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Abstract— In this paper three options for very-high bit rate
integrated electro-absorption modulated laser (EML) structures
are investigated using electromagnetic simulation. A physics
based distributed equivalent circuit model taking the slow-
wave propagation characteristics of the modulation signal into
account is proposed for the electro-absorption modulator (EAM)
electrode arrangement. This model makes it possible to apply
an EM/circuit co-simulation approach to estimate the electrical
to optical transmission bandwidth for the integrated EML. It is
shown that a transmission bandwidth of 70 GHz seems feasible
with the investigated EML structures if the driving impedance
is reduced to 25 . It is also shown that the influence of
electromagnetic cross-talk between components can be neglected
in the estimation of the transmission bandwidth even in the
case of very short separation zones. Finally, a slight decrease
in transmission bandwidth is observed for an EML structure
without ground pillars.

I. INTRODUCTION

The projected increase in data traffic motivates the de-
velopment of very high bit rate optoelectronic transceivers
suitable for 100 Gbit/s Ethernet type applications. Recently,
the European Commission has launched the GIBON project
to focus on the technology that will be used in the future for
the integration of the highest speed optoelectronic transducers
with their driving electronics [1]. Guidelines for the realization
of these very-high bit rate integrated devices will be given by
supporting electromagnetic (EM) simulation activities.

The electro-absorption modulator (EAM) fabricated on InP
is a widely used transmitter component in high bit rate optical
communication systems [2]-[3]. For the intended bit-rate of
100 Gbit/s the EAM offers several advantages such as large
absorption variations at low driving voltages, very small size,
and mature integration with a laser. The electrical to optical
transmission bandwidth for an EAM is approximately limited
by the time-constant C's(Z,/2 + Rs), where Z, is the driver
impedance, Cs the EAM junction capacitance, and Ry the
EAM series resistance [4]. To obtain a sufficiently large
transmission bandwidth (>70 GHz) driver impedances < 5092
are investigated in the GIBON project. The EAM will be
monolithic integrated with a laser on InP to form an electro-
absorption modulated laser (EML) structure suited for 100
Gbit/s. It is the focus of this paper to describe an EM/circuit
simulation approach to investigate the performance of inte-
grated EML structures for 100 Gbit/s Ethernet applications.
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Fig. 1. 3D view of the integrated EML structure (option 1)

II. INTEGRATED EML STRUCTURES

A 3D view of the integrated EML structure proposed in
the GIBON project is shown in Fig. 1. The length of the
EML chip is 710pm including 220um for the EAM part. To
avoid any curves in the RF path an orthogonal microwave and
lightwave propagation direction is proposed. A lumped EAM
is included in the GSG electrode arrangement. The modulator
length has been fixed at 50 ym to give a good compromise
between RC-parasitics and extinction ratio. A single active
layer containing a p-i-n optical core is used for both the
laser and the modulator part. The p-i-n optical core consists
of an AlGalnAs multiquantum-well (MQW) stack. Electrical
isolation between the two components are achieved using H+
implantation. A heavily doped n-type InP substrate acts like
the common ground electrode for the laser and modulator. A
BCB polymer embedding the optical core reduces capacitance
and provide isolation.

A. GSG design options

In this subsection the three different structures for the
integrated EML investigated in this paper will be described.

1) Option 1: This structure is characterized by a 43um
distance between the laser end and beginning of the EAM.
Ground pillars provide ground connection to the InP n-type
substrate.

2) Option 2: The next structure is identical to the first
structure except for a reduced distance between the laser end
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Fig. 2.

and the beginning of the EAM in order to lower the optical
loss in the separation zone. Electromagnetic cross-talk is a
concern with this structure and should be investigated.

3) Option 3: The final structure is identical to the first struc-
ture except the ground pillars are removed. This structure is
investigated to check if the ground pillars are really necessary.

III. EAM ELECTRODE ARRANGEMENT

The starting point for our investigations has been to de-
velope a distributed equivalent circuit model for the EAM
GSG electrode arrangement. The setup in the commercial
available simulator, Ansoft HESS, is shown in Fig. 2. The
coplanar excitation of the structure is obtained using lumped
ports located across a gap between the signal line and a
vertical PEC bridge which connects the two ground conductors
together. The PEC bridge is wrapped around the edge to avoid
problems with a floating substrate. This excitation resembles
very well the measurement situation encountered using GSG
probes but may also represent the excitation coming from the
driver chip in the case a flip-chip approach. Unfortunately, a
parasitic inductance and capacitance are associated with this
excitation scheme. These parasitic elements must be evaluated
and removed from the EM simulation results to obtain an
accurate model of the electrode arrangement. Details in our
parasitic removal method applied to EM simulation results can
be found in [5]. The simulation structure is surrounded by an
air box possessing the radiation boundary condition.

A. EAM Electrode Modeling

The Au electrodes are separated from the heavily doped
InP substrate by a thin layer of BCB and thus forms a
metal-insulator-semiconductor structure. It is well-known that
this transmission line structure supports the slow-wave mode
where the electrical field is concentrated in the isolating layer

2007 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2007)

Ansoft HFSS simulation setup for the EAM electrode arrangement.
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Fig. 3. a) A section of EAM electrodes illustrating circuit elements. b)
Elements of distributed equivalent circuit model.

beneath the center conductor while the magnetic field freely
penetrates into the substrate [6]. This separation between
the electric and magnetic field gives rise to the low-loss
slow-wave mode of propagation. EM simulations performed
on the EAM electrode arrangement verifies the slow-wave
propagation mode even at frequencies up to 110 GHz with
an associated low attenuation of ~ 2dB/mm.

Fig. 3a) shows a section of the EAM electrodes. The
elements of the distributed equivalent circuit model in Fig. 3b)
follow from the physical structure in Fig. 3a). An inductance
L., is associated with the longitudinal current which flows
on the conductors. Induced Eddy-currents in the substrate are
in parallel with this current flow. The effect of the induced
Eddy-currents can be represented in the distributed equivalent
circuit model as a parallel impedance Z;(f) calculated as

Zl(f) ~ a(l +])/((550'3W) (1)

where 45 is the substrate skin depth, f is the frequency, o is
the conductivity of the substrate, and W is the width of the
center conductor. The above impedance can be deduced from
the magnetic vector potential considering a single current sheet
of width W located above the substrate. The pre-factor « is
a correction factor to take into account the actual geometry
of the EAM electrode arrangement. The additional inductance
AL,, serves the same purpose. To take the metallic conductive
losses into account an impedance Z,,(f) is introduced in
series with L,,. This impedance is given by

Z(f) = (1+j)/(5mUmW) 2)

where §,,, and 0., are the metal skin depth and conductivity of
the metal, respectively. The capacitance C'gcp and resistance
R; are associated with the transverse electric field confined to
the dielectric layer underneath the center conductor. There is
also a capacitance Cy,,4 associated with the transverse electric
field in the air region.
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Fig. 4. Comparison of EM simulated and modeled RLGC parameters for
EAM electrodes.

In Fig. 4 the per-unit-length RLGC transmission line pa-
rameters extracted from the EM simulation results of the EAM
electrode arrangement are compared with the developed model
in Fig. 3b). It is observed that the developed model very
accurately capture the dispersive behaviour of the per-unit-
length RLGC parameters up to a frequency of 110 GHz.

IV. EM/CIRCUIT CO-SIMULATION APPROACH
A. Equivalent circuit model for EML structure

To investigate the EML bandwidth potential of the EML
structure the equivalent circuit model shown in Fig. 5 is
purposed. The model has been implemented into the Agi-
lent ADS microwave circuit simulator allowing both small-
signal AC responses and S-parameters to be easily calculated.
Distributed transmission line sessions are included at the
signal generator and load ends to take the slow-wave mode
propagation characteristic of the modulating signal on the
electrodes into account. The EAM part can often be modeled
using a series resistance R, and capacitance C's, and a dynamic
photocurrent-resistance £, [7]. The dynamic photocurrent
resistance must be included to predict the effect of the optical
power on the electrical-to-optical (E/O) response. The E/O
response is determined by the ratio of the voltage over the
EAM diode junction V,,; to the voltage V;,,/2 applied to the
EML structure in the case of zero input reflection. A shunt
capacitor C}, depending on the i-layer thickness in the region
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Fig. 5. Equivalent circuit model for EML bandwidth estimation. Insert shows
distributed equivalent circuit model for electrode arrangement.

outside the EAM MQW stack is also included. To take the
coupling to the laser part into account the isolation resistance
R;s, and capacitance Cjs, are used. The laser part itself is
modeled here with a single capacitor Cjgser-

B. EM simulation setup

It should be noticed that the lumped equivalent circuit model
for the EAM diode junction depends on the optical power and
applied signal swing in a nonlinear manner, and hence can not
be predicted by EM simulation. Previously, EM simulation of
EAMs has been performed by substitution of the MQW stack
in the EAM diode junction with a dielectric material having
an averaged permittivity [8]. In this work a slightly different
approach is followed in that the lumped equivalent circuits
for the MQW stack in the EAM and laser junction parts
are included into the Ansoft HFSS EM simulation. This can
be accomplished by using lumped RCL-boundary conditions
available in the Ansoft HFSS simulator. An expanded view
of the details in the EAM region shown in Fig. 6 illustrates
the setup in Ansoft HFSS. For the EAM junction typical
values for the capacitance Cs and dynamic photocurrent-
resistance I, are substituted, while for the laser MQW a

Lumped RL
boundaries

Fig. 6. Expanded view showing EAM region details for Ansoft HFSS
integrated EML simulation setup.
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Fig. 7. Comparison of EM simulated and modeled electrical reflection and
transmission responses for the EML structure (option 1).

single capacitor Cygser is substituted. The junction capacitance
values can be determined experimentally from low-frequency
C-V measurements, while the photocurrent resistance can be
either calculated or measured with an optical input power to
the EAM. In this way it is possible to obtain a more realistic
view of the optical and electrical properties of the full EML
structure from the EM simulation. The EM simulation results
contain all the electromagnetic information of the EML struc-
ture, such as the electrical-to-electrical (E/E) transmission, port
reflections, and coupling to the laser part. The output voltage
Vour across the EAM junction, however, which determines the
E/O response is not readily available from the EM simulation
result. Therefore our approach is to fit the remaining elements
(Rs, Cp, Ciso, and R;so) of the equivalent circuit model in
Fig. 5 to the EM simulation results. An AC simulation can
then be used to determined the E/O transmission bandwidth
including the effect of driver impedances Z, < 50€2.

The equivalent circuit modeling approach is verified in Fig.
7 by comparison of the EM simulated and modeled electrical
reflection and transmission responses for the EML structure.
It should be mentioned that the cross-coupling network has a
very small influence on the simulated response. Especially it
is difficult to extract a reliable value of the isolation resistance
R;s, from the EM simulation result. To obtain a better estimate
this resistance is calculated based on geometrical details.

V. EML BANDWIDTH ESTIMATIONS

In this section the E/O transmission bandwidth for the
three different structures for the integrated EML (option 1-3)
described in section II is investigated. In order to investigate
potential problems with electromagnetic cross-talk, option 2,
with reduced separation distance between the laser end and
the beginning of the EAM is simulated in Ansoft HFSS.
The obtained EM simulation result can not be distinguished
from those of option 1. The reason for this is that even with
the shorter separation zone the calculated isolation resistance
will still be on the order of hundreds of kilo-ohms due to
the H+ implantation. The electromagnetic cross-talk between
components can therefore be neglected in the estimation of
the transmission bandwidth as clearly observed in Fig. 8.
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Fig. 8. Electrical to optical transmission characteristics for EML structures.
The driver impedance level is reduced to Z, = 25Q2.

Notice that an E/O transmission bandwidth of nearly 70 GHz
is obtained when the driver impedance level is reduced to
Z, = 25%). Even larger bandwidths are possible with further
reduction of the driver impedance. To investigate if the ground
pillars are really necessary, option 3, with ground pillars
removed is simulated in Ansoft HFSS. The explanation of
the slightly lower E/O transmission bandwidth observed in
Fig. 8 is as follows. Without proper connection of the ground
conductors to the heavily doped InP substrate a microstrip-
like mode is allowed to propagate along the GSG electrode.
As a consequence the propagation characteristics of the GSG
electrode changes and less of the supplied electromagnetic
energy reaches the EAM diode junction. Instead of repeat-
ing the distributed equivalent circuit modeling for the GSG
electrode without ground pillars the EAM part is substituted
with an additional lumped port in the Ansoft HFSS setup.
The lumped EAM model previously determined for the EML
structure, option 1, is attached to this additional port in the
Agilent ADS simulation.

VI. CONCLUSION

In this paper three different EML structures for 100 Gbit/s
have been investigated using EM simulation. Development of
a distributed equivalent circuit model for the GSG electrode
arrangement makes an EM/circuit simulation approach for
determining the E/O transmission response possible. Employ-
ing a reduced driver impedance of 252 in connection with
the integrated EML structures estimates an E/O transmission
bandwidth of nearly 70 GHz. The influence of electromagnetic
cross-talk on the bandwidth was shown to be negligible even
in the case of very short separation zones. The transmission
bandwidth for EML structure without ground pillars demon-
strate slightly lower bandwidth than the two other structures
investigated. Measurements performed on EML chips should
be available at the time of the conference.
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