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Fundamental Design of a Distributed Erbium-Doped 
Fiber Amplifier for Long-Distance Transmission 

Karsten Rottwitt, Anders Bjarklev, Jorn Hedegaard Povlsen, Ole Lumholt, and Thomas P. Rasmussen 

Abstruct- Comprehensive theoretical analysis on the design 
of a distributed erbium doped fiber amplifier for long-distance 
transmission has been carried out, using a highly accurate model. 
The dispersion of the optical fiber as a function of the numerical 
aperture and the cutoff wavelength is included. Designs based on 
a bidirectional pumping scheme are evaluated, taking nonlinear- 
ities into account. The optimum value of the numerical aperture 
will be evaluated for cutoff wavelengths where the propagating 
pumppower is single moded. For distances between each pumping 
station in the region between 10 and 100 km, the optimum ratio of 
CO- and counterpropagating pump power will also be evaluated. 

I.  INTRODUCTION 
ECENTLY distributed erbium-doped fiber amplifiers R (EDFA’s) have attracted large attention, both for bus 

networks with uniformly distributed gain [l], and as a 
promising transmission medium for high bitrate optical pulses 
over ultra-long distances [2]. For both applications it is the 
low generation of amplified spontaneous emission (ASE) 
that is the attractive property. The ability of limiting the 
energy fluctuation along the transmission line is advantageous 
through the use of distributed amplifiers compared to lumped 
gain systems. The focus of designing distributed EDFA’s is 
therefore different from achieving gain-coefficient effective 
active fibers for lumped gain amplifiers, thus we will show 
the special aspects of optimization of distributed EDFA’s. The 
optimum fiber design parameters will be demonstrated, taking 
into account that the fiber dispersion varies with the numerical 
aperture of the optical fiber. Special attention is given to the 
question of how to choose the best ratio between CO- and 
counterpropagating pump power. 

The analysis is based on an experimentally verified and 
highly accurate model for the EDFA [3], which takes the 
detailed spectrum of forward and backward travelling ASE 
into account. Model inputs are the experimentally determined 
wavelength dependent absorption and emission cross sections 
for a GeEr fiber [4] as well as the intrinsic loss. Considering 
the pump wavelength, it has been demonstrated that the 
1.48-pm pump wavelength for the distributed EDFA is more 
efficient compared to the 0.98-pm pumping band, due to the 
low intrinsic losses at 1.48 pm, even though this results in 
increased noise [5]. For all the following analysis we have 
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chosen to use this pumping band, and a fixed pump power 
of 100 mW. Furthermore we have used a signal wavelength 
equal to 1.535 pm, where the EDFA has a peak in its emission 
cross-section spectrum. 

11. THEORY 

For transmission systems based on lumped gain taking the 
nonlinear Kerr effect into account the dispersion is an essential 
parameter. For ultra-long transmission it is the mean dispersion 
of the transmission line that is important when the repeater 
length is shorter than the dispersion length. The dispersion 
length is the distance where the pulsewidth is 21’2 times the 
initial pulsewidth, when the nonlinear Kerr effect is neglected. 
This length is given by the fiber dispersion and the pulsewidth 
of the optical pulse [6]. Therefore in a system employing 
lumped gain the amplifier dispersion may be negative without 
influencing the system performance, as long as the mean 
dispersion is positive, when the nonlinear Kerr effect is used to 
form optical solitary pulses. In a transmission system based on 
distributed gain the mean dispersion is equal to the dispersion 
of one distributed EDFA. Therefore it is essential to look 
at the dispersion of each distributed EDFA. As a first-order 
approximation we assume that the dispersion of the fiber 
is calculated using the usual theory for passive fibers and 
neglecting the influence on the refractive-index profile from 
the nonlinear refractive index. The total fiber dispersion is 
computed using an accurate model for propagation of electrical 
fields in an optical fiber [7]. The effective core area which is 
essential for the pulse power and thus the timing jitter [8], are 
evaluated from the same model, by use of the relation 

~ ( T , O )  is the modal distribution of the fundamental fiber 
modefield and A is the cross section of the fiber, where ( T ;  0) 
are polar coordinates [9]. The A,R is only dependent on the 
index profile of the fiber, that is the numerical aperture and 
the coreradius, as this defines the modal field distribution. 
Thus the A,E is calculated without influence of any of the 
design parameters concerning the erbium dopant profile. For 
an ideal transmission line the gain coefficient is at a constant 
level which is equal to one. In a real transmission line either 
based on lumped gain or distributed gain, the gain varies along 
the transmission line, and ASE power is accumulated. The 
gain variation along the transmission line is described by the 
relative gain, y(z), and results in pulse power fluctuations as a 
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function of the length coordinate z. The fidelity of a distributed 
fiber is evaluated on the basis of the main errors, which affect 
the transmission system. These are fluctuations of the detected 
pulse power and uncertainty in the pulse arrival times [IO]. 

For ultra-long pulse transmission over several distributed 
amplifiers, we define the distance between two pumping sta- 
tions as the amplificatioo period. When the total transmission 
length is much larger than the distance of one amplifica- 
tion period, the signal to noise ratio after each distributed 
EDFA is calculated according to values for the signal and 
noise power levels after the amplifier. For distributed ampli- 
fication two boundary cases exist, copropagating pump and 
signal and counterpropagating pump and signal. Between these 
cases, the fraction of the two pumppowers may be varied 
continuously. Considering the case of only copropagating 
pump and signal the power level of both signal and noise 
is increased in the beginning of the amplification period and 
attenuated in the end of the amplification period. Therefore 
the mean power level along the transmission line is higher 
than the initial power level for both the signal and noise 
power. For the counter propagating pump and signal the 
situation is reversed. In this situation the power level of both 
signal and noise is attenuated in the beginning of the ampli- 
fication period and increased in the end of the amplification 
period. Hence, in this situation the power level is lower than 
the initial power level for both the signal and noise power. In 
order to take advantage of the nonlinear Kerr effect to form 
solitary pulses, the mean energy along the transmission line in 
a signal given by a first-order soliton is [6] 

D is the fiber dispersion, 7 the pulsewidth at half maximum 
intensity, X is the signal wavelength, A e ~  is the effective core 
area, c is the velocity of the light, and nke is the nonlinear Kerr 
coefficient. Assuming that the dispersion length is much larger 
than the amplification period the power level for both signal 
and noise at point z along the transmission line is expressed 
as in [6] 

P ( z )  = Po . exp ( iz y(z) dz ) . (3) 

For distributed EDFA's it must be noted that 

apiL y(z) dz = 1. (4) 

Where L is the amplification period. From (3) we see that the 
path average power is given by 

From this 

( E )  = E, . R,. (6) 

Where E, is the signal energy in the beginning of the 
amplification period. Considering the distributed amplifier as 

~ 
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a discrete amplifier in the overall transmission line the noise 
energy in the signal mode, after each amplification period is 

E = 6 .  h . V, (7) 

where 6 is the number of photons in the signalmode generated 
by amplified spontaneous emission, and h . U ,  is the photon 
energy at the signal frequency us. After N = L,,,/L numbers 
of amplification periods the noise energy in the signal mode is 

E = Ltot . QASE . h . ~ , / 2  (8) 

where ~ A S E  is related to the noise figure through ~ A S E  = 
2 6 / L  = ( F  - l)/L. The factor of 2 arises as the generated 
ASE photons are equally divided in the two orthogonal polar- 
izations of the fiber. Assuming that the detector consists of an 
optical filter of bandwidth Bo followed by a fotodetector and 
an integrator the energy within one timeslot AT is measured 
[IO]. The number of communication channels of which the 
receiver is sensitive M is then M = K .  Bo. AT, where K = 1 
if the detector is sensitive to one polarization and K = 2 if 
the detector is sensitive to two polarizations. In Appendix A 
we show that the electrical signal to noise ratio for a mark in 
a digital signal is 

(9) 
S E, + 2M& - (E(1)) + 2 M E .  R, 

- - - 
N -  2E 2 s .  R, 

where E, is the signal energy in a mark in the beginning 
of an amplification period defined by (6). From the above 
description evidently the product ~ A S E  . R, is an essential 
figure. The distributed amplifier is optimally designed with 
respect to influence of the noise, by minimizing the product 
~ A S E  . R,. The factor QASE is as mentioned the number of 
generated ASE photons pr. Hertz, pr. second and pr. unit length 
of the amplifier. 

The mean number of photons (n) along the transmission 
line is related to the material parameters through the following 
differential equation as shown in Appendix A 

= g . (n) + a,  d(n) 
dz 

where g = ae - a, - ai [12]. a,  and a,  are the emission 
and absorption factors determined from the emission and 
absorption cross sections, respectively [12], 0; is the normal 
fiber attenuation constant, representing absorption. For an ideal 
transmission line g = 0, that is a ,  = a,  + a;, in the case 
of fully inversion furthermore a, = 0. Pumping at 1.48 pm 
fully inversion is impossible. Assuming that the emission and 
absorption cross section are equal at the signal wavelength 
1.535 pm, and that 70% of fully inversion is achieved we 
obtain a,  = a; . 1.74. With this (10) results in the equation 

(n)  = a e .  L (11) 

where L is the length of the considered fiber. In this ideal case 
the generated number of ASE photons pr. Hertz, pr. second 
and pr. unit length are equal to a; . 1.74. This implies the 
inequality 
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Fig. 1. (a) The total fiber dispersion and (b) the effective core area, both 
calculated for a step index profile as a function of the LPll cutoff wavelength 
with the numerical aperture of the fiber as parameter. 

For a fiber with 0.23 dB/km loss a; is equal to 52.96 . 
l o p 3  km-', and thus cy, . 1.74 = 92.31 . lW3 cm-I equal 
to 0.4 dB/km. 

Besides the noise power error, another major error source 
is timing jitter. This error occurs when spectral noise is added 
to the signal, resulting in fluctuations of the group velocity of 
a transmitted pulse train, which results in timing jitter, often 
denoted as the Gordon Haus effect [8]. In Appendix B we 
derive an expression for the variance for the arrival time of 
a pulse in accordance to the above theory for noise 
and energy fluctuation. In agreement with [ 101 the variance is 
calculated to be 

In Appendix B we have shown that the timing jitter reduces 
with increasing signal power and decreasing noise power. 
Equation (2) shows that the higher A,tf the higher signal 
power level is required to support soliton operation. Thus 
from this point of view fibers with high A,R are desirable. 
An increasing A,ff may be achieved by reducing the cutoff 
wavelength for a fixed NA according to Fig. l(b). However 
this results in a reduced dispersion that for NA higher than 0.15 
is negative. For soliton operation a positive mean dispersion 
is necessary for transmission of optical solitary pulses [6]. In 
lumped gain systems the mean dispersion is the average of the 
dispersion in the passive fiber section and the following active 
fiber section. Therefore in lumped gain systems the restrictions 
to NA, cutoff wavelength and A,R are not as important as in 
distributed active fibers. Thus we emphasize that timing jitter 
is reduced by reducing the noise power relative to the signal 
power level, but in a transmission line based on distributed 
amplification at the same time it is a necessity to assure a 
positive mean dispersion. 

111. RESULTS 

Computing the dispersion for a fiber with a step-index 
profile as a function of the cutoff wavelength for the LPll 
mode and with the numerical aperture (NA) as parameter 
the results in Fig. l(a) are achieved. Fig. l(b) shows the 

effective core area, for the same refractive-index profiles, 
calculated by integration of the electrical field in the fiber, 
as described earlier. From Fig. l(a) it is clear that NA has 
to be kept below 0.3 to assure positive dispersion, when the 
cutoff wavelength has to be low enough to ensure that the 
fiber is operated with a single pump mode. For NA equal 
to 0.2 the dispersion change from positive to negative values 
for cutoff wavelengths lower than 1.16 pm. Having NA equal 
to 0.1 the dispersion is positive for any cutoff wavelength. 
The curves show a minimum dispersion between 700 and 
800 nm where the waveguide dispersion is most pronounced. 
For any fixed value of the numerical aperture the total fiber 
dispersion is dominated by the material dispersion for small 
values of the cutoff wavelength, as the electrical field in 
this situation is poor guided. For large values of the cutoff 
wavelength the electrical field is broadened, hence again the 
total fiber dispersion is dominated by the material dispersion. 
In the region between these two boundary cases the waveguide 
dispersion is influencing and therefore an extremum is formed. 

The effective core area decreases with increasing numerical 
aperture. This is due to the guiding properties of the high 
refractive index obtained in the fiber core, the higher index 
difference and hence the higher numerical aperture, the better 
guiding property and therefore the lower effective core area. 
For the various values of cutoff wavelength, there exist a 
minimum effective core area near cutoff wavelengths equal 
to 1 pm. For small cutoff wavelengths, the electrical field 
is poor guided, hence a large A,R. For larger values of the 
cutoff wavelengths, the electrical field becomes well guided 
and therefore A,R is decreased. For even larger cutoff wave- 
lengths the electrical field is broadened and therefore A,ff is 
increased. 

As described previously the product a . 4 ~ ~  . R, is an im- 
portant figure, when the two system errors, noise power error 
and timing jitter, are considered. Calculation of this product 
with the numerical aperture and the cutoff wavelength as 
parameter gives the results shown in Fig. 2. This figure is 
calculated for a 100-km-long distributed EDFA with equal 
backward and forward propagating pump. The confinement 
factor, defined as the erbium dopant radius relative to the 
fiber core radius, is equal to 0.8. Even though these values 
have been fixed, further calculations have shown that Fig. 2 is 
qualitative valid for other values of the above parameters. The 
solid curve represents the zero dispersion limit. Above this 
limit the total fiber dispersion is positive, where it is negative 
below. The figure clearly demonstrates that the optimum fiber 
is achieved, using as high numerical aperture as possible, but 
at the same time in the region where the total fiber dispersion 
is positive. An important issue is however that the background 
loss increases with increasing NA due to the introduced stress, 
that occurs when the refractive index difference between core 
and cladding is large. Further calculations have shown that 
both the necessary pump power for transparency and the 
noise figure, and therefore also ~ A S E  increases with increasing 
background loss. For a pump power of 100 mW it is found 
that the noise figure changes from 13 to 14 dB when the 
background loss is changed from 0.23 to 0.26 dB/km for a 
signal wavelength of 1.554 pm [15]. 
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Fig. 2. The U A S E  . R, product as a function of the LPll cutoff wavelength 
for different values of the numerical aperture. The total fiber dispersion is 
negative in the gray area. 
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Fig. 3. The OASE . R,  product as a function of the backward propagating 
pumppower relative to the fonvard propagating pumppower, for three different 
fiberlengths. 

In a long transmission line consisting of cascade coupled 
distributed EDFA’s it is as mentioned earlier essential to 
maintain a small and positive dispersion for propagation of 
solitary pulses. Therefore we have for the following discussion 
chosen to use a fiber with the numerical aperture equal 
to 0.2 and the cutoff wavelength equal to 1.22 pm and a 
backgroundloss of 0.23 dB/km. According to Fig. l(a) and (b) 
this gives a total dispersion equal to 3.2 ps/(nm . km) and an 
effective core area equal to 27.7 (pm)’. The total ASE power 
copropagating with the signal was in all the simulations in the 
order of magnitude of 10V6 W which is far from the saturation 
level. This fiber gives as shown in Fig. 2 an CEASE. R, product 
equal to 0.29 km-’ for 50-mW pump power copropagating as 
well as counterpropagating with the signal. Fig. 3 shows the 
MASE . R, product as a function of the ratio between forward 
and backward propagating pump, for different lengths of the 
distributed EDFA. From (5) and (12) it is seen that the product 
MASE . R, is different using backward and forward pumping 
respectively and lowest for the shortest fiber. 
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Fig. 4. OASE and R, as functions of the backward propagating pumppower 
relative to the fonvard propagating pumppower in a 50-km-long fiber with 
NA= 0.2 and cutoff wavelength equal to 1.22 pm. 

Generally it is obvious that the lowest CXASE . R, product 
is achieved for the shortest length of fiber, it is also worth 
noting that the curves show a minimum near an equal ratio 
between backward and forward propagating pump. The precise 
minimum is located for backward propagating pumppowers a 
little higher than the forward propagating pumppower. The 
displacement from an equal ratio is though negligible, there- 
fore we conclude that the optimum pumping scheme is equally 
pumping of the fiber from both ends. The curves are not sym- 
metric, they show an advantage in 100% counterpropagating 
pump and signal compared to 100% copropagating pump and 
signal. This is explained by the two factors represented in 
the CXASE . R, product. The coefficient R, which expresses 
the mean power level deviation from the initial power level 
is larger than one for the copropagating pump and less than 
one for the counterpropagating pump. This is shown in Fig. 4, 
which shows the factors R, and C ~ A S E  as a function of the 
ratio between forward and backward propagating pump. The 
used fiberlength for this figure is 50 km, with a numerical 
aperture for the fiber equal to 0.2 and a cutoff wavelength 
equal to 1.22 pm. The curve is not symmetric around R, = 1, 
which is due to the accumulated relative gain, that is described 
by an exponentially relation. The accumulated relative gain 
is a function that begins and ends at zero, but is positive 
for the copropagating pumping scheme, and negative for the 
counterpropagating pump. Averaging the accumulated gain 
over one amplification period, as in (9, which has the accumu- 
lated relative gain as argument results in a factor R, greater 
than one for copropagating pump and less than one for the 
counter propagating pump. The deviation from one is largest 
in the copropagating pumping scheme, as the argument to the 
accumulated gain is a positive function along the distributed 
EDFA. 

The coefficient ~ . . z s E ,  which is the number of generated 
ASE photons pr. unit length, is also shown in Fig. 4. ~ A S E  

has the lowest values in the copropagating pumping scheme. 
This is explained considering the distributed fiber as a series 
of discrete amplifiers. The noise figure for each discrete 
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amplifier is F, = (n,, + l ) /Gn ,  where n, is the number 
of ASE photons generated in the n’th amplifier which has 
gain G,. Considering a distributed fiber having backward 
propagating pump, the gain in a discrete fiber G, figurative in 
the beginning of the distributed fiber is less than one, therefore 
the noise figure is determined by G,. For a copropagating 
pumping scheme the gain of a discrete fiber in the beginning 
of the distributed fiber is larger than one. The noise figure 
is therefore determined by both nm and G,, and hereby less 
than in the counterpropagating situation. Looking at the total 
distributed fiber the overall noise figure is higher than a noise 
figure in any infinitesimal part of the fiber. The noise in a 
forward pumped distributed fiber is therefore lower than in 
a backward pumped distributed fiber. Fundamentally QIASE is 
above the limit given by ai . 1.74 = 92.31 . km-’ as 
mentioned previously. 

The performance of an ultra long transmission line may 
be evaluated according to (9) and (13) for the noise power 
error as well as the timing jitter both represented through 
bit error rates (BER’s). As an example of a 9000-km-long 
transmission system based on distributed amplification without 
any ASE or timing jitter reducing components, we consider 
two systems both operating with a cascade coupling of 90 
similar fibers. We have chosen the fiber used in Fig. 3, having 
a numerical aperture equal to 0.2 and a cutoff wavelength 
equal to 1.22 pm. The dispersion is 3.2 ps/(nm. km) and 
the effective core area is 27.7 (pm)2. The mean signal power 
level in the calculations is 0.1 mW, and the signal wavelength 
is equal to 1.535 pm. System one operates with a timeslot 
1/B = 5 . T ,  where B is the bitrate and r the pulse width 
at half maximum intensity, and system two operates with a 
timeslot 1/B = 10 .  T .  A fixed signal power level result in the 
bitrates 2.6 and 1.8 Gb/s, respectively. The chosen parameters 
for the two systems assure that the amplification length is 
much smaller than the dispersion length, in order to assure 
stable soliton transmission [14]. The noise power error ratio 
is transformed to BER by assuming Gaussian distribution of 
the detected energy as specified in Appendix A. The mean 
and variance of the total energy in a bitperiod for a space 
are both equal to M in (9) as shown in Appendix A. For a 
mark the mean and variance of the signal energy relative to 
the noise energy 5’1, are S1 + M and 2S1 respectively, where 
5’1 is calculated through (9) as described in Appendix A. BER 
from timing jitter is calculated assuming that the arrival time 
of a pulse follows a Gaussian distribution where the variance 
is given in (13). Fig. 5(a) and (b) shows BER’s from timing 
jitter and the noise power error versus the product of (YASE 

and R,. For the noise power error BER’s are shown for three 
different values of M .  We conclude from this figures that 
for both the l.S-Gb/s system in Fig. 5(a) and the 2.6-Gb/s 
system in Fig. 5(b) the BER is limited by timing jitter for any 
value of (Y.~SE . R,. This implies that the timing jitter is the 
essential parameter, and for BER less than we have 
to ensure that a . 4 ~ ~  . R, is less than 0.3 for the 2.6-Gb/s 
system and less than 0.45 for the l.S-Gb/s system. Looking 
at Fig. 2 and Fig. 3 we see that 0 . 4 ~ ~  . R, may be reduced 
either by using a fiber with a high NA and hence a high 
cutoff wavelength or by reducing the spacing between two 
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(a) (b) 

Fig. 5.  The BER for (a) a 1.8-Gbls and (b) a 2.6-Gb/s system, with the 
CXASE . R,  product as parameter. 

pumpstations. The two systems we have investigated had an 
~ A S E  . R, product equal to 0.3 for 100 km spacing between 
each pumpstation and equal to 0.2 for 10-km spacing. Fig. 2 
shows that ~ A S E  . R, may be reduced to lower than 0.22 for 
NA = 0.3 and a spacing between the pumpstations between 
50 and 100 km. It is though very important to notice, that the 
above examples have a ratio r / D  equal to 24 (nm km) and 
17 (nm . km). In [lo] it is shown, for lumped gain systems, 
that the timing jitter is the limiting phenomena for both these 
ratios. In future work it is therefore important to investigate the 
fraction r / D  for distributed fibers in ultra-long transmission 
lines. 

IV. CONCLUSION 

Different design parameters and 1.48-pm pumping schemes 
for a distributed EDFA are investigated. The evaluation is 
performed by inclusion of noise properties. From our analysis 
we conclude that the optimum distributed EDFA is achieved 
using an index profile with as large index difference as 
possible. An optimum value of the numerical aperture exists 
where the cutoff wavelength is adjusted to give a positive total 
fiber dispersion. For cutoff wavelengths where the pumppower 
is single moded the optimum numerical aperture is close 
to 0.3 with the cutoff wavelength in the range from 1.45 
to 1.48 pm. The optimum pumping scheme is bidirectional 
pumping with equal CO- and counterpropagating pump. Using a 
distributed EDFA with only one pump, the counterpropagating 
pump configuration is most advantageous. The ASE level 
in all our analysis is found to be below saturation level of 
the EDFA even after 9000-km transmission. As a system 
example a 9000-km-long transmission line is studied using 
a fiber with NA equal to 0.2, a cutoff wavelength equal 
to 1.22 pm, which results in a total fiber dispersion D = 
3.2 ps/(nm.km) and an effective core area equal to 27.7 

at the signal wavelength equal to 1.535 pm. Timing 
jitter is found to be the most critical noise contribution. 
However 2.6 Gb/s error free transmission over 9000 km is 
though simulated with a spacing between two pumping stations 
equals to 100 km. 
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APPENDIX A 
DERIVATION OF (9) FOR THE SIGNAL TO NOISE 

RATIO OF A MARK IN A DIGITAL SYSTEM 

Both the signal and the noise energy varies along the 
transmission line. Thus we emphasize that in this appendix it is 
the energy in the beginning of an amplification period that has 
to be inserted in all expressions which include energy terms. 
From [11] we adopt (A.la) and (A.lb) for the mean number 
of photons pr. mode (photons pr. sec. pr. Hz.) propagating in 
the direction z. The total number of photons at the receiver are 
described by an addition of n,9 photons emitted from the signal 
source propagating in the signal mode and 6 photons emitted 
due to spontaneous emission (ASE) propagating in the signal 
mode and M - 1  other modes when the receiver is sensitive to 
M modes. 

Ya - ai) (A. lb) 

where ye and are the emission and absorption factors of 
the erbium doped fiber [12] and ai the intrinsic attenuation 
constant. (6) is the mean number of noise photons in one 
mode and (n)  is the mean number of signal photons in the 
signal mode. Equation (A.la) is valid for the ASE photons in 
bf modes, whereas (A.lb) only is valid for the signal photons. 
From (A.lb) the gain is calculated as 

) G = e m  ( l;=o (re - Ya - ai) dz’. (A.2) 

The second moment of the ASE photon number propagating in 
the M-1 modes is given in (A.3a), whereas the second moment 
of the signal and ASE photons propagating in the signal mode 
is given by (A.3b) 

d ( i i 2 )  - - 2(fi2)(rc - Ya - ai) + (6)(3re + Y a  + a,) + Y e  dz 
(A.3a) 

+ ((n.9 + 6 ) ’ ) ( 3 7 e  + Ya + + Y e .  

(A.3b) 

Combining (A.1a) and (A.1b) with (A.3a) and (A.3b), respec- 
tively, M equations for the variance of the photon number 
71’ = (n’) - ( T L ) ~  are achieved, all with the same form as 
(A.4). 

- dv - d z  - 2(7l)(YP - Yo - U , )  + (n,)(Ye + Ya + ni) + Y P .  

(A.4) 

Thus in (A.4) n = n, + 6 in the signal mode and in the 
M-1 other modes n = n. In the signal mode (A.4) have 
the boundary conditions (n)lz=o = no and ~I,=o = no, as 
we assume that the signal source is coherent. In the M-1 

other modes the boundary conditions are (n)lz=o = 0 and 
i~ l ,=o = 0. A general solution to (A.4) may be written in the 
form 

Inserting 

Hence 

(W - h 

h(n) = n2 + n. (‘4.5) 

AS)  into (A.4) gives 

Applying (A.2), (A.7) reduces to (v - h )  = (v - h)l,,o . G2. 
Using the boundary conditions, the variance at the point of 
detection z in the signal mode is given by 

v0 = (n ,  + f i )2  + (n, + f i )  - G2ng (A.8a) 

and in the other M-1 mode 

71i = fi? + n. (A.8b) 

The mean number of photons at the point of detection z is 

(.) = 72, + M 6  (A.9) 

where n, = G . no. In a real receiver always more than just 
the signal mode is received. The number of signal modes to 
which the receiver is sensitive is M = KBoAT, where Bo 
is the detector bandwidth and AT the timeconstant of the 
integrator in the detector [lo], and K = 1 if the detector 
is sensitive to one polarization and K = 2 if the detector 
is sensitive to two polarizations. In agreement with [ l l ] ,  the 
variance of the detected signal is then from (A.8a) and (A.8b) 

(A. 10) 

assuming that the variance is equal over the total mode span 
defined by M ,  (A.lO) takes the form 

v = ~ ( f i , ’  + 6) + 2n,6 + n, (A. 11) 

where it has been used that n, = G . no. The terms in (A.ll)  
represent spontaneous-spontaneous beat noise, spontaneous 
shot noise, signal-spontaneous beat noise and signal shot noise. 
Due to the assumption of a coherent signal source the excess 
noise is not seen in (A.11). 

In a digital signal represented by marks and spaces, where 
a space is achieved by emitting no photons within one bit 
period, the variance for a mark is given as in (A.ll), whereas 
the variance in a space is given by 

T/; = M(62 + .). (A.12) 

The electrical signal to noise ratio is defined as 

s - (4’ - -  - 
N V 

(A. 13) 

where (n)  is the mean number of photons at the detector and 
V the variance of the photons at the detector. Assuming that 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 06:12 from IEEE Xplore.  Restrictions apply. 



1550 JOURNAL OF LIGHTWAVE TECHNOLOGY. VOL. 10, NO. 11, NOVEMBER 1992 

2n,fi >> n, + Mfi( f i  + 1) the variance and mean, in presence 
of a mark, for the detected photons are 

V = 2n,ii (A.14a) 

n = n, + Mfi .  (A.14b) 

The above assumption that the signal-spontaneous noise power 
is dominating, is realistic for large signal powers as here where 
we are transmitting solitons. 

In presence of a space the variance and mean of the detected 
photons are under the assumption fi >> 1 

V = Mfi2  (A.15a) 

n = Mfi .  (A. 1 5 b) 

The detected number of photons are related to a detected 
energy through 

E, = n,hu, (A.16a) 

E = nhu, (A.16b) 

where (A.16a) represent the signal energy and (A.16b) the 
noise energy, hu, is the photon energy at the optical signal 
frequency u3. Equation (A.16a) is valid for the signal energy 
propagating in the signal mode and (A.16b) is valid for 
the ASE energy propagating in the A4 modes. In a digital 
signal the signal-spontaneous noise power is dominating when 
transmitting a mark, thus the variance and mean value of the 
received energy for a mark is 

(E(1)’) - 2E,9E (A.17a) 

(E(1)) = E, + M E .  (A.17b) 

Thus the electrical signal to noise ratio for a mark is 

S - E, + 2ME - 
N -  2E . 

(A.18) 

Introducing the signal energy in a mark relative to the noise 
energy through SI 

E(1) s1 = - E 
(A.17a) and (A.17b) reduces to 

1 
E2 

(s1”) = ( E (  1)’) 7 = 2s1 

(A.19) 

(A.20a) 

1 
E 

(5’1) = (E(1))x = Si + M .  (A.20b) 

For a space the variance and mean value of the received energy 
is 

(E(0 )2 )  N M E 2  (A.21a) 

(E(0)) = M E .  (A.21b) 

Introducing the signal energy in a space relative to the noise 
energy through SO 

(A.2 

If th 

so = - E(O) (A.22) 
E 

a) and (A.21b) reduces to 

(Si) = M (A.23a) 

(So) = M .  (A.23b) 

noise follows a Gaussian distribution the bit error rate 
is given by [13] 

1 e+%) 
BER= ~ (A.24) 

& Q  
where the argument Q to the error function is 

JS-J= ,/--ME 

‘= J=+ J== m+m. 
(A.25) 

Which reduces to 

(A.26) Q =  V z % + “  S1 

As emphasized previously S1 is the signal energy relative to 
the noise energy in the beginning of an amplification period. 
The path average signal energy identical to the soliton energy 
relative to the signal energy in the beginning of an amplifier 
period is given by R, according to (6) in the main text. Thus 
when ( E )  is the path average signal energy S1 is a function 
of CYASE and R, through the relation 

(A.27) 

where Ltot is the total transmission length. Equation (A.24) 
gives a bit error rate of 10-l’ for Q = 7. That is for M = 1, 
the signal energy has to be more than 112 times the noise 
energy, whereas for M = 2 the signal energy relative to the 
noise energy has to exceed 117 when a bit error rate lower 
than 10-l’ is desirable. 

APPENDIX B 
DERIVATION OF (13) FOR CALCULATION OF TIMING 

JITTER IN THE ARRIVAL TIME OF A PULSE 

The arrival time of a pulse is defined as the mean time of 
the pulse at the point of detection. Thus when the arrival time 
exhibits a stochastic behavior due to noise, both the average 
and variance of the pulse arrival time may be calculated. 
We consider an envelope pulse propagating in the fiber with 
the group velocity vg. Changing to a retarded time variable 
( t  - z/vg- > t ) ,  the mean time ( t )  of an envelope pulse p(t) 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 06:12 from IEEE Xplore.  Restrictions apply. 



in this frame, moving with the group velocity, propagating 
from z = 0 to z is to a first-order approximation given as 

With CO = ~ Z " ( E A S E / B ) " ~  from (B.7) 6t is found by 
inserting (B.6) in (B.5). This gives S t  the following form: 

where the first-order derivative of ( t )  with respect to the 
propagation coordinate z is 

d 1 
i - ( t )  = ~ az S c p c p * d t  ( J ~ * t ( G ) d t  

+ J' (-2 g )  *tcp d t )  . (B.2) 

In (B.2) and in the remaining of this appendix integration 
is performed from -cc to +cc. In a nonlinear transmission 
line the governing equation for pulse propagation is the 
nonlinear Schrodinger equation [6]. Thus if ,BL is the second- 
order derivative of the propagation constant with respect to 
the angular frequency w and includes the nonlinear Kerr 
coefficient, the Schrodinger equation is written as 

By insertion of (B.3) in (B.2) we achieve 

i - ( t )  d z  a = ~ Scpcp*dt 1 (f.J[cpg - c p *  31 at d t ) .  

Writing the pulse as an addition of a soliton cps and a 
perturbating signal Scp, the mean time at z given by (B.l) 
is rewritten as 

+ 2Real[ / 6p* ( t  + zP:i $ ) ps d t ]  ) . (B.5) 

The first integral on the right-hand side represents the initial 
soliton mean time and frequency which equals zero. The 
second integral originates from the perturbating signal 6cp and 
is a scalar product of two functions Scp and (t + zpiza/dt)cp, ,  
respectively. When describing 6p by an orthogonal set of 
functions the only contribution to the integral must satisfy the 
restriction in (B.6) given by 

where CO is related to the noise energy in the signal mode. 
Other contributions from the orthogonal set of functions de- 
scribing 6cp vanishes in the integral. The perturbation Sv is 
related to the noise energy in the signal mode, EASE by 

Where B is given by 
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z ,  = nz, where z ,  is the separation between two amplifiers, 

In (B.8) we recognize the initial angular frequency and time 
root mean square (RMS) pulse widths WRMS and TRMS in the 
terms 

2 *  

- c p s  d t  = wiMs - J' cpv; d t  (B.lOa) 

The average value of (B.9) equals zero whereas the variance 
of (B.9) is the Gordon-Haus variance, written as 

The last term in (B.ll)  is recognized as chirp in the pulse. 
In (B. l l )  both the mean noise power PASE, resulting from 
amplified spontaneous emission (ASE) and mean signal power 
PSIG after an amplifier occurs through 

where EASE and ESIG is the noise and signal energy in the sig- 
nal mode. Thus the variance in the arrival time given by (B. l l )  
is minimized by maximizing the signal power and minimizing 
the noise power, Equation (B.11) is valid for any pulse shape 
and therefore more general than the normal Gordon-Haus 
variance [8]. In long-distance transmission systems the term 
originating from w i M s  in (B.ll) is dominating due to the z 2  
dependency. Thus (B.11) approximates to 

For solitary pulses with r as the pulse width at half maximum 
intensity, the mean signal energy ESIG after an amplifier and 
the RMS angular frequency pulse width WRMS is expressed as 

(B.14a) 

(B. 14b) 

where Psol is the peak power of a first-order soliton and R, 
is the factor that relates the path average signal power to the 
signal power launched to the transmission line. Thus the total 
variance in the arrival time after N amplifiers is achieved by 
adding the contribution from each amplifier located at position 
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here in case of distributed amplification the amplification 
period, each with gain G and noise figure F .  This gives 

[12] B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, 
“The design of erbium-doped fiber amplifiers,” J .  Lightwave Technol., 

[13) N. A. Olsson, “Lightwave systems with optical amplifiers,” J.  Lightwave 
TechnoZ., vol. 7, no. 7, pp. 1071-1082, 1989. 

[ 141 L. F. Mollenauer, J. P. Gordon, and M. N. Islam, “Soliton propagation in 
long fibers with periodically compensated loss,” J .  Quantum Electron., 
vol. QE-22 no 1 pp. 157-173, 1986. 

[15] K. Rottwit;, et bl.: “Detailed analysis of distributed erbium doped fibre 
amplifiers,” accepted for presentation at Optical Amplifiers and their 

vol. 9, pp. 1105-1112, 1991. 

DX2 4 

. (In(& -k I))’ (Ltot - ’,)’ (B.15) 
N 

where ii is the number of ASE noise photons propagating 
in the signal mode, hu, is the photon energy at the signal 
wavelength A, D is the fiber dispersion, Ltot is the total trans- 

July 1992. 

mission length, and c is the velocity of light. Approximating 
the summation with an integration over the total transmission 
length as in [8] we achieve 

where a.4SE is ( F G  - l)/(za), n k e  the nonlinear Kerr coef- 
ficient and A , f f  the effective fiber core area defined by (1) 
in the main text. 
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