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Phase Noise Analysis of Clock Recovery Based on an
Optoelectronic Phase-Locked Loop

Darko Zibar, Member, IEEE, Jesper Mørk, Leif Katsuo Oxenløwe, and Anders T. Clausen

Abstract—A detailed theoretical analysis of a clock-recovery
(CR) scheme based on an optoelectronic phase-locked loop is
presented. The analysis emphasizes the phase noise performance,
taking into account the noise of the input data signal, the local
voltage-controlled oscillator (VCO), and the laser employed in the
loop. The effects of loop time delay and the laser transfer function
are included in the stochastic differential equations describing the
system, and a detailed timing jitter analysis of this type of op-
toelectronic CR for high-speed optical-time-division-multiplexing
systems is performed. It is shown that a large loop length results in
a higher timing jitter of the recovered clock signal. The impact
of the loop length on the clock signal jitter can be reduced by
using a low-noise VCO and a low loop filter bandwidth. Using
the model, the timing jitter of the recovered optical and electrical
clock signal can be evaluated. We numerically investigate the
timing jitter requirements for combined electrical/optical local
oscillators, in order for the recovered clock signal to have less jitter
than that of the input signal. The timing jitter requirements for the
free-running laser and the VCO are more relaxed for the extracted
optical clock (lasers’s output) signal.

Index Terms—Clock recovery (CR), optical time division mul-
tiplexing (OTDM), optoelectronic phase-locked loop (OPLL),
oscillator noise, phase noise, stochastic differential equations, time
delay, timing jitter.

I. INTRODUCTION

PHASE-LOCKED LOOPS (PLLs) are used in many ap-
plications involving phase and frequency synchronization

in control systems [1]–[5], clock generation in digital sig-
nal processors [6]–[8], clock extraction in high-speed optical
communication systems [9]–[16], and, recently, high-frequency
low-noise signal generation [17]–[20]. The realization of the
PLL depends on the application, and therefore, various PLL
configurations exist. In this paper, we focus on a balanced op-
toelectronic PLL (OPLL) used for clock extraction from high-
speed optical time division multiplexed (OTDM) signals and
analyze its stability and noise properties. The block diagram of
the balanced OPLL is shown in Fig. 1. The phase comparator
(PC) mixes the optical high-speed data signal (e.g., 160 Gb/s)
with a locally generated optical clock signal at the base rate
frequency (e.g., 10 GHz), producing an error signal. The mixing
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Fig. 1. Diagram of the balanced OPLL-based CR. τd: the total time delay
in the loop, PC: phase comparator, PI: proportional integrator, A: amplifier
gain, VCO: voltage-controlled oscillator, Kvco: gain of the voltage-controlled
oscillator, αin: input phase noise, αclk: phase noise of the laser, αvco: phase
noise of the VCO, φe: phase difference between αclk and αin, and ψe: applied
signal to the VCO.

process corresponds to a mathematical multiplication with a
mixer gain G. The mixer output is a slowly varying signal
proportional to the sine of the phase difference between the data
and the optical clock signal. In practice, nonlinear processes
like four wave mixing in a semiconductor optical amplifier can
be used to achieve the mixing [9]. The optical error signal is
then converted into the electrical domain.

The balanced (low bandwidth) photodetection provides the
subtraction of the dc level from the error signal, which results in
a bipolar error signal. This subtraction also helps to stabilize the
error signal against fluctuations in the input signal power levels.
The signal is then low pass filtered and fed back to the voltage-
controlled oscillator (VCO), which controls the frequency of
the optical clock generating laser. In an OPLL-based clock
recovery (CR), a considerable time delay is very likely to occur,
since the loop length of an OPLL is often much longer than
in an electrical PLL. Time delays in an OPLL may typically
arise from the presence of a fiber amplifier [erbium-doped fiber
amplifiers (EDFA)] and/or a pulse compression stage in the
loop. An EDFA may also sometimes be needed to amplify the
optical clock signal before the PC. It has been demonstrated that
intraloop time delays destabilize the loop [21], [22]. Theoretical
investigations and modeling of the PLLs, including noise, is
important in order to understand the limitations and improve the
properties of circuits based on phase-locking. A large amount
of literature is available on this topic; see [2] and [7]. Possibly,
the most general and rigorous treatment of the topic is that
of Mehrotra [7]. However, compared to electrical PLLs, the
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loop length of an OPLL is longer, and therefore, the time delay
must be included in the model. Furthermore, in an OPLL, there
are two oscillators, an electrical VCO, and an optical clock
generating laser, and the timing jitter of the extracted clock
signal will thereby be influenced by the phase noise of both
oscillators. The phase noise of the recovered clock signal is
filtered by the laser transfer function, with a characteristic knee
frequency fch, and thus, this feature must also be included in
the model equations.

In this paper, a detailed phase noise analysis of an OPLL is
performed. A set of stochastic differential (Langevin) equations
describing the total phase error in the OPLL is derived. By
a small-signal analysis, the Langevin equations are linearized,
and the associated system of stochastic differential equations
is solved using Fourier techniques, and we derive an analytical
expressions for the correlation functions and probability density
function (PDF) of the recovered clock signal. Using the model,
the timing jitter of the recovered optical and electrical clock
signals are calculated and compared.

This paper is organized as follows. In Sections II and III,
the Langevin equations describing the OPLL are derived. In
Section IV, we use the Fourier transformation technique to
obtain the correlation functions, which are used in Section V
to compute the autocorrelation function of the extracted clock
signal. In Section VI, we derive a pdf for the recovered clock
signal. Finally, in Section VII, we investigate how the loop gain,
the loop filter bandwidth, the time delay, and the laser character-
istic knee frequency influence the timing jitter of the recovered
clock signal. By using the model, timing jitter requirements
for the electrical and optical clock sources are determined in
order to obtain a recovered clock signal with less timing jitter
than the degraded input data signal. Also, we show that this is
achievable, as long as the jitter of the free-running VCO is less
than the input signal jitter, even though the free-running optical
clock signal generating laser contains more timing jitter than
the input. This result may relax timing jitter requirements when
designing optical pulse sources for high-bit-rate systems.

II. DERIVATION OF LANGEVIN EQUATIONS

In order to study the dynamical behavior of the OPLL (see
Fig. 1), stochastic differential equations describing the phase
error between input signal and local oscillators need to be
derived. The intensity of the input signal in the presence of
phase noise αin(t) originating from the pulse source at the
transmitter, regenerators, and in-line amplifiers is expressed in
Fourier series as [23]

Pin (t+ αin(t)) = s0 + 2
∞∑

k=1

sk sin [2πkf0t+ 2πkf0αin(t)]

(1)

where k is a positive integer. The constants s0 and sk are
Fourier coefficients, and f0 is the frequency of the aggregate
bit rate (e.g., 40, 160, 320 GHz, etc.) [24]. The input data
signal phase noise αin(t) is expressed as αin(t) =

√
cinBin(t)

[25], where Bin(t) is described by a 1-D Brownian motion

stochastic process, and cin is a constant determining the amount
of phase noise associated with the input signal. For a more
detailed explanation, see the Appendix. The intensity of a
locally generated optical clock signal is similarly expressed by
a Fourier series as [23]

Pclk (t+ αclk(t))

= c0 + 2
∞∑

q=1

cq cos
[
2πq(f ′

0/m)t+ 2πq(f ′
0/m)αclk(t)

]
(2)

where q is a positive integer. The constants c0 and cq are Fourier
coefficients. The repetition frequency of the optical clock signal
is f ′

0/m, where m is an integer. The frequency f ′
0/m (e.g., 10

or 40 GHz) corresponds to the free-running frequency of the
optical clock signal generating pulse source, and it is chosen so
that it is close to the base rate frequency fbase (e.g., 10 GHz,
40 GHz) of the optical input data signal [24]. αclk(t) is the
phase noise of the optical clock signal and is modeled as a band-
limited Brownian motion stochastic process, as later shown in
(9). The output of the PC (mixer) (see Fig. 1) is defined to
be a product between the optical clock signal in (2) and the
optical data signal in (1) with a gain G. PCs are frequently
modeled as multipliers, partly for analytical convenience and
partly because many practical PCs are good approximations
to multipliers [2]. The optical signal after the mixing con-
tains low-frequency components as well as high-frequency
components, which exceed the aggregate bit rate (> f0).
A slow photodiode with bandwidth BW � fbase is used to con-
vert the signal from the optical to the electrical domain and is
also used to filter out high-frequency components. It is assumed
that the responsivity of the photodiode is constant in frequency.
The fundamental frequency component of the optical data
signal f0(k = 1) interacts with the mth frequency component
(q = m) of the optical clock signal, resulting in the frequency
component ∆f = (f ′

0 − f0). When the aggregate bit rate of the
optical data signal is 160 Gb/s and the base rate is 10 Gb/s, we
have m = 16. The frequency component ∆f is smaller than the
bandwidth of the photodiode and can therefore be detected and
forms the fundamental frequency component. Furthermore, fol-
lowing Fig. 1, it can be observed that part of the optical data sig-
nal is first attenuated, in order to match the signal powers, and
then passed through the second photodiode, which is identical
to first one. Since the photodiode is slow, only the dc frequency
component of the optical data signal passes through. The bal-
anced photodetection (BW in the megahertz range) thereby
provides a subtraction of the dc level from the error signal, and
the error signal after balanced photodetection is expressed as

e(t) =RGs′0c
′
0 + 2RG

∞∑
i=1

sici·m sin [iΦe(t)]

Φe(t) =∆ωt+ 2πf ′
0αclk(t)− 2πf0αin(t) (3)

where i is a positive integer, and R is the responsivity of the
photodiode. s′0c

′
0 is the remaining dc level in the error signal

after the subtraction. Even though the balanced photodetection
provides a subtraction of the dc levels, cancellation may not be
complete due to imperfections in the electronics.
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In order to perform phase noise analysis of the system, the
locally generated optical clock signal must be synchronized to
the input data signal, i.e., f0 = f ′

0. We choose to operate with a
normalized total phase difference φe(t) ≡ Φe(t)/(2πf0). The
advantage of using the normalized form of φe(t) is that the
phase noise analysis will not be affected by the frequency
difference between the input signal and the locally generated
clock signal. The normalized phase difference φe(t) is given by

φe(t) = ∆ωnt+ αclk(t) − αin(t) (4)

where ∆ωn = ∆ω/(2πf0). The normalized error signal
en(t) ≡ RGs′0c

′
0 + 2RG

∑∞
i=1 sici·m sin[iφe(t)] is now ap-

plied to the loop filter: a Proportional Integrator (PI). In the time
domain the output of the PI filter, ψe(t) is defined as [3]

τ1
dψe

dt
= A

[
en(t) − τ2

den
dt

]
(5)

where A is the gain of the electrical amplifier in the loop. τ1
represents the integration time of the filter (inversely propor-
tional to the PI filter bandwidth). Furthermore, dc gain of the PI
filter scales linearly with τ2. The reason that we concentrate on
a PI loop filter is because it is more tolerant to long loop lengths
compared to the low-pass and active-lag filters [22]. The output
signal of the VCO is written as

v(t) = V0 cos [2πf ′′
0 t+ 2πf ′′

0αvco(t)] (6)

where f ′′
0 is the free-running frequency of the VCO, which is

also chosen close to the base rate of the optical data signal, and
V0 is the amplitude of the VCO signal. αvco(t) is the phase
noise associated with the VCO. It has been shown by Mehrotra
[7] that the phase noise of the oscillator in the presence of
the applied signal is governed by the following stochastic
differential equation:

dαvco
dt

= νT (t+ αvco(t)) Γp(t) + νctrl (t+ αvco(t))ψe(t)
(7)

where Γp(t) is a vector of p uncorrelated white noise sources,
and ν(·) is a periodic function which depends on the noise
source intensities and the response of the linearized oscillator
circuit. νctrl(·) is the component of ν(·) which corresponds to
a unit noise source present at the control node of the VCO. In
order to perform noise analysis of the PLL, we must assume
that the loop is locked and that we are therefore only interested
in the asymptotic behavior of the VCO phase noise. Asymptot-
ically, (7) reduces to [7]

dαvco
dt

=
√
cvco Γvco(t) +Kvcoψe(t) (8)

where cvco is a constant determining the amount of phase noise
associated with the free-running VCO, and Kvco is the average
gain of the VCO. Γvco(t) is a white noise source. From the
diagram of the OPLL, as shown in Fig. 1, we observe that the
signal from the VCO is directly modulating the optical pulse
source (laser). Under the assumption that the VCO and laser
are synchronized, the phase noise of the VCO αvco(t) will be

filtered by the laser transfer function, with a characteristic knee
frequency of fch [27], [28]. The characteristic knee frequency
fch denotes the bandwidth around the laser’s center frequency
within which phase noise is transferred from the VCO to the
laser [29]. The phase noise αclk(t) of the laser is expressed as

dαclk
dt

= −γe(t)
τch

+
√
cclk Γclk(t) (9)

where τch = 1/(2πfch), and cclk is a constant describing the
magnitude of the phase noise of the free-running laser described
by the white noise source Γclk(t). γe(t) is the phase noise
difference between the VCO and the optical pulse source, i.e.,
γe(t) = αclk(t) − αvco(t). The stochastic differential equation
describing the phase noise difference between the VCO and the
optical pulse source is then obtained by differentiating γe(t)
and using (8) and (9):

dγe

dt
=−γe(t)

τch
−Kvcoψe(t) +

√
cclk Γclk(t) −√

cvco Γvco(t).

(10)

The effect of a time delay τd is taken into account by
incorporating a delay in αclk(t), (4) (see Fig. 1). Therefore,
φe(t) in (4) changes to φe(t) = ∆ωnt+ αclk(t− τd) − αin(t).
By using (10), the stochastic differential equation describing the
total phase error in the loop is obtained by differentiating φe(t)
and is expressed as

dφe(t)
dt

= ∆ωn − γe(t− τd)
τch

+
√
cclk Γclk(t− τd)−√

cin Γin(t) (11)

where dαin/dt =
√
cin Γin(t), and Γin(t) is a white noise

source associated with the input data signal. Inserting (11) in
(5), the output from the loop filter becomes

dψe

dt
= dc +

1
τ1

∞∑
i=1

ζi sin[iφe(t)] +
τ2
τ1

( ∞∑
i=1

ζii cos [iφe(t)]

)

×
(
−∆ωn +

γe(t− τd)
τch

−√
cclk Γclk(t− τd) +

√
cin Γin(t)

)
. (12)

The dynamical behavior of the PLL in the presence of noise
is governed by (10)–(12), where dc = (ARGs′0c

′
0/τ1), and ζi =

2ARGsici·m. ζi describes the overall gain in the loop.

III. LINEARIZATION OF LANGEVIN EQUATIONS

A. Zero Time Delay

In this section, it is assumed the time delay is set to zero,
i.e., τd = 0. We want to linearize the Langevin (10)–(12) by
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performing a small signal expansion near a stationary point;
(x, y, z) ≡ (φe, γe, ψe) = 0. For convenience, we introduce

φe(t) = x̄+ ∆x(t) (13)

γe(t) = ȳ + ∆y(t) (14)

ψe(t) = z̄ + ∆z(t) (15)

where ∆x(·), ∆y(·), and ∆z(·) are small disturbances around
the stationary points. Now, the expressions in (13)–(15) are
inserted in (10)–(12). After linearization, the following is ob-
tained:1


 ∆̇x

∆̇y

∆̇z


 =




0 − 1
τch

0

0 − 1
τch

−Kvco
ζ1
τ1

τ2ζ1
τ1τch

0




∆x

∆y

∆z




+


 0

√
cclk −√

cin

−√
cvco

√
cclk 0

0 − τ2ζ1
τ1

√
cclk

τ2ζ1
τ1

√
cin




Γvco(t)

Γclk(t)
Γin(t)


 . (16)

To obtain the characteristic equation describing the eigen
(natural) solution of the system (without the driving noise
terms), we assume solutions of the form ∆x = ∆x0e

λt, ∆y =
∆y0e

λt, and ∆z = ∆z0e
λt, where λ are eigenvalues. The

eigenvalues are then governed by the following characteristic
equation:

λ3 +
1
τch

λ2 +
Kvcoζ1τ2
τ1τch

λ− ζ1Kvco
τ1τch

= 0. (17)

B. Nonzero Time Delay

In the presence of time delay, (10)–(12) include a delay
term. The delayed differential equations are harder to deal with,
and we would therefore like to transform the delayed differen-
tial equations into ordinary differential equations. The method
which we use is described in [31] and is valid for relatively
small values of the ratio τd/τch, i.e., τd/τch < 500 ns. Without
the driving terms caused by noise, the system of (10)–(12) can
be written as

ẇ = f(w)

w = [w1(t), w2(t), w3(t), w4(t)]
T

≡ [φe(t), γe(t), γe(t− τd), ψe(t)]
T . (18)

For each of the variables in w = [w1(t), w2(t), w3(t),
w4(t)]T, a first-order differential equation needs to be derived
in order to get the total response of the loop. The variable w3(t)
is a delayed version of w2(t), i.e., w3(t) = w2(t− τd). Using
the first-order Pade (1,1) approximation and following the

1In practice, s1cm � sici·m for i ∈ [2;∞], and only i = 1 is considered.
This is observed by considering the pulse width requirements for the high-speed
OTDM data signal [30].

procedure described in [31], a differential equation describing
w3(t) is obtained:

dw3
dt

=
2
τd

[w2(t)− w3(t)] − dw2
dt

. (19)

Using (19), the differential equations in (10)–(12) are rewrit-
ten as (without the noise driving terms)

dw1
dt

=∆ωn − w3(t)
τch

(20)

dw2
dt

= − w2(t)
τch

−Kvcow4(t) (21)

dw3
dt

=
2
τd

[w2(t) − w3(t)] +
w2(t)
τch

+Kvcow4(t) (22)

dw4
dt

= dc +
1
τ1

∞∑
i=1

ζi sin [iw1(t)]

+
τ2
τ1

( ∞∑
i=1

ζii cos [iw1(t)]

)
·
(
−∆ωn +

w3(t)
τch

)
.

(23)

Next, we want to linearize the Langevin equations in
(20)–(23) by performing a small signal expansion near a sta-
tionary point; (x̄, ȳ, q̄, z̄) = (w̄1, w̄2, w̄3, w̄4) = 0. Once again,
as in (13)–(15), we introduce w1(t) = x̄+ ∆x(t), w2(t) =
ȳ + ∆y(t), w3(t) = q̄ + ∆q(t), and w4(t) = z̄ + ∆z(t). After
linearization and including the noise terms, the following is
obtained:




∆̇x

∆̇y

∆̇q

∆̇z


 =




0 0 − 1
τch

0

0 − 1
τch

0 −Kvco
0 2

τd
+ 1

τch
− 2

τd
Kvco

ζ1
τ1

0 τ2ζ1
τ1τch

0






∆x

∆y

∆q

∆z




+




0 0
√
cclk −√

cin

−√
cvco

√
cclk 0 0

0 0 0 0
0 0 − τ2ζ1

τ1

√
cclk

τ2ζ1
τ1

√
cin




×




Γvco(t)
Γclk(t)

Γclk(t− τd)
Γin(t)


 . (24)

Following the same principle as in Section III-A, the eigenval-
ues are then governed by the following characteristic equation:

λ4 +
(2τ1τch + τ1τd)

(τdτ1τch)
λ3 +

(2τ1 −Kvcoζ1τ2τd)
(τdτ1τch)

λ2

+
(2Kvcoζ1τ2 − ζ1Kvcoτd)

(τdτ1τch)
λ− 2ζ1Kvco

(τdτchτ1) = 0
. (25)

IV. COMPUTATION OF CORRELATION FUNCTIONS

In the previous section, we have derived a set of stochas-
tic nonlinear differential (Langevin) equations describing the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 05:43 from IEEE Xplore.  Restrictions apply. 



ZIBAR et al.: PHASE NOISE ANALYSIS OF CLOCK RECOVERY BASED ON AN OPLL 905

phase error in the loop and furthermore linearized them. In
this section, we determine the correlation functions, which will
be subsequently used to compute the frequency spectrum of
the recovered clock signal and the resulting timing jitter. In
short notation, the system of equations in (16) and (24) can be
expressed as

dX
dt

= −AX + DΓ(t) (26)

where A and D are constant matrices, and Γ denotes a vector
of white noise sources with following correlation functions:
〈Γi(t1) Γi(t2)〉 = δ(t1 − t2), where i is an integer. We are
going to assume vanishing cross correlations:

〈Γin(t1)Γclk(t2)〉 = 〈Γin(t1)Γvco(t2)〉

= 〈Γvco(t1)Γclk(t2)〉

=0. (27)

Taking into into account that the considered (white) noise
sources are stationary, the delayed noise term Γclk(t− τd) can
be considered as a separate noise source Γd(t). Equation (26) is
easily solved by Fourier transformation technique. Introducing
the Fourier transform X(ω) of x(t)

X(ω) =

∞∫
−∞

x(t)e−jωtdt ⇔ x(t) =
1
2π

∞∫
−∞

X(ω)ejωtdω

(28)

and using the inverse Fourier transformation, (26) is solved:

X(ω) = (A + jωI)−1DΓ(ω) (29)

where I is the unity matrix. Since dαin(t)/dt =
√
cin Γin(t),

we have

αin(ω) =
√
cin Γin(ω)
jω

. (30)

Next, we want to determine the cross correlation functions
〈x(τ)x(0)〉, where we have assumed that x(t) is a real wide-
sense-stationary process. This is achieved by first computing
the cross-spectral densities 〈X(ω)(X∗(ω))T〉 and then trans-
forming to the time domain. The cross-spectral densities are
expressed as

S(ω) ≡
〈
X(ω) (X∗(ω))T

〉

=
〈
(A + jωI)−1DΓ(ω)

[
(A − jωI)−1DΓ∗(ω)

]T〉

=2π(A + jωI)−1DDT(AT − jωI)−1. (31)

We want to determine the elements slm of the matrix S(ω),
where l and m are integers. Let us define unit vectors êT1 =
[1 · · · 0], êT2 = [0 1 0], and êTn = [0 · · · 1]. The eigenvectors
Vj corresponding to the eigenvalues λj of the matrix AT

satisfy ATVj = λjV. Using the eigenvectors, we define a new
basis in which the unit vectors are expressed as

êk = bk1



v111
v112

...

v11n


+ bk2



v211
v212

...

v21n


+ · · · + bkn



vn
11

vn
12

...

vn
1n




= bk1V1 + bk2V2 + · · · + bknVn (32)

where k = 1, . . . , n and bk1 , . . . , bkn are constants. The coeffi-
cients slm of the matrix S(ω) can now be expressed as

slm = êTl Sêm

=2π
(
bl1V

T
1 + · · · + blnV

T
n

)
(A + jωI)−1DDT

· (AT − jωI)−1(bm1V1 + · · · + bmnVn)

=
n∑

i=1

n∑
k=1

2πbliV
T
i

× [(A + jωI)−1DDT · (AT − jωI)−1
]
Vkbmk

(33)

where n is the order of the system depicted in (26). We recall
that (AT)−1Vj = (1/λj)Vj and VT

j A−1 = (1/λj)VT
j . The

matrix coefficients slm are therefore expressed as

slm =
n∑

i=1

n∑
k=1

2πbliV
T
i DDTVkbmk

(λi + jω)(λk − jω)

=
n∑

i=1

n∑
k=1

2πbliV
T
i DDTVkbmk

(λi + λk)

×
(

1
λk − jω

+
1

λi + jω

)
. (34)

Taking the inverse Fourier transformation of (34), the cross
correlation functions are found as follows:

slm(τ) = 〈xl(τ)xm(0)〉

=
n∑

i=1

n∑
k=1

bliV
T
i DDTVkvbmk

(λi + λk)

× (eλkτµ(−τ) + e−λiτµ(τ)
)
. (35)

Since the matrix DDT is symmetric, we have VT
i DDTVk =

(VT
i DDTVk)T = VT

k DDTVi. When l = m, (35) can then
be expressed as

smm(τ) =
n∑

i=1

(
bmi

VT
i DDTVibmi

2λi

+
n∑

j 
=i,j=1

bmi
VT

i DDTVjbmj

λi+ λj

)
·e−λi|τ |

=
n∑

i=1

νmm
i e−λi|τ | (36)
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where µ(·) is the unit step function. Furthermore, when l 
= m,
slm(τ) + sml(τ) can be expressed as

slm(τ) + sml(τ) = 2
n∑

i=1

(
bliV

T
i DDTVibmi

2λi

+
n∑

j 
=i,j=1

bliV
T
i DDTVjbmj

λi + λj

)

· e−λi|τ |

=2
n∑

i=1

νlm
i e−λi|τ |. (37)

Next, we determine the correlation function 〈αin(τ)x(0)〉.
We use the same procedure as before and first determine the
cross-spectral densities

〈αin(ω)X∗(ω)〉 =
〈√

cin Γin(ω)
jω

(A − jωI)−1DΓ∗(ω)
〉

=
2π

√
cin

jω
(A − jωI)−1Dên. (38)

The correlation functions 〈αinx∗l (ω)〉, where x∗l (ω) are the
elements of X∗(ω), are expressed as

〈αin(ω)x∗l (ω)〉 =
2π

√
cin

jω
êTl (A − jωI)−1Dên

=
n∑

i=1

2π
√
cinbliV

T
i (A − jωI)−1Dên
jω

=
n∑

i=1

2π
√
cinbliV

T
i Dên

ω2 + jωλi
. (39)

Similarly, it can be shown that 〈xl(ω)α∗
in(ω)〉 is given by

〈xl(ω)α∗
in(ω)〉 =

n∑
i=1

2π
√
cin bliV

T
i Dên

ω2 − jωλi
. (40)

As will be shown in Section V, the correlation function
〈αinx∗l (ω)〉 always contains the pair 〈xl(ω)α∗

in(ω)〉 when com-
puting the frequency spectrum of the clock signal. It is there-
fore convenient to determine the Fourier transformation of
〈αin(ω)x∗l (ω)〉 + 〈xl(ω)α∗

in(ω)〉. This is shown to be

〈αin(τ)xl(0)〉 + 〈xl(τ)αin(0)〉=
n∑

i=1

√
cin bliV

T
i D ên

λi
e−λi|τ |

=
n∑

i=1

µl
ie

−λi|τ |. (41)

The constants bli , where l and i are integers, appearing in
(36) and (41) are the elements of a vector Bl and are determined

by solving the following matrix equation:

Bl =V−1êl

V =



v11 v21 · · · vn1

v12 v22 · · · vn2
...

... · · · ...
v1n v2n · · · vnn




≡



v111 v211 · · · vn

11

v112 v212 · · · vn
12

...
... · · · ...

v11n v21n · · · vn
1n


 (42)

where êl are unit vectors.

V. COMPUTATION OF THE AUTOCORRELATION FUNCTIONS

OF THE EXTRACTED CLOCK SIGNALS

The intensity of a locally generated optical clock signal in
the presence of phase noise (2) is expressed as

Pclk(t) =
∞∑

q=−∞
cqe

jqω′
0tejqω′

0αclk(t)

=
∞∑

q=−∞
cqe

jqω′
0(t+αclk(t)) (43)

where ω′
0 = 2π(f ′

0/m). The autocorrelation function
〈Pclk(t)P ∗

clk(t+ τ)〉 of the optical clock signal is expressed as

〈Pclk(t)P ∗
clk(t+ τ)〉

=
q=∞∑

q=−∞

∞∑
k=−∞

cqc
∗
ke

j(q−k)ω′
0te−jkω′

0τ
〈
ejω′

0ϕqk(t,τ)
〉

(44)

where ϕqk(t, τ) = qαclk(t)− kαclk(t+ τ). The term
〈ejω′

0ϕq,k(t,τ)〉 corresponds to the characteristic function
of the stochastic process qαclk(t) − kαclk(t+ τ). It has
been shown that the characteristic function of the zero mean
Gaussian distributed random variable Γ, N(0, σ2Γ) equals
〈ejωΓ〉 = e−(1/2)ω

2σ2
Γ [32]. As stated earlier, the phase noise

of the optical clock signal is asymptotically a zero mean
wide-sense stationary Gaussian process, and therefore, the
following is valid: 〈ejω′

0ϕq,k(t,τ)〉 = e−(1/2)ω
′2
0 σ2

ϕ(t,τ). The
variance σ2ϕ(t, τ) is expressed as

σ2ϕ(t, τ) =
〈
[qαclk(t) − kαclk(t+ τ)]2

〉
− 〈[qαclk(t)− kαclk(t+ τ)]〉2

= q2
〈
α2clk(t)

〉− 2qk 〈αclk(t)αclk(t+ τ)〉
+ k2

〈
α2clk(t+ τ)

〉
. (45)

Taking the stationarity of the phase noise into consideration,
the variance σ2ϕ(t, τ) is given by

σ2ϕ(t, τ) = (q2 + k2) 〈αclk(τ = 0)αclk(0)〉
−2qk 〈αclk(τ)αclk(0)〉 . (46)
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In order to determine the autocorrelation function of the
optical clock signal, the autocorrelation function of the phase
noise 〈αclk(τ)αclk(0)〉 needs to be calculated. By using the
Wiener–Khintchine theorem [33], the autocorrelation function
〈αclk(τ)αclk(0)〉 can be expressed in terms of the spectral
density

〈αclk(τ)αclk(0)〉 =
1
2π

+∞∫
−∞

〈αclk(ω)α∗
clk(ω)〉

2π
ejωτdω (47)

Using (4), we have that αclk(ω) = φe(ω) + αin(ω), and it
can therefore be shown that the spectral density of the optical
clock signal phase noise 〈αclk(ω)α∗

clk(ω)〉 becomes

〈αclk(ω)α∗
clk(ω)〉 = 〈αin(ω)α∗

in(ω)〉 + 〈αin(ω)φ∗
e(ω)〉

+ 〈φe(ω)α∗
in(ω)〉 + 〈φe(ω)φ∗

e(ω)〉 . (48)

In order to compute the autocorrelation function of the opti-
cal clock signal phase noise 〈αclk(τ)αclk(0)〉, (48) is inserted
into (47), and we furthermore use (30), (36), and (41). After
inverse Fourier transformation, one gets

〈αclk(τ)αclk(0)〉 =
(
〈αin(τ)αin(0)〉 + 〈αin(τ)φe(0)〉

+ 〈φe(τ)αin(0)〉 + 〈φe(τ)φe(0)〉
)

= − 1
2
cin|τ | +

n∑
i=1

(
µ1i + ν11i

)
e−λi|τ |.

(49)

The variance of the phase noise σ2ϕ(t, τ) is obtained by
inserting (49) into (46):

σ2ϕ(t, τ) = qkcin|τ | + (q2 + k2)
n∑

i=1

(
µ1i + ν11i

)

−2qk
n∑

i=1

(
µ1i + ν11i

)
e−λi|τ |. (50)

Inserting the expression for the variance (50) into (44) and
observing that only terms corresponding to k = q are nonzero
for t → ∞, the autocorrelation function of the optical clock
signal 〈Pclk(t)P ∗

clk(t+ τ)〉 is expressed as

〈Pclk(t)P ∗
clk(t+ τ)〉 =

∞∑
q=−∞

|cq|2e−jqω′
0τ

·exp
(
−1
2
q2ω′2

0

[
cin|τ |+2

n∑
i=1

(
µ1i +ν11i

)
(1−e−λi|τ |)

])
. (51)

Next, we determine the autocorrelation function of the VCO
signal 〈v(t)v∗(t+ τ)〉, enabling a comparison between the ex-
tracted optical and electrical clock signal. Following the proce-
dure above, and expressing αvco(t) = αin(t) + φe(t) − γe(t),
the autocorrelation function becomes (52), shown at the bottom
of the page.

The frequency spectrum of the extracted optical and elec-
trical clock signal can now be obtained by taking the Fourier
transform of (51) and (52), respectively.

VI. PDF OF CLOCK SIGNAL

Using the autocorrelation functions determined in the previ-
ous section, we determine the pdf of the extracted clock signal.
In general, given a stochastic process x(t), we form another
stochastic process by the following definition:

y(t) = T [x(t)] . (53)

The process y(t) is completely specified in terms of the op-
erator T and x(t). The pdf of y(t), (py(y; t)) can be determined
in terms of the density of x(t), (px(x; t)) [32]

py(y; t) =
∑
n

px(xn; t)
|y′(xn; t)| (54)

where xn are the roots of the equation y(t)− T [xn] = 0. Let us
now consider the stochastic process αclk(t) and the correspond-
ing transformation:

y(t) =
∞∑

k=−∞
A0e

−
[

tk+αclk(t)
T0

]2
(55)

where A0 is a constant, tk = t+ kTp, and Tp = (1/f ′
0). Equa-

tion (55) represents a Gaussian pulse train (optical clock signal)
corrupted with phase noise. By using (54), we will determine
the pdf of the optical clock signal, i.e., Py(y; t). Since αclk(t)
is (asymptotically) a zero mean wide-sense stationary Gaussian
process, the pdf Pαclk(αclk; t) is expressed as

Pαclk(αclk; t) =
1√

2πσαclk

e
− α2

clk
2σ2

αclk (56)

where the variance σ2αclk
is determined from the autocorrelation

function (49) by setting τ to zero, i.e., σ2αclk
=
∑n

i=1(µ
1
i +

ν11i ). The roots xn ≡ αclkn are obtained by solving the follow-
ing equation:

y(t)−
∞∑

k=−∞
A0e

−
[

tk+αclkn
T0

]2
= 0. (57)

〈v(t)v∗(t+ τ)〉 =
1∑

p=−1

V 20
4
e−jpω′

0τ exp

(
−1

2
p2ω′2

0

[
cin|τ | + 2

n∑
i=1

(
µ1i − µ2i + ν11i + ν22i − 2ν12i

)
(1 − e−λi|τ |)

])
(52)
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We want to determine the solution for 0 < y(t) ≤ A0. Equa-
tion (57) is easily solved numerically. For an isolated Gaussian
pulse, by setting k = 0 in (55), the roots αclk1,2 are easily
determined:

y(t) = A0e
−
[

t+αclkn
T0

]2
⇒ αclk1,2 = −t± T0

√
ln
(
A0
y(t)

)
.

(58)

If we assume that the TFWHM of the optical clock pulse
signal satisfies2 TFWHM � Tp, then the roots αclkn of (57) can
be expressed as

αclkn = −(t+ kTp) ± T0

√
ln
(
A0
y(t)

)
. (59)

Now, the pdf of an optical clock signal can be determined by
using (54) and (59):

Py(y; t) =
∞∑

k=−∞

T0

2
√

2πσαclky
√

ln(A0/y)

×
(
e
− (−tk+T0

√
ln(A0/y))2

2σ2
αclk +e

− (−tk−T0
√

ln(A0/y))2

2σ2
αclk

)
. (60)

The pdf calculated in (60) shows that even though the phase
noise αclk(t) has a Gaussian distribution, after the transforma-
tion the pdf of the optical clock signal is not Gaussian. Next,
the mean of the optical clock signal is computed. In general, the
mean of the stochastic process y(t) specified in (53) is given by
the following integral [32]:

〈y(t)〉 =

∞∫
−∞

T [αclk(t)] pαclk(αclk; t)dαclk. (61)

In order to compute the mean value of the optical clock
signal, we therefore need to solve

〈y(t)〉 =
A0√

2πσαclk

k=∞∑
k=−∞

∞∫
−∞

e
−
[

tk+αclk
T0

]2
e
− α2

clk
2σ2

αclk dαclk.

(62)
The integral in (62) is easily solved, and the mean of the

optical clock signal is thereby given as

〈y(t)〉 =
k=∞∑

k=−∞

A0T0√
(T 20 + 2σ2αclk

)
e
− t2

k

(T2
0

+2σ2
αclk) . (63)

Having computed the mean value of the extracted optical
clock signal the corresponding variance is computed by setting
τ to zero in (51) and using (63). By using the same procedure,
one can obtain the pdf and mean of the extracted VCO signal.

2In practice, this condition will be satisfied. Typically, the repetition fre-
quency of the optical clock signal will be 40 or 10 GHz. The corresponding
period time Tp is therefore 25 or 100 ps, and the typical values of the TFWHM

are in the range from 1–5 ps.

TABLE I
PARAMETERS OF THE OPLL-BASED CR THAT ARE HELD CONSTANT

THROUGHOUT THE SIMULATIONS

VII. RESULTS

In Table I, we have summarized the key system parameters
that are held fixed throughout the simulations.

A. Timing Jitter as a Function of Loop Gain

In this section, it is assumed that the laser characteristic knee
frequency fch is large enough such that phase noise of the VCO
is completely transferred to the laser, i.e., αclk(t) = αvco(t)
and thereby, γe(t) = 0. We therefore only need to consider
the phase noise associated with the input signal αin(t) and the
VCO αvco(t).

In practice, we are usually interested in the spectrum of the
recovered clock signal S(f) around the first harmonic, i.e.,
f ′
0/m or f ′′

0 . The single-sideband to carrier ratio (SSCR) (in
dBc/Hz) is very widely used in practice to characterize the noise
performance of the extracted clocks signal [2]. The SSCR is
defined as [26]

SSCR ≡ 10 log10

(
S(f ′

0/m+ f)
|X|

)
(64)

where f is the offset frequency from the first harmonic, and
|X| = |c1|2 or V 20 /2. The SSCR gives the amount of phase
noise around the first harmonic. In the absence of phase noise,
the extracted clock signal frequency spectrum S(f) would only
contain discrete frequency component at kf ′

0/m or kf ′′
0 , where

k is an integer.
We want to investigate how the SSCR of the extracted clock

signal, at the VCO output, is affected by the input data and
VCO signal phase noise, loop parameters, and time delay.
Furthermore, timing jitter of the clock signal is computed by
integrating the spectrum of the recovered clock signal: see (71).
Initially, we assume that the VCO signal contains more phase
noise than the input data signal, i.e., cvco > cin. Time delay is
set to zero.

In Fig. 2(a), the SSCR of the extracted 10-GHz clock sig-
nal, around the first harmonic (i.e., 10 GHz), is computed
when the overall loop gain ξ = ζ1Kvco is varied from 104 to
108 rad · A/s · V. These values of the loop gain are obtainable
in practical realizations of the optical PLL using standard
components. For low frequencies, the clock SSCR follows the
input data signal SSCR, and for higher frequencies, it follows
the SSCR of the VCO. The offset frequency, at which the
SSCR of the clock signal makes a transition to the SSCR of the
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Fig. 2. (a) SSCR of the extracted clock signal for selected values of the overall loop gain. (b) Timing jitter of the extracted clock signal as a function of the
overall loop gain for selected values of input data signal timing jitter. The VCO jitter is 2.25 ps, and PI filter bandwidth is 20 MHz.

Fig. 3. (a) SSCR of the extracted clock signal for zero and 300-ns time delay. (b) Clock jitter as a function of time delay for selected PI filter bandwidths.

VCO, corresponds to the bandwidth of the OPLL. This implies
that the low-frequency timing jitter is directly transferred from
the input OTDM data signal to the clock signal, while the
high-frequency timing jitter of the clock signal originates from
the VCO. In general, we are interested in reducing the high-
frequency jitter from the clock signal since it may result in a
penalty when using the clock signal for optical gating. As the
overall loop gain ξ is increased from 104 to 108 rad · A/s · V,
the SSCR of the clock signal becomes less and less influenced
by the VCO signal. The sideband is pushed down and away,
as experimentally verified in [34]. For sufficiently large values
of the overall loop gain, the SSCR of the clock signal will
approach the SSCR of the input data signal. This is also shown
in Fig. 2(b), where timing jitter of the extracted clock signal
(jitter integration range: 1 Hz–5 GHz) is plotted as a function
of the overall loop gain, for input OTDM data signal jitter in the
range from 71 to 800 fs (jitter integration range: 1 Hz–80 GHz).
Equation (72) is used to compute the timing jitter of the input
signal. Increasing the loop gain thus reduces the timing jitter
of the extracted clock signal when cvco > cin: see Fig. 2(b). As
the overall loop gain is increased sufficiently, the clock timing
jitter approaches its minimum value. It is worth remarking that
this minimum value corresponds to the input OTDM data signal
jitter. However, when the input data signal jitter is relatively
large, i.e., 800 fs, the minimum obtainable jitter of the clock
signal is approximately 1 ps. In practice, the PLL overshoots
if the loop gain is increased unconditionally. Since the PLL
is modeled in the small signal regime (Ornstein–Uhlenbeck

process), the overshooting can therefore not be observed in the
analytical results [38].

B. Timing Jitter in the Presence of Time Delay

Until now, we assumed that the time delay in the loop was
zero. The influence of a time delay on the timing jitter of the
extracted clock signal is investigated by looking at the SSCR
of the extracted clock signal for zero and 300-ns time delay
(∼60 m); see Fig. 3(a). Notice that the SSCR of the extracted
clock signal increases, around the resonant peak, when the time
delay is 300 ns, compared to the zero time delay case. This is
similar to the experimental observations reported in [37] and
[38]. An increase in time delay from 0 to 300 ns results in an
increased timing jitter from 188 to 621 fs. In the presence of
time delay, the behavior of the loop is very much dependent on
the PI filter bandwidth [22]. We therefore need to investigate
the timing jitter dependence of the time delay as the PI filter
bandwidth is varied. This is shown in Fig. 3(b). The clock jitter
increases as the time delay increases. However, this is most
pronounced for the PI filter bandwidth fbw of 3 and 5 MHz.
The loop’s dynamical behavior becomes more unstable, result-
ing in increased timing jitter as the time delay approaches its
critical value (τd = 1/2fbw) [22]. The impact of time delay on
timing jitter is negligible, as long as we are far away from the
critical value.

Next, we investigate how the timing jitter of the extracted
clock is affected by a time delay as we vary the input data and
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Fig. 4. (a) Jitter transfer function for zero and 140-ns time delay. PI filter bandwidth: 1 MHz. (b) SSCR of the clock signal for selected values of the PI filter
bandwidths. Input signal jitter: 990 fs. VCO signal jitter: 70 fs.

Fig. 5. SSCR of the recovered optical clock signal for selected values of the laser’s characteristic knee frequency fch. Input signal jitter: 160 fs. (a) Laser jitter:
100 fs and VCO jitter: ≈0 fs. (b) Laser jitter ≈0 fs and VCO jitter 100 fs.

VCO signal timing jitter (jitter transfer function). In Fig. 4, the
timing jitter of the extracted clock signal is plotted as a function
of input OTDM data signal jitter for selected values of VCO
jitter (225 fs, 711 fs, and 5 ps). The computations are made for
the cases of zero and 140-ns time delay.

For the relatively large value of VCO jitter (5 ps), a large
increase in clock jitter is observed as the time delay is increased
from zero to 140 ns. Furthermore, it should be observed that
the clock timing jitter is almost constant over a large range of
input jitter values. The timing jitter of the VCO is large and
therefore dominates the clock jitter. Reducing the timing jitter
of the VCO reduces the impact of the time delay on the clock
jitter, as seen in Fig. 4. For a relatively low VCO timing jitter of
225 fs, the impact of time delay on the clock jitter becomes neg-
ligible for input data signal jitter above approximately 100 fs.
Furthermore, reducing the VCO jitter, the extracted clock jitter
becomes more dependent on the input OTDM data signal jitter.
The clock jitter approximately assumes the values of the input
OTDM data signal jitter when the VCO jitter is 225 fs, and the
time delay is zero.

So far, we have assumed that the VCO signal contained more
phase noise that the input data signal. Now, let us consider a
case in which the input signal is more noisy than the VCO
signal. This is shown in Fig. 4(b), for selected values of the PI
filter bandwidth: 100 kHz, 5 MHz, and 15 MHz. As explained
earlier, within the bandwidth of the PLL, the clock signal
follows the input data signal, and for frequencies exceeding the
PLL bandwidth, the extracted clock signal couples to the SSCR
of the VCO signal. Since the free-running VCO signal contains

less timing jitter than the input signal, the recovered optical
clock signal will thus exhibit lower timing jitter than the input
data signal. In the considered case, we want to decrease the PI
filter bandwidth since the coupling frequency to the SSCR of
the VCO signal decreases, as observed from Fig. 4(b), yielding
an overall lower SSCR. However, even though the free-running
VCO is less noisy than the input data signal, we may end up
with a case where high-frequency noise is added to the extracted
clock signal due to other noisy loop components. We may,
however, conclude that the minimum requirement in order for a
clock signal to exhibit less timing jitter than the input signal is
to have a VCO, which contains less jitter than the input signal,
and to have a low PLL bandwidth.

C. Phase Noise Contributions From the Laser and the VCO

In this section, we investigate how the SSCR of the recovered
optical clock signal (at the laser output) is affected by the laser
phase noise and the phase noise associated with the VCO.
The input data is assumed to have higher jitter than the local
oscillators (VCO and laser). The PLL bandwidth is chosen to
be low in Fig. 5 (20 kHz) in order to illustrate the coupling
from data SSCR to the VCO and the laser SSCR.

In Fig. 5(a), the SSCR of the recovered 10-GHz optical
clock signal is shown. The laser characteristic knee frequency
fch is increased from 1 to 20 MHz. The phase noise of
the free-running VCO is negligible, and the timing jitter of
the free-running laser is 100 fs. Fig. 5(a) shows that within the
PLL bandwidth fpll, the SSCR of the recovered optical clock
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Fig. 6. Integrated timing jitter of the recovered optical and electrical clock
signal as a function of the laser’s characteristic knee frequency fch. Input jitter:
160 fs. PLL bandwidth: 5 MHz. Jitter integration range: 20 kHz f0/2.

signal follows the SSCR of the input data signal. The laser
characteristic knee frequency fch determines the frequency at
which the SSCR of the optical clock couples to the SSCR of
the free-running laser. The SSCR of the optical clock signal
is dominated by the VCO phase noise in the frequency range
fpll − fch. As fch is increased, the SSCR of the optical clock
signal is coupled to the VCO in a larger bandwidth, resulting
in a bigger dip. In Fig. 5(b), we have assumed that the phase
noise associated with the laser is negligible and the free-running
VCO has a timing jitter of 100 fs. It is observed that as fch is
decreased, the SSCR is suppressed. By keeping fch low, the
VCO jitter is not transferred to the noise-free laser signal. Fur-
thermore, the high-frequency jitter contribution (> 100 MHz)
is reduced from the recovered optical clock signal, as observed
in Fig. 5(b). It is therefore of great advantage to use a laser with
low phase noise.

In Fig. 6, the integrated timing jitter of the recovered optical
(laser output) and electrical (VCO output) clock signal is com-
puted as a function of fch. The PLL bandwidth is set to the more
realistic value of 5 MHz, allowing for a reasonable locking time
[35]. When the jitter of the free-running laser is 100 fs and
the corresponding jitter of the VCO is set to be negligible, the
timing jitter of the recovered optical clock signal reduces as fch
increases. This is in accordance with Fig. 5(a). When the jitter
associated with the free-running laser is negligible and the VCO
free-running jitter is 100 fs, it is observed that the timing jitter
of the recovered optical clock signal increases as fch increases,
in accordance with Fig. 5(b). For the extracted electrical clock
signal, in both cases, the integrated timing jitter reduces as the
laser’s characteristic knee frequency increases. Furthermore,
the recovered optical clock signal exhibits less timing jitter than
the electrical clock signal in the range 1 kHz–2 MHz.

D. Reduction of Timing Jitter

Optical re-amplification, re-shaping, and re-timing (3R) re-
generation is potentially a key technology for bit rates of
40 Gb/s and above. For 3R regeneration, clock signal extraction
from a distorted data signal is needed, and the extracted clock

Fig. 7. Contour lines for a constant timing jitter of 112 fs of the recovered
optical clock signal as a function of the VCO’s and laser’s free-running jitter
when fch is varied in the range 100 kHz–20 MHz. Input jitter: 160 fs. PLL
bandwidth: 5 MHz. Jitter integration range: 20 kHz f0/2.

signal must exhibit lower timing jitter than the degraded data
signal. CR has been performed by various techniques, e.g., by
a self-pulsating DFB laser, a mode-locked laser, and an optical
PLL; see, e.g., [36]. In order for a recovered clock signal to
have less jitter than the input signal, the jitter of the free-running
local oscillator must be less than that of the input signal [38]. An
advantage of using an OPLL-based CR is that one has access
to both a recovered electrical and optical clock signal. In this
section, we describe the requirements to an OPLL to achieve
reduced timing jitter.

Fig. 7 contour lines correspond to a constant timing jitter of
112 fs (∼30% jitter reduction compared to the input) of the
recovered optical clock signal as a function of the free-running
jitter of the VCO and the laser when the laser’s characteristic
knee frequency fch is varied from 100 kHz to 20 MHz. The
input data signal jitter is 160 fs. In short, Fig. 7 shows the
requirements for the free-running jitter of the laser and the VCO
in order to obtain recovered optical clock signal with 30% jitter
reduction compared to the input for a specific fch.

Fig. 7 furthermore illustrates that as fch is increased, the
timing jitter requirement for the laser becomes more relaxed
as the integrated clock signal jitter becomes less affected by the
laser jitter. The VCO jitter requirements become more stringent
as the laser’s characteristic knee frequency fch is increased.
However, this is insignificant when fch is above 500 kHz. It
should be observed that even though the laser’s free-running
jitter exceeds 160 fs, an optical clock signal with lower timing
jitter than at the input is obtainable if the jitter of the free-
running VCO is low enough.

Fig. 8 depicts level curves for a constant timing jitter of
112 fs of the recovered electrical clock signal as a function of
the free-running jitter to which the VCO and the laser again
corresponds. Fig. 8 shows again the requirements for the free-
running jitter of the laser and the VCO in order to obtain recov-
ered electrical clock signal with 30% jitter reduction compared
to the input for a specific fch. Fig. 8 illustrates that as fch is
increased, the timing jitter requirement for the laser and for the
VCO become more relaxed. By comparing Figs. 7 and 8, it is
observed that the timing jitter requirements for the laser and the
VCO are more stringent for the extracted electrical clock signal.
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Fig. 8. Contour lines for a constant timing jitter of 112 fs of the recovered
electrical clock signal as a function of the VCO’s and laser’s free-running jitter
when fch is varied in the range 500 kHz–20 MHz. Input jitter: 160 fs. PLL
bandwidth: 5 MHz. Jitter integration range: 20 kHz f0/2.

VIII. CONCLUSION

A detailed noise analysis of a CR circuit based on an OPLL,
taking into account the phase noise associated with the signals
and the effects of loop time delay and laser transfer function
is presented. By a small-signal analysis, the Langevin equa-
tions describing the corresponding system are linearized to
an Ornstein–Uhlenbeck process, and the correlation functions
are obtained by the inverse Fourier transformation technique.
Furthermore, the pdf of the recovered clock signal is computed.
The noise analysis has shown that the minimum recovered
clock signal jitter approaches the input data signal jitter if the
input data signal has less jitter than the VCO and the laser.
Increasing the loop length results in an increase in timing jitter
of the recovered clock signal as the time delay approaches
its critical value. The impact of time delay on the clock jitter
can be reduced by using a low-noise VCO and a low PI filter
bandwidth. Furthermore, we have numerically investigated the
influence of noisy electrical and optical local oscillators on
the timing jitter of the recovered clock signal. Timing jitter
requirements for the laser can be significantly relaxed by a large
laser characteristic knee frequency using a low-noise VCO. If
the laser has more jitter than the VCO, it is preferable to have
a large laser characteristic knee frequency, and if the laser has
less jitter than the VCO, it is preferable to have a small laser
characteristic knee frequency. We have also shown that the
recovered optical clock signal exhibits lower timing jitter than
the recovered electrical clock signal for low values of the laser
characteristic knee frequency.

APPENDIX

In this section, it is shown how timing jitter (temporal ac-
curacy) of a signal having Brownian motion phase error can
be computed. We start by considering the intensity of an ideal
periodic pulse train expressed in a Fourier series:

g(t) = a0 +
∞∑

i=1

ai sin[2πif0t] (65)

where ai are Fourier coefficients, f0 is the repetition frequency,
and i is an integer. The effect of phase noise α(t) on a signal
g(t) creates deviations or jitter in the repetition frequency. In

other words, phase noise α(t) will cause spectral dispersion of
a signal. We are going to model α(t) as a Brownian motion
phase error [25]. The signal g(t) becomes g(t+ α(t)) in the
presence of the phase noise and is expressed as

g (t+ α(t)) = a0 +
∞∑

i=1

ai sin [2πif0t+ 2πif0α(t)] . (66)

A randomly fluctuating phase noise α(t) can be asymptoti-
cally described as a modulated Wiener process [25]:

dα

dt
=

√
c Γ(t) (67)

where c is a constant determining the amount of phase noise
associated with the signal. The constant c will depend on the
various parameters of the optical communication system, i.e.,
pulse source at the transmitter, noise figure of the channel and
receiver, etc., where Γ(t) is a stochastic Langevin noise force
which is Gaussian distributed and is fully characterized by its
mean value and correlation function:

〈Γ(t)〉 = 0 〈Γ(t)Γ(t′)〉 = δ(t− t′). (68)

Using (67) and (68), the phase noise can be statistically
characterized [33]:

〈α(t)〉 = 0
〈|α(t) − α(t′)|2〉 = c|t− t′|. (69)

The ensemble average of the phase noise is thereby zero,
and its mean-square value increases linearly with time. For
practical applications, we are interested in obtaining the power
frequency spectrum of the signal g(t+ α(t)). By integrating
the frequency spectrum, we can then compute the timing jitter
of the signal. The single-sided frequency spectrum of a signal
g(t+ α(t)) is expressed as [25]

G(f) =
∞∑

i=−∞

|ai|2f20 i2c2
π2f40 i

2c2 + (f + if0)2
. (70)

Using the frequency spectrum of the signal in (70), the timing
jitter (around the first harmonic) can then be calculated using
the von der Linde method [39]:

τjitt =
1

2πf0

√
2
∫ fmax

fmin

G(f0 + f)
|a1|2 df (71)

where fmin and fmax are lower and upper integration limits,
respectively. Inserting G(f0 + f) in (71) and performing the
integration around the first harmonic (i = 1,−1), the timing
jitter of a signal having Brownian motion phase error becomes

τjitt =
1√

2π
√
πf0

·
[
arctan

(
fmax
πf20 c

)
+ arctan

(
fmax + 2f0

πf20 c

)

− arctan
(
fmin
πf20 c

)
− arctan

(
fmin + 2f0

πf20 c

)]1/2
.

(72)
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Using (72), we can compute timing jitter of a signal as
a function of constant c for the specified integration range
f = [fmin; fmax].
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