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Output Power PDF of a Saturated Semiconductor
Optical Amplifier: Second-Order Noise
Contributions by Path Integral Method

Filip Öhman, Jesper Mørk, and Bjarne Tromborg

Abstract—We have developed a second-order small-signal model
for describing the nonlinear redistribution of noise in a saturated
semiconductor optical amplifier. In this paper, the details of the
model are presented. A numerical example is used to compare the
model to statistical simulations. We show that the proper inclusion
of second-order noise terms is required for describing the change in
the skewness (third-order moment) of the noise distributions. The
calculated probability density functions are described far out in
the tails and can hence describe signals with very low bit error rate
(BER). The work is relevant for describing the noise distribution
and BER in, for example, optical regeneration.

Index Terms—Noise, optical communication, optical signal pro-
cessing, semiconductor optical amplifiers (SOAs).

I. INTRODUCTION

SEMICONDUCTOR optical amplifiers (SOAs) have a
number of promising applications within optical commu-

nication systems. Some examples are all-optical wavelength
conversion [1], [2], regeneration [3], [4], limiting amplification
[5], and noise suppression in spectrum-sliced wavelength-di-
vision multiplexed systems [6]. In these applications, the
performance, as measured by the bit error rate (BER), depends
on the noise distribution of the signal after the SOAs. It is
therefore important to describe the noise in an SOA in detail.
However, the saturation and nonlinear properties of the SOA
make this description complicated. Shtaif and coworkers used
a first-order perturbation analysis for examining the noise
spectra after a saturated SOA [7] and experimentally mea-
sured the noise distribution [8]. Bilenca and colleagues have
made a detailed study of noise distributions in SOAs using
multicanonical Monte Carlo simulation [9] and Fokker–Planck
equations [10]. We have previously measured and calculated
the probability density functions (PDFs) after amplification in
a saturated SOA [11]. The calculations of the PDFs were based
on statistical simulations, standard assumptions like Gaussian
or noncentral -distributions, or used models [12] that are
not able to describe the nonlinear noise redistribution shown
in experiments [11], [13]. Large-signal simulations can, in
principle, include the nonlinear redistribution, but it is difficult
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to reach far out in the tails of the distributions, i.e., to simulate
the rare occurrences of errors corresponding to low BERs.
One way of expanding the range of BERs by simulations is
through importance sampling [9], but efficient application of
that method is still somewhat of an art [14], [15]. In this study,
we have developed a detailed analytical model that, in principle,
allows calculation of the PDF of a noisy signal at the output of
an SOA including the tails of very low probability densities.
The model is an extension of the standard noncentral -distri-
bution, which takes into account additional second-order noise
contributions in the sense discussed in the following.

We examine the noise properties of a generic type of SOA.
The optical amplification in the SOA is assumed to take place
in a waveguide of length , and the electrical field in the wave-
guide is described by its complex envelope normalized
such that is the optical power. By solving the equations for
the propagation of the electrical field through the SOA, one can
determine the output field in terms of the input signal
field and the spontaneous emission noise. The sponta-
neous emission is added and amplified during transmission, and
it interacts in a nonlinear manner with the signal. In this paper,
we shall only consider the case where is a CW signal to
which we have added Gaussian noise terms. The field
can then be expanded as

(1)

where

(2)

is the steady-state field in the absence of noise, is the satu-
ration power to be introduced later, and and are
the noise contributions to the phase and normalized amplitude
of th order for .

The optical output power is equal to , i.e.,

(3)

where is the steady-state power in the absence
of noise. In the calculations of the PDF for , the approx-
imation gives a Gaussian distribu-
tion of , while the approximation
leads to a noncentral -distribution for . The latter in-
cludes the second-order term , but it does not in-
clude the -term, i.e., it does not comprise the full second-order
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noise contribution. The -term contains, among other effects,
the gain saturation caused by the copropagating amplified spon-
taneous emission (ASE). The main results of this paper are the
derivation of an analytical expression for the PDF of to
second order and the presentation of approximate methods for
calculating the PDF. We also present examples that compare the
distribution with the results obtained from a direct large-signal
simulation of the time-domain equations for the field and the
carrier density in the SOA. The distributions agree over the
range in which we can obtain the simulated PDF within a rea-
sonable computation time. Furthermore, we demonstrate that
the full second-order calculation may give a BER, which at the
level of 10 deviates by an order of magnitude from a non-
central calculation.

Our present analysis assumes a CW incoming signal, but, in
order to deal with most SOA applications (i.e., amplification
of digital signals, wavelength conversion, and regeneration), it
must be extended to include modulated signals. This can be done
following our approach, but the calculations become substan-
tially more numerically demanding. Our analysis also assumes
copropagation of signal and ASE. In order to take into account
counterpropagating ASE or reflections from the SOA facets, the
model must include an extra field equation for the backward
propagating field as in laser modeling. It is beyond the scope
of this paper to extend the formalism to cope with modulated
signals, counterpropagating ASE, or cases of low signal power,
where the noise cannot be considered as a perturbation. How-
ever, we show that second-order effects become important when
calculating low BERs, and we expect this conclusion to persist
in analyses that go beyond our simplifying assumptions.

The paper is structured as follows. In Section II, the basic
model is presented, while the details of the PDF calculations
are presented in Section III and the numerical examples are an-
alyzed and discussed in Section IV. The final conclusions are
drawn in Section V. Some of the more detailed derivations are
collected in the three Appendices.

II. NOISE MODEL FOR THE SOA

The analysis of noise in the SOA is performed in two dif-
ferent ways: a perturbation analysis to second order in the noise
contributions and a large-signal simulation. Both approaches are
based on a model for the SOA that is described in this section.

The model is a standard rate equation for the carrier density in
an SOA and a propagation equation for the electric field ,
as described in [16]. The noise is incorporated in the equations
by Langevin forces, in accordance with [7] and [17]. The re-
sulting equations for carrier density and electric field are

(4)

(5)

where is the injected current, is the elementary charge,
is the active volume, is the spontaneous carrier lifetime, is
the effective cross-section area of the active region, is the
photon energy, is the linewidth enhancement factor, and
is the waveguide loss. The time variable is a shifted time coor-
dinate, , where is the real time coordinate
and is the group velocity. The propagation is unidirectional

and perfect anti-reflection coatings are assumed, i.e., the reflec-
tivities of the facets are zero. The gain is approximated as
a linear function of the carrier density, and it is assumed that the
carrier frequency is chosen at the gain peak. The gain is then

(6)

where is the differential modal gain and is the carrier den-
sity at transparency.

The functions and are Langevin noise terms, where
describes the spontaneous emission noise and describes

the carrier density noise imposed by carrier injection and re-
combination noise. The work in [7] presents a detailed analysis
of the influence of carrier density noise on the relative intensity
noise (RIN) spectrum of the output signal of a saturated SOA.
The analysis shows that, for input powers of about 10 % of the
saturation power, the carrier noise only gives a small contribu-
tion to the RIN at low frequencies compared with the carrier
bandwidth. At higher input powers, the carrier noise becomes
increasingly important and may even lead to quantum optical
squeezing effects for input powers above the saturation power
[18]. In this paper, we only consider cases of moderate satura-
tion, and we shall therefore assume that .

The Langevin function for spontaneous emission is con-
sidered as a Gaussian noise source with correlation relations

(7)

The Fourier transform of is the local spontaneous
emission spectrum

(8)

where is the population-inversion factor. When we are
dealing with a narrow frequency range around the carrier
frequency , we can often assume that the spectrum is
white, i.e., constant in frequency, and use the approximation

. The corresponding is then

(9)

However, a constant, unlimited noise spectrum means that the
noise power is infinite, which leads to divergent terms in the
second-order noise contributions. We shall therefore use the
form

(10)

where is finite and where the gain factor in is
the steady-state gain . For the population-inversion factor

, we use the approximation . In the
simulations, we use the time step for the discrete sampling
of the signal. By assuming that the signal is a sample-and-hold
signal, i.e., the signal is constant between sampling points, the
correlation in time becomes

. (11)
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This correlation corresponds to a -shaped spectrum, which
also limits the amount of noise power

(12)

Note that the unnormalized function is used. As long as the
sampling interval is sufficiently short to make the noise spec-
trum much wider than any filtering in the system, this assump-
tion gives first-order results very similar to the white noise as-
sumption.

The injected field is chosen to be of the form

(13)

where is constant and the real functions and are
Gaussian stochastic variables with zero mean and variance .
They are sampled with time interval and satisfy the correla-
tion relations

(14)

with given by (11). is related to the input signal-to-noise
ratio by noting that the input power has a noncentral -distri-
bution with mean and variance given by

(15)

(16)

where . By comparing (13) with (1), we see that
we must choose

(17)

(18)

to ensure that (1) is satisfied to second order.

A. Large-Signal Simulations

In order to have a comparison for our second-order model,
we have implemented a brute-force large-signal model, which
uses statistical methods for simulating the PDF of the signal.
The model has been presented in detail in [13] and is based on
the work in [17]. The rate equations (4) and (5) are integrated
numerically by discretizing the signal in time and the SOA in
the -direction. Noise terms with statistics according to (14) and
(7) are added to the signal field at the input and for each SOA
section, respectively. At the output of the device, the signal field
is filtered using an optical filter and then detected assuming an
ideal noiseless detector including a low-pass electrical filter with
filter function . The statistics of the detected signal are then
extracted, and the PDF is estimated by making a histogram of
the signal.

B. Perturbation Expansion

The perturbation analysis of (4) and (5) is based on the as-
sumption that the Langevin noise term is small compared
with the signal field and can be considered as a perturbation.
The first step in the analysis is to derive the steady-state solu-
tion for . As mentioned above, we will throughout the
paper assume that .

Equations (6) and (4) lead to the following equation for the
gain:

(19)

where is the saturation power

(20)

and is the unsaturated gain, i.e., the steady-state gain when
as

(21)

The steady-state solution to (19) becomes

(22)

where is the steady-state normalized field amplitude intro-
duced in (2). For , integration of (5) gives

(23)
Equations (22) and (23) can be solved numerically for given
input field .

In (1), the envelope field was factorized as , where
the factor describes the perturbations due to noise as

(24)

By inserting into (5), it follows that satisfies the
equation

(25)

Equations (19) and (25) can be solved by inserting the expan-
sions (24) for and

(26)

for the gain and equating terms of the same order in . The
first-order equations become

(27)

(28)

(29)
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where and . The equa-
tions for the second-order terms become

(30)

(31)

(32)

The frequency-domain solution of these equations are given in
Appendix A.

Equations (27)–(32) also apply to the case where the in-
coming field is modulated, provided that
and are the time-dependent field and gain solutions to (5)
and (19) in the absence of noise .

III. PDF OF A FILTERED OUTPUT SIGNAL

The output field from the SOA is assumed to be filtered by
an optical filter with a bandwidth that is much smaller than the
bandwidth of the spontaneous emission spectrum. The filter is
described by a time response function , which we assume
to be real to ensure that the filtering is symmetric around the
carrier frequency . The filtered output field is then

, where means convolution in the time domain.
For the filtered output power, we obtain an expression similar to
(3) as

(33)

We notice that the filtering induces a second-order phase-to-in-
tensity conversion. The expression reduces to (3) when

.
The aim of this section is to calculate the PDF of . Since

the power is assumed to be stationary, it is sufficient to determine
the PDF for . The procedure is first to derive an expression
for the moment generating function (MGF)

(34)

The PDF of is then obtained from the inverse Laplace trans-
form

(35)

where is a real number for which has no singularities
for . In order to describe the set of frequency-domain
noise functions , it is conve-
nient to introduce a vector space spanned by the vectors
and , where , is real, and is the label or .
The vectors are assumed to satisfy the orthogonality relations

(36)

(37)

(38)

A set of noise functions is then described by a vector with
components

(39)

(40)

i.e., the vector describes the real and imaginary parts of both
the noise added along the length of the amplifier (39) and the
noise of the input signal (40), which is independent of . Using
this notation, it is shown in Appendix A that the filtered output
power can be written as

(41)

where is the vector with components (70) and is the op-
erator

(42)

is the operator with matrix elements given by (71)–(73).
The probability of observing a particular noise vector is

assumed to be given by the Gaussian functional (see, e.g., [19,
eq. (12.41)])

(43)

where is a normalization constant that ensures that
. is the reciprocal of the diffusion operator with matrix

elements given in Appendix B. For given by (41) and for
the Gaussian noise distribution (43), the MGF (34) is the path
integral

(44)
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The integral can be shown to be given by the explicit form (see,
e.g., [20, eq. (1.12)])

(45)
The MGF can be calculated directly by discretizing the space
and frequency intervals.

From the MGF, it is straightforward to derive the mean value
and the central moments (see, for example, [21]) by using the
cumulant-generating function (CGF)

(46)

From the CGF, the cumulants of order can be calculated by

(47)

The first-order cumulant is identical to the mean value, and or-
ders two and three are identical to the respective central mo-
ments defined by

(48)

The distribution thus has the mean, variance, and third-order
moments

(49)

(50)

(51)

The first term in (50) corresponds to the spontaneous–spon-
taneous beat noise while the second term represents the
signal–spontaneous beat noise.

It is shown in Appendix C that (45) reduces to the familiar
MGF for a noncentral -distribution when the operator in
(41) is zero as

(52)
The distribution has the mean value and variance

(53)

(54)

By (70) and (77)–(79), the parameter can be written as

(55)

The expression (55) (multiplied by four) can be shown to be the
frequency integral over the RIN spectrum.

Thus far, we have treated the optical field and power, but, in
order to compare with measurements, we need to introduce the
conversion to the electrical domain by a detector. The detector
model used here is an ideal noiseless square-law detector with
unit responsivity and a limited frequency response. The effect
on the PDF can thus be calculated by introducing a second filter
acting on the optical power, which is the same as filtering the
electrical current from the detector. The time-dependent current
is then

(56)

where is the filter function of the detector. The result for
the MGF expressed by (45) agrees with (56) if a new oper-
ator , with matrix elements given in Appendix A (74)–(76),
and a new vector , with components as shown for in (70)
but multiplied by , are substituted for and , respec-
tively, in (45). The operator is very similar to , but the elec-
trical filtering means that the matrix elements are multiplied by

.
In Section IV, we present a numerical analysis of the effect

on the PDF of and the electrical filter.

IV. NUMERICAL EXAMPLES AND DISCUSSION

Here, the model is used to analyze a few specific examples.
The examples are chosen to be similar to the ones in [11] in
order to be able to compare with the measurements in that work.
The PDFs from the second-order model are calculated by dis-
cretizing space and frequency and numerically solving (45) and
(35). The matrix calculations, and especially calculating the de-
terminant, requires a large computer memory when a fine dis-
cretization is used. In order to reduce the requirements and allow
better numerical resolution, we instead calculate an appropriate
number of terms in the sums of the expansions in (94) and (95)
[with replaced by in (94)], as described in Appendix C.
For each higher order moment to be included in the investiga-
tion, another term has to be included in the sums when calcu-
lating the MGF. In this investigation, we have limited ourself to
the third-order moment and, hence, three terms of (94) and (95).

The parameters used in the calculations are a mixture of
known physical parameters for the measurements of [11] (i.e.,
length of SOA, bias current, input powers and detection band-
width), reasonable guesses (e.g., coupling losses, waveguide
losses, linewidth enhancement factor, and carrier lifetime) and
fitted parameters (i.e., small-signal gain, saturation power, and
input signal-to-noise ratio). The fitted parameter values are
chosen to give a qualitatively reasonable fit to the experimental
results in [11] for both the standard deviation and the skewness,
which is defined as the normalized third-order central moment
of the distributions. No quantitative fitting procedure has been
carried out. The chosen parameter values are shown in Table I.
The filters used in the calculations are eighth-order Butterworth
filters.

First, we will compare the PDFs. Fig. 1 shows the PDFs cal-
culated with and without the proper inclusion
of the second-order terms, as well as the simulations. The use-
fulness of analytical expressions for the PDFs is clearly seen
when comparing the tails of the measured and simulated PDFs.
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TABLE I
PARAMETER VALUES USED IN THE CALCULATIONS

Fig. 1. Calculated PDFs at different power levels using the simulations and
the small-signal model with (solid line) and without (dash–dotted line) proper
inclusion of all second-order terms.

The simulations do not reach very far out in the tails and hence
do not include low BERs. In order to extend the simulations fur-
ther, within a reasonable simulation time, more advanced simu-
lation techniques, for example, importance sampling [14], [15],
has to be used or extrapolations have to be made [22]. The per-
turbation model is, however, able to reach far out in the tails
using a reasonable computation time.

The difference between disregarding the second-order terms
included in and keeping them is not large when looking at
the PDFs. However, if estimating the BER close to the
difference is more relevant, as seen in Fig. 2, where the differ-
ence gets close to one order of magnitude. This difference is also
expected to be much larger for a more nonlinear system. The
gain saturation model used in this work has proved to result in
less nonlinear behavior than experiments [11]. It has also been
shown that a more detailed model for the saturation of SOAs
that takes into account counterpropagating ASE and includes
nonzero facet reflectivities predicts a stronger nonlinearity [23].
In such a case of stronger nonlinearity, the role of higher order
noise correlations is expected to be even more important.

The redistribution of the PDFs in the different models can be
more quantitatively compared by considering the second- and
third-order central moments or, equivalently, the standard de-
viation and skewness of the distributions, which are shown in
Figs. 3 and 4. The results demonstrate the nonlinear noise redis-
tribution due to the gain saturation in the SOA, as is discussed
in more detail for the experiments in [11]. In this study, we will
focus on the differences between the models. For the standard

Fig. 2. BER of the CW signal corresponding to a long string of one bits as a
function of decision threshold. The BER is calculated from the PDFs using the
full second-order description (dash–dotted line) and when O = 0 (solid line)
at input power �12 dBm and detection bandwidth 10 GHz.

Fig. 3. Standard deviations of the calculated PDFs of a CW signal after the
SOA as a function of mean optical power. Markers denote the simulation results,
and the dash–dotted and solid lines (overlapping) denote the results of the full
second-order description and when O = 0, respectively.

Fig. 4. Skewness of the calculated PDFs of a CW signal after the SOA as func-
tion of mean optical power. The dash–dotted and solid lines denote the results
of the full second-order description and when O = 0, respectively.

deviation, they all give very similar results, as seen by the over-
lapping lines in Fig. 3.

In Fig. 4, the symmetry of the distributions are investigated
by plotting the skewness, which is defined as

(57)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 06:50 from IEEE Xplore.  Restrictions apply. 



1194 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 12, DECEMBER 2007

Fig. 5. Skewness (upper panel) and standard deviation (lower panel) of the
calculated PDFs versus detection bandwidth for the full second-order model
(dash–dotted line) and when the operator O is zero (solid line).

where is the th-order central moment. The skewness thus
gives a measure of how much the noise distribution has been
reshaped by the SOA nonlinearity, with a negative value of the
skewness corresponding to a dominating low-power tail and a
positive value indicating a dominating high-power tail of the
distribution. It is worth noting that a noncentral -distribution
always has a positive skewness.

The solid and dash–dotted lines in Fig. 4 represent the second-
order model with and without the second-order terms described
by the operator . The simulations do not give accurate results
for the third-order moment due to a limited number of realiza-
tions (i.e., limited simulation time) and are therefore omitted in
this figure. However, the qualitative results of the simulations
do agree with the full second-order model. Fig. 4 shows that the
nonlinear noise redistribution in the SOA skews the distribution
in the negative direction compared to the noncentral -distri-
bution. This effect is seen in the simulations (not shown) and
second-order model, just like in the experiments in [11], but only
when all of the second-order terms are included . This
indicates that higher order models or statistical simulations are
needed for properly describing the nonlinear noise redistribu-
tion in saturated SOAs.

The redistribution of noise in the SOA depends on the carrier
dynamics in the amplifier, and, thus, the effect is only notice-
able within the limited modulation bandwidth of the SOA. By
varying the detection bandwidth in Fig. 5 the dependence on
the dynamics can be mapped out. For a small detection band-
width, most of the detected noise is inside the response band-
width of the SOA and hence experiences a strong redistribu-
tion, resulting in a more negatively skewed distribution. The
second-order model shows the possibility of achieving nega-
tive skewness, as seen in the experiments in [11], which the
noncentral -distribution cannot. For a larger detection band-
width, however, a large part of the noise is not influenced by the
SOA nonlinearity and the effect of including the full second-
order model is less pronounced, as seen in the upper panel of
Fig. 5. In the lower panel of Fig. 5, the standard deviation is
plotted as a function of detection bandwidth. As seen before,
the full second-order model and the noncentral -distribution

give identical results, and the two lines overlap for the full range
of investigated detection bandwidths.

V. CONCLUSION

We have developed a second-order perturbation model for de-
scribing the nonlinear redistribution of noise in saturated SOAs.
A realistic example that was analyzed using the model shows
that it can qualitatively describe the change in skewness of the
distribution and calculate the PDFs far out in the tails, cor-
responding to very low BER. The full second-order model is
needed for correctly describing the nonlinear redistribution of
the PDFs by the saturated SOA, as described by the standard de-
viation and skewness, while the noncentral -distribution only
describes the change of the standard deviation. For the presented
case of a fairly weak nonlinearity, the difference between the
second-order model and the more standard noncentral -dis-
tribution is small, but still leads to a difference in BER of about
one order of magnitude at low BER. The difference is expected
to be much more relevant if the model is applied to, for example,
optical regenerators with strong nonlinearities in the decision
gate.

Future studies may extend the formalism to modulated sig-
nals and include the effects of counterpropagating ASE and
nonzero facet reflectivities. The case of low input powers, where
the ASE cannot be treated as a perturbation of the signal, re-
quires a modified approach, e.g., an iterative solution of (5).

APPENDIX A

This Appendix presents the derivation of the expressions for
the vector and the operator in the expression (41) for the
filtered output power .

It requires solution of (27)–(32) for the first- and second-order
terms. Solving (29) and (32) in the frequency domain yields

(58)

(59)

where is the function

(60)

The symbol means convolution in the frequency domain. For
simplicity, we use the same notation for the frequency- and time-
domain functions. The actual domain should be clear from con-
text. The frequency-domain equations for the first- and second-
order amplitude and the first-order phase then become

(61)

(62)

(63)
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where is the second-order driving term

(64)
The solutions to (61), (63), and (62) are

(65)

(66)

(67)

where

(68)

and where we have inserted the initial values at from (17)
and (18).

The filtered output power is the frequency integral over
the Fourier transform of given in (33). It therefore follows
that

(69)

The integral in the first squared parenthesis can be written as
, where is the vector with components

(70)

and where and all other components are
zero. The sum of the remaining two integrals between the square

brackets can be written as , where the operator has
the following matrix elements:

(71)

(72)

(73)

Here, is the Heaviside step function. The remaining matrix
elements of involving the vectors and are ob-
tained by replacing by and by in
(71)–(73). For , we use the definition .

When the electrical filter of the detector is included the oper-
ator, should be used instead of . It has the following matrix
elements:

(74)

(75)

(76)

and so on in the same way as for .

APPENDIX B

The diffusion operator has matrix elements that are given
by the correlation relation between the noise functions

(77)

(78)
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(79)

All other matrix elements of are zero. It follows from (7) and
the definition of and that

(80)

(81)

If we assume the symmetric form (12) for the spontaneous emis-
sion spectrum, the expressions (80) and (81) reduce to

(82)

and . By (14), the diffusion function
becomes

(83)

APPENDIX C

A numerical calculation of the MGF expression (45) involves
a calculation of , where is the vector

(84)

is the reciprocal of , and (84) can therefore be written as

(85)

This is a Fredholm integral equation of the second kind [24]
from which can be calculated by conventional integral equa-
tion methods. If we ignore the operator in (42), the operator

reduces to

(86)

We can therefore study the influence of the operator by intro-
ducing the factorization

(87)

where

(88)

By using the explicit expression

(89)

(85) can be written as

(90)

which is again a Fredholm integral equation. The formal solu-
tion for is

(91)

which may be used when the sum is rapidly converging.
To calculate the MGF from (45), we also need to determine

the determinant

(92)

Since is an eigenvector of with eigen-
value and all vectors orthogonal to
are eigenvectors of with eigenvalue 1, it follows
that

(93)

The second factor in (92) may be calculated by using the expan-
sion

(94)

where the symbol means trace of the operator.
For , the MGF in (45) reduces to (52), which is the

MGF of a noncentral -distribution.
When the electrical filter of the detector is included, the fac-

torization using and cannot be done. Instead, and
have to be substituted for and , respectively, in the Fred-
holm integral equation described in (84) and (85). The solution
is then

(95)

where .
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