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ABSTRACT
Automatic knowledge extraction from music signals is a key
component for most music organization and music informa-
tion retrieval systems. In this paper, we consider the problem
of instrument modelling and instrument classification from
the rough audio data. Existing systems for automatic in-
strument classification operate normally on a relatively large
number of features, from which those related to the spec-
trum of the audio signal are particularly relevant. In this
paper, we confront two different models about the spectral
characterization of musical instruments. The first assumes
a constant envelope of the spectrum (i.e., independent from
the pitch), whereas the second assumes a constant relation
among the amplitude of the harmonics. The first model is re-
lated to the Mel Frequency Cepstrum Coefficients (MFCCs),
while the second leads to what we will refer to as Harmonic
Representation (HR). Experiments on a large database of real
instrument recordings show that the first model offers a more
satisfactory characterization, and therefore MFCCs should be
preferred to HR for instrument modelling/classification.

Index Terms— Musical instruments modelling, har-
monics structure, feature extraction

1. INTRODUCTION

In the last years there has been an increasing interest in meth-
ods that aid music organization and music recommendation
systems, mainly motivated by the large digitalization of mu-
sic. For a summary of relevant advances in this exciting field,
the reader is referred to the website of the series of Music
Information Retrieval Conferences1.

In this paper, we will pay attention to the problem of
instrument classification from the rough audio data (see, for
instance, [4]). Among the features that are normally used for
this task, those related to the spectral characteristics of the
instrument are particularly relevant. We can think of two dif-
ferent models of how the spectrum of a particular instrument
changes for different pitches. The first model accepts that
the envelope of the spectrum remains constant for all notes,
while the second, proposed in [8], states that it is the rela-
tion among the amplitude of the harmonics which remains

∗This work was partly supported by the Danish Technical Re-
search Council, through the framework project ‘Intelligent Sound’,
www.intelligentsound.org (STVF No. 26-04-0092), and by the
Spanish Ministry of Education and Science with a Postdoctoral
Felowship to the last author.

1http://www.ismir.net

Fig. 1. Model of the spectrum of a harmonic signal. The
spectrum is divided into a pitch and an envelope.

constant. These two models are associated to two set of fea-
tures: the Mel Frequency Cepstrum Coefficients (MFCCs)
and the Harmonic Representation (HR) features.

The two models above are conflicting ones, and, therefore,
the main goal of this paper is to illustrate which is the one
that better explains the structure of musical instruments. In
order to do so, we will train different classification models
using both MFCCs and HR features extracted from a rather
large database of real instruments recordings [5].

The result of our analysis shows that the models built
upon MFFCs outperform those relying on HR. Therefore,
MFCCs should be preferred for instrument modelling/classi-
fication.

2. SPECTRAL CHARACTERIZATION OF
MUSICAL INSTRUMENTS

The spectral structure of a harmonic signal can roughly be
divided in two components, as illustrated in Fig. 1: the pitch
and the envelope. The pitch is what is perceived as the tone,
and its value is given by the fundamental frequency, i.e., the
frequency of the first harmonic. The envelope is a modulation
of the pitch. If two instruments are playing the same note
the pitch will be the same. Under this simplified model it
will therefore only be the envelope that makes the two sounds
different. Obviously, the pitch changes for different notes, but
how the envelope changes is a bit more subtle. Two models
are suggested, one that assumes the envelope to be constant,
and a second that accepts that it is the relative amplitude of
the harmonics that remains constant.

2.1. Constant envelope model: MFCC features

According to this model, the envelope for the spectrum of a
particular instrument does not change with the pitch. There-
fore, when the pitch is changed the amplitude of each har-
monic in the sound varies (see Fig. 2). This model is well
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Fig. 2. Constant envelope model. Spectrums for two notes
with different fundamental frequency are shown (solid and
dashed). If the envelope is constant the amplitude of the
harmonics must change.

motivated for some instruments, such as string instruments,
by assuming that the pitch is induced by the vibration of the
string and the envelope is controlled by the casing, which is
of course constant. For other instruments, like trumpets, the
validity of the model is not that clear.

It is hard to directly extract the shape of the envelope,
but MFCCs capture much of the same information. MFCCs
were initially developed for speech, but they are also heavily
used in other sound applications, see, for example, [6]. To
compute the MFCCs the amplitude of the spectrogram is
first found using the Discrete Fourier Transform (DFT) on a
small window of the audio data. The modulus of the DFT is
then filtered with a Mel filter bank and the logarithm of the
outputs is taken. In this way, we obtain a series of numbers
related to the energy of the input signal in different frequency
bands, whose central frequencies approximate the Mel scale2.
Finally, the Discrete Cosine Transform (DCT) is taken, and
the result is the MFCCs.

Since MFCCs consist, roughly speaking, of a DCT of a
mel-scaled version of the power spectrum, they contain in-
formation about the shape of the envelope of the spectrum.
Then, if the envelope were constant, the MFCCs extracted
from different windows of the same instrument should be sim-
ilar, even if they correspond to different notes.

From our explanation, it can be seen that the first MFCC
is closely related to the amplitude of the original signal. There-
fore, in this paper we will leave out that coefficient, using the
values of the next 10 MFCCs to construct the models.

2.2. Constant harmonics amplitude: HR features

This model was suggested in [8], and works under the assump-
tion that it is the amplitude of the different harmonics which
remains constant. This means that when the pitch is in-
creased (decreased) the envelope of the spectrum is stretched
(compressed) and, therefore, its shape changes, see Fig. 3.

If this model is valid, a good representation for instru-
ment modelling consists simply of the estimated amplitudes
of the harmonics, to which we refer in the sequel as Harmon-
ics Representation (HR) features. As we did for the MFCCs,
to remove the dependence with the amplitude of the sound
signal (i.e., its volume), it is advisable to normalize the am-
plitude of all harmonics with that of the first one.

2The Mel scale is related to the perceptual capabilities of the
human auditory system.

Fig. 3. Constant harmonics amplitude model. The same
two notes from Figure 2 are shown (solid and dashed). The
envelope is stretched under this model.

The amplitude of each harmonic is directly measurable if
the pitch is known. A pitch detector from [7] is used and,
together with the labels of the data set and visual inspection
of discrepancies, very reliable estimates were produced. The
amplitudes of the first 50 harmonics are found, what gives a
total of 49 relative HR features.

3. CLASSIFICATION MODELS

In order to study the accurateness of the previous models, we
will build multi-class classification models that predict, from
both MFCCs and HR features, which instrument is being
played. We will use two different classification technologies
in order to make our conclusions as general as possible, and
to validate that similar conclusions are extracted when using
both approaches.

The formulation of the problem can be stated as follows:
given a set of N training pairs {x(i),y(i)}N

i=1, where x(i) is
a vector containing the features extracted from a window of
audio data (either MFCCs or HR) and y(i) is a vector of
targets containing an ‘1’ in the position associated to the
right instrument and zeros elsewhere, the task is to build a
function that is able to predict the right targets of new data
as accurately as possible.

It is important to remark that the data in our training
data sets are strongly unevenly distributed among classes (the
number of data in the most numerous class is more than 20
times larger than for the smallest one), thus our classification
models should be able to compensate this effect and assume
equal priors for all instruments.

3.1. Probabilistic Network

Our first classifier is a multi layer perceptron (MLP) [2] with
a single layer of M hidden units and C outputs, each one
corresponding to one instrument. The hyperbolic tangent
function is used for activation in the hidden units and the
softmax function is used in the output units. This fact, to-
gether with the use of the logarithmic cost function, makes
the network estimate the a posteriori probabilities of class
membership [3].

To compensate for unbalanced classes we use the following
modified cost function:

E = −
N∑

i=1

C∑

k=1

λky
(i)
k ln ŷ

(i)
k , (1)
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where y
(i)
k is the k-th component of y(i), ŷ

(i)
k is the k-th output

of the network, and λk = 1/Nk, Nk being the number of
samples in class k.

The minimization of (1) is carried out using an imple-
mentation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method3.

3.2. Kernel Orthonormalized Partial Least Squares

As a second method, we will consider a kernel based method
for multi-class classification. The method consists of two dif-
ferent steps: first, relevant features are extracted from the
input data using the Kernel Orthonormalized Partial Least
Squares (KOPLS) algorithm [1]; then, a linear classifier is
trained to obtain the final predictions of the network.

KOPLS is a method for kernel multivariate analysis that
basically works by projecting the input data into a Reproduc-
ing Kernel Hilbert Space, where standard OPLS analysis is
carried out. To present the method, let us first introduce ma-
trices Φ = [φ(x(1)), . . . , φ(x(N))]T and Y = [y(1), . . . ,y(N)]T ,
where φ(·) is the function that projects input data to some
feature space F . Let us also denote by Φ′ = ΦU a matrix
containing np projections of the original input data, U being
a projection matrix of size dim(F) × np. Then, the KOPLS
problem can be formulated as follows (see [1]):

maximize: Tr{UT ΦT YYT ΦU}
subject to: UT ΦT ΦU = I

(2)

where the maximization is carried out with respect to U.
The Representer Theorem states that U can be expressed

as a linear combination of the training data, i.e., U = ΦT A,
and carry out the maximization with respect to A instead.
However, some advantages in terms of computation and reg-
ularization are obtained if we impose a sparse representation
for the projection vectors, i.e., we admit that U = ΦT

RB,
where ΦR is a subset of the training data containing only R
instances, and B is the new projection matrix of size R×np.
Then, the maximization problem for this KOPLS with re-
duced complexity (rKOPLS) can be stated as:

maximize: Tr{BT KRYYT KT
RB}

subject to: BT KRKT
RB = I

(3)

where KR = ΦRΦT
R involves only inner products in F .

In order to compensate for unbalanced classes, only two
modifications to the standard rKOPLS algorithm are needed:

1. All classes should be equally represented in ΦR.

2. The correlation matrices in (3) should be replaced by
their weighted counterparts where all classes have the
same influence, i.e.,

KRY ← ∑N
i=1

∑C
k=1 λky

(i)
k k(i)y(i)T

KRKT
R ← ∑N

i=1

∑C
k=1 λky

(i)
k k(i)k(i)T

.

where we have defined k(i) = ΦR φ(x(i)).

With these simple modifications, matrix B can be found by
standard generalized eigenvalue analysis, as in [1].

3We have used the matlab implementation available at
http://www2.imm.dtu.dk/∼hbn/immoptibox/.

Once the non-linear features have been extracted from
the training data, a single layer perceptron (SLP) with C
outputs and softmax activation is trained to learn the re-
lation between these features and the target data, also by
minimizing (1) using the BFGS algorithm.

4. EXPERIMENTS

4.1. Data set description and settings

For our experiments we have used a comprehensive database
of real instrument recordings, which is available for research
purposes at [5]. There are a total of 20 instruments in the
data set, all of them recorded at 44.1 kHz and 16 bit/sample.
A single note is played at a time, and notes from the com-
plete range of each instrument are included. Moreover, three
different amplitude levels are played (pianissimo, mezzoforte
and fortissimo). For string instruments there are both arco
and pizzicato, and the notes are also played on the different
strings. For some of the wind instruments vibrato is also in-
cluded. We have not included in our data set the pianissimo
amplitude level because of the low SNR. Also the pizzicato
of string instruments is excluded due to an extremely short
duration of the notes. In order for our experiments to be
as independent from pitch as possible, instruments were re-
quested to share at least one octave. Three instruments were
too far away and had to be discarded, leaving 17 instruments
for the classification.

The recordings were processed to remove silence periods
between notes, and MFCCs and HR features were extracted
using a window size of 50 ms, which is the time frame on
which we do the classifications. This process resulted in a
total of 282,812 patterns for training and testing the mod-
els. Two different partitions were done for the two sets of
experiments described in the next subsections.

Regarding classifier settings, cross-validation was carried
out to select the free parameters. For the probabilistic MLP
networks (MLP in the sequel) the number of hidden units
was set to 30, for which the validation curves were already
flat. We found no problems of overfitting, probably because
of the large data set being used. For the rKOPLS + SLP
network (simply rKOPLS in the following), the number of
points from each class that are included in ΦR was set to 30,
also according to the behavior of validation curves. Finally,
we used a Gaussian kernel, whose width was also selected by
cross-validation.

As we did for the training of the networks, the accuracy
rates that we report in the next subsections are balanced so
that all instruments have the same influence on them. Results
are averaged over 10 runs of the algorithms.

4.2. Generalization capabilities of the models

In the first experiment, the training data consists of MFCCs/
HR extracted from notes spanning the common octave: from
B3 to Bb4; all other data is placed in the test data set. Note
that the two models of Section 2 tend to agree if the pitch
is only slightly modified, while their disagreement is more
important for large variations. In this sense, this experiment,
where both models are trained using a small range of notes
(where they should roughly agree) and tested far away, is a
good setting to test their validity.
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MFCCs HR

MLP Tr/Val 91.4 / 79.1 79.3 / 58.8
Tr/Tst 91.2 / 42.8 78.5 / 12.9

rKOPLS Tr/Val 89.5 / 80.1 78.2 / 57.7
Tr/Tst 89.3 / 42.4 77.4 / 14.2

Table 1. Accuracy rates achieved when training the models
using the octave B3-Bb3, and testing outside.
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Fig. 4. Confusion matrices achieved by rKOPLS for the test
set of experiment 1. MFCCs on the left and HR on the right.

Cross-validation (CV) in this setting was carried out by
using 11 folds, each one consisting of one note of the training
data set. Accuracy error rates are reported in Table 1, both
for the 11-fold CV (‘Tr/Val’ rows) and for the final training
and test error rates (‘Tr/Tst’).

We can first see that 11-fold validation accuracies are
much higher than those achieved in the test data set. The
fact that both the classifiers based on MFCCs and HR de-
grade significantly outside the training octave, indicates that
both models fail when moving very far away from the training
interval. Note however, that not only MFCCs based classifier
always get better accuracy rates, but also their degradation
with respect to validation rates is much lower (about 50 %
in comparison to 25 % or even less for the classifiers work-
ing on HR). The best performance of MFCCs is also clear
when looking at the test confusion matrices that are obtained
when using the two sets of features (Fig. 4). Therefore, we
can conclude that the constant envelope model is a useful ap-
proximation to the real behavior of the spectrum of musical
instruments, and that MFCCs should be preferred to HR for
instrument modelling.

Finally, it is also worth pointing out the consensus be-
tween the performance trends shown by MLP and rKOPLS
networks, showing that our conclusions are indeed due to the
spectral features that are used to feed the classifiers.

4.3. Complete pitch range training

For this experiment the training and test span the whole pitch
range of each instrument, with every second note in each set.
In this way, we will be able to study the recognition rates that
can be achieved from both MFCCs and HRs, if the classifiers
are provided with information covering a pitch range as wide
as possible. In this case, the training set is divided into 5
folds for validation purposes, each fold taking one out of each
5 notes.

Results for this experiment are displayed in Table 2. Com-
pared to the results of the previous setup, test recognition

MFCCs HR

MLP Tr/Val 87.4 / 70.7 52.2 / 29.7
Tr/Tst 86.1 / 74.7 50.2 / 38.0

rKOPLS Tr/Val 89.4 / 73.2 63.3 / 32.4
Tr/Tst 84.4 / 75.9 60.7 / 41.2

Table 2. Accuracy rates achieved when the training and test
data sets are formed with alternating notes.

rates are significantly better, specially when the MFCCs are
used, achieving 75.9 % recognition rate in combination with
the rKOPLS classifier, whose performance is slightly better
than that of the MLP network. In relation to previous pub-
lished studies (see, for instance, [4]) the results in Table 2
look quite competitive, although a direct comparison is not
possible given the differences in the nature of the data sets
and the experimental settings.

In the light of these results one can conclude that MFCCs
are preferable to HR features not only for instrument mod-
elling, but also for automatic classification systems. It also
seems clear that, to obtain a classifier of high performance,
the training data should include data spanning a pitch range
as wide as possible.

5. CONCLUSION

In this paper we have analyzed the spectral structure of mu-
sical instruments. Two different models about the behavior
of the spectrum of instruments when playing different notes
and their associated feature representations, MFCCs and HR,
are revised. Experiments on a rather large data base of real
instruments have shown that MFCCs should be preferred to
HR, both for musical instrument modelling and for automatic
instrument classification.

6. REFERENCES

[1] J. Arenas-García, K.B. Petersen, L.K. Hansen, “Sparse
Kernel Orthonormalized PLS for feature extraction in
large data sets,” to appear in NIPS, 2006.

[2] C.M. Bishop, Neural networks for pattern recognition,
Oxford University Press, 2004.

[3] J. Cid-Sueiro, A.R. Figueiras-Vidal, “On the Structure
of Strict Sense Bayesian Cost Functions and its Applica-
tions,” IEEE Trans. Neural Networks, Vol. 12, pp. 445–
455, 2001.

[4] S. Essid, G. Richard, B. David, “Hierarchical Classifi-
cation of Musical Instruments on Solo Recordings,” in
ICASSP’06, vol. V, pp. 817–820, 2006.

[5] L. Fritts, “Musical Instrument Samples,” http://
theremin.music.uiowa.edu, The University of Iowa.

[6] K.D. Martin, “Sound-Source Recognition: A Theory and
Computational Model,” Ph.D. thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 1999.

[7] A.B. Nielsen, “Pitch Based Sound Classification,” M.S.
thesis, IMM, The Technical University of Denmark, 2005.

[8] Y.-G. Zhang, C.-S. Zhang, “Separation of Music Signals
by Harmonic Structure Modeling,” in Advances in Neural
Information Processing Systems 18, pp. 1619–1626, 2005.

II  488

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 09:19 from IEEE Xplore.  Restrictions apply. 


