than two years. Its interest for a large
range of applications is discussed.

Index Terms— wind power, uncertainty, probabilistic forecast-
ing, multivariate Normal variable, transformation, scenarios.

I. INTRODUCTION

NCREASING the value of wind generation through the
improvement of prediction systems’ performance is one of
the priorities in wind energy research needs for the coming
years [1]. Today, most of the existing wind power prediction
methods provide end-users with point forecasts [2]. The pa-
rameters of the models involved are commonly obtained with
minimum least square estimation. If denoting by p;yx the
measured power value at time ¢t + k, p.+x can be seen as
a realization of the random variable P;j. In parallel, write
Piyk|¢ @ point forecast issued at time ¢ for lead time ¢ + F,
based on a model M, its parameters ¢, and the information
set {); gathering the available information on the process up
to time t. Estimating the model parameters with minimum
least squares makes that p; |, corresponds to the conditional
expectation of Py, given M, €, and ¢;:
Deskjt = E[Pryr]M, op, Q] (1)
Owing to their highly variable level of accuracy, a large
part of the recent research works has focused on associating
uncertainty estimates to these point forecasts. They take the
form of e.g. risk indices or probabilistic forecasts [3]. The
latter ones are the most common and utilized in practice
today. Probabilistic predictions can be either derived from
meteorological ensembles [4], based on physical consider-
ations [5], or finally produced from one of the numerous
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statistical methods that have appeared in the literature, see [6]—
[8] among others. If appropriately incorporated in decision-
making methods, they permit to significantly increase the value
of wind generation. Recent developments in that direction
concentrate on e.g. dynamic reserve quantification [9], optimal
operation of combined wind-hydro power plants [10] or on the
design of optimal trading strategies [11].

Probabilistic forecasts are generated on a per look-ahead
time basis. They do not inform on the development of the
prediction errors through prediction series, since they neglect
their interdependence structure. However, this information is
of particular importance for many decision-making processes
e.g. the economic operation of storage (or conventional genera-
tion) in combination to wind power output. In order to satisfy
this additional requirement, it is proposed here to generate
scenarios of short-term wind power production. These scenar-
ios are such that they respect the (nonparametric) probabilistic
forecasts for the next period, in addition to relying on the most
recent information about the interdependence structure of the
prediction errors.

Nonparametric probabilistic forecasts of wind generation
are introduced in Section II, as well as their required and
desirable properties. Then, Section III describes the method
for generating statistical scenarios of wind generation from
nonparametric probabilistic forecasts. It is based on the trans-
formation of the set of random variables composing probabilis-
tic forecast series into a single multivariate Normal variable,
whose covariance matrix is tracked with recursive estimation.
Results from the application of the described method are given
in Section I'V. Emphasis is on discussing the Gaussian assump-
tion on the transformed random variables, on the evaluation
of the probabilistic correctness of the generated scenarios,
and finally on the time-varying interdependence structure of
prediction errors. Concluding remarks end the paper with
perspectives on applications and future developments.

II. NONPARAMETRIC PROBABILISTIC FORECASTS OF WIND
POWER

Nonparametric probabilistic predictions may take the form
of quantile, interval or density forecasts. Write fi;; the
probability density function of P,ij, and let F; ; be the
related cumulative distribution function. Provided that £}, is
a strictly increasing function, the quantile qgiL with proportion
a € [0,1] of the random variable P, is uniquely defined as
the value x such that

(@) _

P(Piyg <o) =a, or ¢y =F (@) 2
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estimate of qgi)k produced at time ¢ for lead time ¢ + k, given
the information set €2; at time ¢.

For most decision-making processes, a single quantile fore-
cast is not sufficient for making an optimal decision. Instead,
it is necessary to have the whole information about the random
variable P for horizons ranging from few hours to several
days ahead [11]. If no assumption is made about the shape of
the target distributions, a nonparametric forecast ft+k|t of the
density function of the variable of interest at lead time t + k
can be produced by gathering a set of m quantiles forecasts

A quantile forecast with nominal proportion « is an

fHk‘t:{qt(i’}glt|0§a1<...<ai<...<am§1} 3)

that is, with chosen nominal proportions spread on the unit
interval. These types of probabilistic forecasts are hereafter
referred to as predictive distributions. Ft+k\t denotes the
cumulative distribution function related to ft-s-klt- Note that
interval forecasts correspond to the specific case for which
only two quantiles are quoted, and whose nominal proportions
are chosen to be symmetric around the median.

A requirement for nonparametric probabilistic forecasts is
that the nominal probabilities, i.e. the nominal proportions of
quantile forecasts, are respected in practice. Over an evaluation
set of significant size, the empirical (observed) and nominal
probabilities should be as close as possible. Asymptotically,
this empirical coverage should exactly equal the pre-assigned
probability. That required property is commonly referred to
as reliability. Besides this requirement, it is highly desirable
that probabilistic predictions provide forecast users with a
situation-dependent assessment of the prediction uncertainty.
The shape of predictive distributions should then vary depend-
ing on various external conditions. For the example of wind
power forecasting, it is intuitively expected that prediction
intervals (for a given nominal coverage rate) should not
have the same size when predicted wind speed equals zero
and when it is near cut-off speed. This desirable property
of probabilistic forecasts is commonly referred to as their
sharpness of resolution. For a more thorough discussion on
these various aspects, see [12], [13].

III. GENERATING SCENARIOS OF WIND POWER
PRODUCTION

Given the nonparametric probabilistic forecasts described
above, it is necessary to capture the interdependence structure
of the prediction errors. For that purpose, it is proposed to take
advantage of a property of reliable probabilistic predictions,
which is such that the prediction errors can be made Gaussian
by applying a suitable transformation. The interdependence
structure of these transformed errors can then be summarized
by a covariance matrix, which is recursively estimated in order
to accommodate long-term variations. The main points of the
method are described in the following.

A. The Gaussian multivariate random variable

Let us focus on a single look-ahead time k. As explained
above, the predictive distributions {f; )}, for that look-
ahead time are defined as reliable if the observed proportions
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for each of the quantiles correspond to the nominal ones [12].
In such a case, the random variable Y} whose realization Yk(t)

at time ¢ is defined by

Yk(t) = Ft+k|t(pt+k)7 vt 4)

is distributed uniform on the unit interval, i.e. Y; ~ U[0,1].
Consider for instance predictive distributions defined by quan-
tiles whose nominal proportions are uniformly spread between
0 and 1. This property intuitively translates to saying that there
is the same probability the measured power value at time t+ k
falls in any of the interval defined by two neighboring quantile
forecasts q;ii;‘t and cjiiﬁ;), i =1,...,m — 1. Note that in
practice, a continuous cumulative distribution function for each
look-ahead time is obtained by fitting a smooth curve through
the set of m predictive quantiles.

Then, given the uniformly distributed random variable Y}, a
straightforward way to obtain a Normally distributed variable
X is to apply a second transformation, that uses the probit
function, which corresponds to the inverse of the Gaussian
cumulative distribution function. The probit function is defined
as

7 p—oV2erf t(2p—1) 5)

where ‘erf~!" is the inverse error function. Consequently, the

transformation of Y} to X}, is obtained by applying the probit
function to every realization Yk(t), i.e.

x =o' (v\), wt (6)

such that the random variable X, is distributed Gaussian with
zero mean and unit standard deviation, X, ~ N(0,1).

Considering the transformed random variables X}, for each
look ahead time, it is assumed that the random vector X =
(X1 X2 ... Xg), where K is the maximum forecast horizon,
follows a multivariate Normal distribution, X ~ N (g, %),
with the vector jio of mean values being a vector of zeros. In
addition, X is the covariance matrix that contains the whole
information about the covariances of the random variables
Xk, k=1,...,K. It has 1-values on its diagonal, since the
diagonal elements give the variance of each of the random
variables. Hereafter X(*) denotes the realization of X at time
t.

Note that this assumption of X being a multivariate Normal
distribution is the simplest assumption one can make about
the correlation pattern of the individual random variables Xj.
More complex correlation structures could be modeled by
using the copula theory, see e.g. [14]. This would not affect
the other parts of the proposed method.

B. Recursive estimation of the covariance matrix

In the context of wind power forecasting applications, mea-
surements are regularly collected and consequently used for
updating the parameters of the prediction methods. A similar
approach based on a recursive formulation can be applied for
the adaptive estimation of the covariance matrix X.

Write X; the covariance matrix estimated from observations
up to time ¢. An unbiased estimate of ¥; is commonly given

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 10:51 from IEEE Xplore. Restrictions apply.
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Fig. 1.

Example of probabilistic predictions of wind generation in the form of nonparametric predictive distributions. Point predictions are obtained from

wind forecasts and historical measurements of power production, with the WPPT method. They are then accompanied with interval forecasts produced with
adaptive quantile regression. The nominal coverage rates of the prediction intervals are set to 10, 20, ..., and 90%.

by

1 T
:_E : (t)x (t)
PN 1 t XWX 7

with .7 the transposition operator and X the vector of
observation of X at time t.
Given that the covariance estimation is based on a normal-

ized sum, a recursive formulation for the updating of ¥, at
time ¢ is readily obtained as

Et:<t_

2 1
S I s _—
i 1) t—1+ ( =

Considering that the process characteristics are slowly vary-
ing leads to the application of an exponential forgetting scheme
to the recursive updating formula (8). This would yield

zt:A(t_Z) zt_1+(1+x< ))X(t)X(t)T

t—1
(©))
where A is the forgetting factor, A € [0,1[. This updating
formula is such that when ¢ tends towards infinity, it becomes

) xOx®T’ (8)

1
1
t—1

S = A 4 (1— ) XOXOT (10)

which corresponds to the classical formula for exponential
forgetting. The covariance matrix is initialized by setting all
its off-diagonal elements to 0 and its diagonal elements to 1.

C. Scenario generation

At time ¢ are available a predictive distribution ft_,_k‘t for
each look-ahead time k, k = 1,..., K, and an estimate of the
covariance matrix ;. The procedure for obtaining a number
d of scenarios of wind power production for the following K
look-ahead times is as following:

o (i) one uses a multivariate Normal random number gen-
erator with zero mean and covariance matrix Y; in order
to have d realizations of the random variable X;, X; ~
N (120, X¢). Denote by ng) the i of these d realizations;
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o (ii) d realizations Yk(ft) of the uniform variable Y} ; for
each look-ahead time k are obtained by applying the
inverse probit function ® to each component of X;":

Y = e(X), ki (11)

(iii) the scenarios of wind power production finally result
from the application, for each look-ahead time k, of the

inverse cumulative distribution function F‘t:_lkl , to the d
realizations Yk(it) of Y}, ¢ for that look-ahead time:
A (1) _ Al (1) .
pt:kh& = Ft+k\t (Yk,zt)» Vk,i (12)
IV. RESULTS

Focus is given in this Section to the application of the
method to a real-world test case, in order to illustrate its
qualities. After describing the case-study considered, we verify
that transformed variables are indeed close to being Gaussian,
and that the generated scenarios are probabilistically correct,
i.e. that they respect the probabilistic forecasts used as input.
Finally, the evolution of the interdependence structure of
forecast errors through time is discussed.

A. Description of the case-study

Predictions are produced for a Danish onshore wind farm
with a nominal capacity P, of 21MW. The period for which
both predictions and related power measures are available
goes from March 2001 until end of April 2003. The point
predictions result from the application of the WPPT method
[15], which uses meteorological predictions of wind speed
and direction as input, as well as historical measurements
of power production. These point predictions have an hourly
resolution up to 43-hour ahead, and are updated every hour. All
predictions and measures are normalized by F,,. The dataset
includes 16900 point prediction series.

Nonparametric probabilistic forecasts are produced with
adaptive quantile regression [7]. Predictive distributions are

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 10:51 from IEEE Xplore. Restrictions apply.



100

8or _ DFEdict!On
€ ——scenarios
C
o
‘5 60r ;
o J
: NN
D 40 ////,:"‘ &\Vf‘

b A
20 Q/ (V&" y)“

5 10 15 20
look—ahead time [hours]

25 30 35 40

Fig. 2. Example of wind power point predictions with 50 alternative scenarios produced from the method described in the paper (for the same period as in
Fig. 1). The point prediction series correspond to the most likely scenario while the others reflect the prediction uncertainty and the interdependence structure

of predictions errors.

given by 19 quantile forecasts whose nominal proportions
range from 0.05 to 0.95% by 0.05 increments. From a prob-
abilistic point of view, since it is not possible to exclude any
possibility, the predictive quantiles with nominal proportions
0 and 1 are always set to normalized power values of 0 and 1,
respectively, whatever the look-ahead time. The quality of this
method is evaluated and discussed in [12]. It has been shown to
have an acceptable level of reliability, and a superior overall
skill when compared with other nonparametric probabilistic
forecasting methods of the state of the art.

Fig. 1 gives an example of such probabilistic forecasts of
wind generation, in the form of a fan chart. In parallel, Fig. 2
depicts a set of 50 scenarios of power production for the same
period, generated from the method introduced, along with the
traditionally provided point forecasts for the coming period.
For this illustration only 50 scenarios are produced, but since
the method is not highly computationally expensive, one can
raise this number to several thousands in order to be used
in e.g. monte-carlo simulations for decision-making. For the
following evaluation, the number of scenarios is set to 10000.
The second parameter of the method is the forgetting factor
A that permits an adaptive tracking of the interdependence
structure of prediction errors. It is set here to 0.995, which
corresponds to an effective number of 200 observations.

B. Gaussian assumption on transformed random variable

The assumption such that the transformed random variable
X)Z is Gaussian is discussed here. For that, the realizations
X kt) of X, are collected over the whole dataset. In principle,
one would use a test of Normality for verifying that such an
assumption is acceptable. Actually, this kind of test could
also be used for verifying the reliability of nonparametric
probabilistic forecasts. For literature on Normality testing, we
refer to [16] and references therein.

For discussing the Normality of the transformed random
variables, the distributions of these realizations are compared
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to the probability distribution function (pdf) of a A(0,1)
distribution. Fig. 3 gives the example of the common plotting
of these two distributions, for the case of k = 18 i.e. for the
transformed random variable related to 18-hour ahead fore-
casts. The distribution of observations appears to be slightly
left-skewed and sharper than the pdf of a A/(0, 1) distribution,
though they look very similar.

45

40 observations
pdf of a N(0,1)
35
_. 30
2
5
c
3 2
o
Y
T 15
10
5
0
5 -4 -3 -2 - 0 1 2 3 4 5
X0
k
) . . . t
Fig. 3. Visual comparison between the set of observations {X ,i )} (for

k = 18, i.e. for the transformed random variable related to 18-hour ahead
prediction) and the probability distribution function of a \/'(0, 1) distribution.

The four moments of the distributions of these realizations,
i.e. their mean px(k), their standard deviation oy (k), their
skewness vx (k) and finally their excess kurtosis xx (k), are
calculated for each of the 43 transformed random variables
corresponding to each look-ahead time k. Their average value
over the set of look-ahead times and related standard deviation,
denoted by ~ and o(.) respectively, are gathered in Table I.

Whatever k, the distributions are slightly left-skewed, as it
was observed for the example of £ = 18 in Fig. 3. In addition,
the excess kurtosis is positive, with low values though, indi-
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TABLE I
SUMMARY STATISTICS RELATED TO THE MOMENTS OF THE
DISTRIBUTIONS OF THE OBSERVATIONS OF THE TRANSFORMED RANDOM
VARIABLES X,.

X ox Ix Kx
0.0018 0.95 -0.20 0.36
o(px) olox) o(yx) o(kx)
0.0015 0.01 0.05 0.24

cating that X -observations distributions are sharper in their
central part, and have longer tails, than a A/'(0, 1). These slight
deviations from a perfect Normal shape are due to the fact
that the nonparametric predictions are not perfectly reliable in
the low power range [12]. Regarding the first two moments,
one sees that transformed variables are clearly centered with
a standard deviation close to 1.

C. Probabilistic correctness of generated scenarios

In a second part, it is verified if the generated scenarios
are probabilistically correct, i.e. if they respect the marginal
distributions of the probabilistic forecasts used as input. For
this evaluation, we use the fact that the proportion of generated
scenarios that lies between two successive quantiles of a given
predictive distribution should correspond to the difference in
nominal probability for these two quantiles. For instance, for a
given predictive distribution, 5% of generated scenarios should
lie in the interval formed by the quantiles with nominal propor-
tions 0.4 and 0.45. Such an evaluation can be summarized in a
Probability Integral Transform (PIT) histogram, as introduced
in e.g. [13]. The PIT histogram of Fig. 4 summarizes this
evaluation over the whole dataset and for all horizons, since it
has been witnessed that the probabilistic correctness was not
significantly different for the various look-ahead times.

3}

§ |

(%]

2* |

o

@

S 3

o

)

t |
2 |
| |
0
0 01 02 03 04 05 06 07 08 09 1

nominal probabilities
Fig. 4. Evaluation of the probabilistic correctness of generated scenarios

with a PIT histogram. The ideal case of perfect probabilistic correctness is
represented by the dash-dot line. This PIT histogram gathers the results for
all look-ahead times.

The ideal situation corresponds to the case for which each
bin would contain 5% of the scenarios. The deviations from
this idea situations are low here, indicating that the generated
scenarios have distributions similar to that of the predictive
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distributions, and this all over the range of nominal probabil-
ities.

D. On the tracking of the covariance matrix

In a last stage, we follow the evolution of the covariance
matrix of the multivariate Normal variable X through the
dataset. Remember that through suitable transformation, this
covariance matrix describes the interdependence structure of
prediction errors for the various look-ahead times. Figure 5
proposes a visualization of the elements of 3; for two points in
time of the dataset considered, i.e. ¢t = 300 hours and t = 2500
hours. The x— and y—axis are for the prediction horizon k.

The maximum values of the elements of >; lie on the
diagonal. They correspond to the variances of the marginal
distributions of prediction errors for each prediction horizon.
They are close to 1. The covariance values sharply decrease as
the difference between prediction horizons increases. Though,
one notices that the covariance patterns differ for the two
points in time. In the first case (¢ = 300 hours), there is a
significantly stronger covariance pattern, with more specifi-
cally a high correlation between prediction errors for horizons
between 12 and 32-hour ahead. Such phenomenon may relate
to the point prediction method not capturing a diurnal compo-
nent of the wind generation at this site. This covariance pattern
is not present in the second case, i.e. for t = 2500 hours. This
demonstrates the interest of the adaptive tracking of ;.

V. CONCLUSIONS AND PERSPECTIVES

Probabilistic forecasts of wind generation are a highly valu-
able input to a number of decision-making problems related
the management or trading of wind generation. However, the
fact that they do not provide any information on the inter-
dependence structure of prediction errors make them almost
useless for a large class of decision-making problems for
which successive decisions are interdependent. This concerns
for instance the optimal operation of wind in combination
with storage or conventional generation, or the design of
trading strategies for the participation in various markets
with different gate closures. In the present paper, we have
described a method that permits to generate scenarios of wind
generation that respect both the predictive distributions and
the interdependence structure of prediction errors.

The various qualities of the method have been illustrated for
the test case of a multi-MW wind farm, for which both point
predictions and nonparametric probabilistic forecasts were
obtained from a state-of-the-art method. Future developments
related to the method for generating scenarios will focus on
the covariance matrix of the transformed random variable.
More specifically, it is envisaged to: (i) propose a method
for an optimal choice of the forgetting factor; (ii) make the
covariance matrix a function of influential variables, in order
to account for their impact on the interdependence structure
of prediction errors; (iii) extend the method in order to
account for the spatio-temporal aspects of this interdependence
structure.

Broader perspectives relate to the use of wind generation
scenarios in a range of decision-making problems, and to the
verification of the resulting benefits.
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