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Efficient Calculation of Born Scattering for
Fixed-Offset Ground-Penetrating Radar Surveys

Peter Meincke, Member, IEEE

Abstract—A formulation is presented for efficient calculation of
linear electromagnetic scattering by buried penetrable objects, as
involved in the analysis of fixed-offset ground-penetrating radar
(GPR) systems. The actual radiation patterns of the GPR anten-
nas are incorporated in the scattering calculation by using their
plane-wave transmitting and receiving spectra.

Index Terms—Born approximation, buried objects, fixed offset,
ground-penetrating radar (GPR), microwave imaging, plane-wave
transmitting and receiving spectra, scattering.

I. INTRODUCTION

S IGNAL-PROCESSING algorithms based on linear inverse
scattering are often used for ground-penetrating radar

(GPR) imaging [1]–[8]. To validate and investigate the per-
formance of such algorithms, an efficient calculation of the
linear electromagnetic scattering by buried objects—obtained
by using the first Born approximation—is essential. However,
most GPR systems operate in a fixed-offset mode in which the
transmitter and receiver move together, so that a new scattering
problem must be solved for each new receiver location. Hence,
a straightforward implementation of the Born scattering formu-
lation is too time consuming for analysis of realistic fixed-offset
GPR surveys.

In this letter, we derive an efficient formulation for calcu-
lating Born scattering by buried dielectric objects in a fixed-
offset GPR configuration. Since the formulation is based on
plane-wave expansions, it can be efficiently calculated using
fast Fourier transforms (FFTs). Also, we include the actual
radiation patterns of the GPR antennas by using their plane-
wave transmitting and receiving spectra [9]. The fact that the
presence of the air–soil interface impacts the radiation patterns
of the antennas is accounted for by the transmitting and receiv-
ing spectra.

Throughout this letter, the time factor exp(−iωt) is assumed
and suppressed.

II. FIXED-OFFSET GPR CONFIGURATION

The GPR configuration involving the planar air–soil interface
is shown in Fig. 1. A Cartesian xyz coordinate system is
introduced so that the xy plane coincides with the interface,
and so that z ≥ 0 is air, and z < 0 is soil. The air has permit-
tivity ε0, permeability µ0, and wavenumber k0 = ω

√
µ0ε0. The
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Fig. 1. Fixed-offset GPR configuration in which rt = rr + r∆ with r∆

is fixed.

soil has permittivity ε1, conductivity σ1, permeability µ0, and
wavenumber k1 =

√
ω2µ0ε1 + iωµ0σ1. The position of the

receiving antenna is rr = xrx̂ + yrŷ + zrẑ with zr ≥ 0, and
the position of the transmitting antenna is rt = rr + r∆ with
r∆ = x∆x̂ + y∆ŷ being fixed. Below the air–soil interface,
penetrable objects of volume Vs are buried. The transmitting
antenna is attached to a coaxial cable. In a given reference
plane in the cable, the voltage between the inner and outer
conductor of the field propagating toward the antenna in the
cable is Vt. The background field Eb, which is defined as
the field that would exist in the region z < 0 in the absence
of the objects, is then expressed in terms of the plane-wave
transmitting spectrum T of the GPR antenna as [9]

Eb(r) =
Vt

(2π)2

∞∫ ∫
−∞

T(kx, ky) exp (i [kx(x − xr − x∆)

+ ky(y − yr − y∆) − γ1z]) dkxdky (1)

where r = xx̂ + yŷ + zẑ with z < 0 being the position vector,

and γ1 = γ1(kx, ky) =
√

k2
1 − k2

x − k2
y , with Imγ1 ≥ 0 being

the z component of the propagation vector in the soil. As
described in [9], the plane-wave transmitting spectrum T of the
GPR antenna can be determined either from the current density
on the antenna or by measurements using a buried probe [10].
Here, we use the former approach and assume that J(r) is the
electric current density on the antenna when it is located at the
position ztẑ. The plane-wave transmitting spectrum is then [9]

T(kx, ky) = −ωµ0

2Vt
F̄(kx, ky) · J̃ (

k−
0

)
(2)

where k−
0 = kxx̂ + kyŷ − γ0ẑ, γ0 = γ0(kx, ky) =√

k2
0 − k2

x − k2
y , and Imγ0 ≥ 0. Moreover, J̃ is the
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three-dimensional (3-D) spatial Fourier transform of the
electric current density given by

J̃(k) =
∫

z≥0

J(r) exp(−ik · r) d3r (3)

where k = kxx̂ + kyŷ + kz ẑ. The dyadic F̄ in (2) is related
to the dyadic Green’s function of a two-layer medium in the
spectral domain and is given by

F̄(kx, ky) =
2

(γ0 + γ1)
(
k2

x + k2
y + γ0γ1

)
· [x̂ ((

k2
y + γ0γ1

)
x̂ − kxkyŷ + kxγ1ẑ

)
+ ŷ

(−kxkyx̂ +
(
k2

x + γ0γ1

)
ŷ + kyγ1ẑ

)
+ ẑ

(
kxγ0x̂ + kyγ0ŷ +

(
k2

x + k2
y

)
ẑ
)]

. (4)

If the antenna is described by a magnetic current density
M(r), when it is located at the position ztẑ, the plane-wave
transmitting spectrum is given by

T(kx, ky) = − 1
2Vt

[
k−

1 × F̄(kx, ky)
] · M̃(k−

0 ) (5)

where k−
1 = kxx̂ + kyŷ − γ1ẑ.

III. BORN SCATTERING BY BURIED OBJECTS

The receiving antenna of the GPR is connected to a matched
receiver through a coaxial cable with characteristic admittance
Y0. In a given reference plane in the cable, the voltage V
between the inner and outer conductors of the field propagating
away from the antenna in the cable is [9]

V (rr) =
1

(2π)2

∞∫ ∫
−∞

R(kx, ky) · S+
1 (kx, ky)

· exp (i [kxxr + kyyr)]) dkxdky (6)

where R(kx, ky) is the plane-wave receiving spectrum of
the GPR antenna, which will be discussed below after (11),
and S+

1 (kx, ky) is the plane-wave spectrum of the upward-
propagating field E+

1 in the soil. The plane-wave spectrum
S+

1 (kx, ky) is determined by first considering the field E+
1 .

Under the first Born approximation, this field is identical to the
scattered field Es in the soil above the buried object, which is
determined by [11, p. 485]

Es(r) = iωµ0

∫
Vs

Ḡ(r, r′) · Eb(r′)O(r′)d3r′ (7)

where z < 0, z > z′, r′ = x′x̂ + y′ŷ + z′ẑ, and O(r) is the
object function describing the contrast in the electromagnetic
properties from those of the background

O(r) = σ(r) − σ1 − iω (ε(r) − ε1) . (8)

Herein, ε(r) and σ(r) are the permittivity and conductiv-
ity distributions, respectively. Furthermore, Ḡ(r, r′) in (7) is

the dyadic Green’s function for a homogeneous medium with
wavenumber k1 [11, p. 381]

Ḡ(r, r′) =
(
Ī +

∇∇
k2
1

)
g(r, r′) z > z′ (9)

where g(r, r′) is the usual scalar 3-D Green’s function for a
homogeneous medium

g(r, r′) =
exp (ik1|r − r′|)

4π|r − r′| . (10)

The dyadic Green’s function in (9) does not involve contribu-
tions due to the reflection in the interface since these contribu-
tions are neglected when applying the first Born approximation.
The second step to obtain S+

1 (kx, ky) is to insert the plane-wave
expansion of the dyadic Green’s function (9) [11, p. 384] into
(7) for Es, yielding

S+
1 (kx, ky) =

−ωµ0

2γ1

(
Ī − k1k1

k2
1

)
· [ÕEb](k1). (11)

Herein, k1 = kxx̂ + kyŷ + γ1ẑ, and [ÕEb] is the 3-D spa-
tial Fourier transform of the product O(r)Eb(r).

The plane-wave receiving spectrum R(kx, ky) in (6) satisfies
that R(kx, ky) · k1 = 0 [9]. For a reciprocal GPR antenna,
the receiving spectrum is related to the transmitting spectrum
Tr(kx, ky) of the receiving GPR antenna, defined as in (1) with
Vt replaced by Vtr, as [9]

R(kx, ky) =
γ1

ωµ0Y0
Tr(−kx,−ky). (12)

The final expression for the output voltage V is obtained by
inserting the plane-wave spectrum (11) into (6)

V (rr) =
−ωµ0

8π2

∞∫ ∫
−∞

1
γ1

R(kx, ky) · [ÕEb](k1)

· exp (i[kxxr + kyyr]) dkx dky (13)

where the fact that R(kx, ky) · k1 = 0 has been applied. Note
that the background field Eb changes when the radar is moved,
and therefore, Eb needs to be recalculated for each new location
of the receiving antenna. Hence, with Nz denoting the number
of grid points used to discretize the object function along
the z axis and T0 being the average calculation time of one
operation in the two-dimensional (2-D) FFT, the asymptotic
calculation time for the straightforward evaluation of (13) for
Nx × Ny values of xr, yr on an Nx × Ny rectangular grid
is 6NzT0N

2
xN2

y log2(NxNy) as Nx, Ny → ∞. Consequently,
this calculation scheme is very inefficient for fixed-offset con-
figurations. In the following section, an efficient method is
derived to deal with the considered fixed-offset case.

IV. DERIVING THE EFFICIENT FORMULATION

To derive the efficient method, insert first the expression (1)
for the background field Eb, with kx, ky replaced by k′

x, k′
y ,

into the relation (13) for the output voltage. Second, inspired by
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the procedure in [12], interchange the integrations over kx, ky

and k′
x, k′

y and carry out the substitutions k′′
x = kx − k′

x and
k′′

y = ky − k′
y . The result is

V (rr) =

∞∫ ∫
−∞

F
(
k′′

x, k′′
y

)
exp

(
i
[
k′′

xxr + k′′
yyr

])
dk′′

xdk′′
y (14)

with

F
(
k′′

x, k′′
y

)
=

∫
z′∈Vs

H
(
k′′

x, k′′
y, z′

)
S

(
k′′

x, k′′
y, z′

)
dz′ (15)

H
(
k′′

x, k′′
y, z′

)
=

∫∫
(x′,y′)∈Vs

O(r′)

· exp
(−i

[
k′′

xx′ + k′′
yy′]) dx′dy′ (16)

S
(
k′′

x, k′′
y, z′

)
=

∞∫ ∫
−∞

C1 (kx, ky, z′)

· C2

(
k′′

x − kx, k′′
y − ky, z′

)
dkxdky (17)

C1 (kx, ky, z′) =
−ωµ0Vt

32π4γ1
R(kx, ky) exp (−iγ1z

′) (18)

and

C2 (kx, ky, z′)=exp (i [kxx∆+kyy∆−γ1z
′])T(−kx,−ky).

(19)

The integrations over k′′
x, k′′

y in (14) for V can be determined
for all needed receiver locations using one single 2-D FFT. The
relation for H in (16) can be calculated analytically for simple
object functions, or otherwise by 2-D FFTs for each z′ and
for all needed values of k′′

x, k′′
y . The integrations over kx, ky

of the dot product C1(kx, ky, z′) · C2(k′′
x − kx, k′′

y − ky, z′) in
(17) for S are in convolutional form, and therefore, for a fixed
z′, S(k′′

x, k′′
y, z′) can be calculated for all needed values of k′′

x

and k′′
y using 2-D FFTs as follows:

S
(
k′′

x, k′′
y, z′

)
= (2π)2

∞∫ ∫
−∞

C̃1(x, y, z′)

· C̃2(x, y, z′) exp
(−i

[
k′′

xx + k′′
yy

])
dx dy (20)

where

C̃1(x, y, z′) =
1

(2π)2

∞∫ ∫
−∞

C1 (kx, ky, z′)

· exp (i [kxx + kyy]) dkx dky (21)

and similarly for C̃2. The functions C1 and C2 in (18) and
(19) contain the factor exp(−iγ1z

′), which is exponentially
decaying for k2

x + k2
y > Re k2

1 . Hence, C1 and C2 are spa-
tially bandlimited with the bandwidth kmax determined by
requiring that exp(−

√
k2
max − k2

1|z′|), with kmax > Re k1, is
sufficiently small. The integrations over kx, ky in (17) ex-
tend over the ranges −kmax < kx < kmax and −kmax < ky <
kmax. Equations (15) and (17) then show that the functions

F (k′′
x, k′′

y) and S(k′′
x, k′′

y, z′) are bandlimited with the bandwidth
2kmax. Hence, the grid, on which the output voltage (14) is cal-
culated using FFTs, has the spacing ∆xr = ∆yr = π/(2kmax).
Assuming the worst case scenario, in which no closed-form
expression exists for H in (16) and 2-D FFTs therefore are
needed for its evaluation, the asymptotic calculation time
for (14) equals (1 + 8Nz)T0NxNylog2(NxNy) as Nx, Ny →
∞, where Nx, Ny , Nz , and T0 are defined in the previ-
ous section. Hence, the efficient formulation is 6NxNyNz/
(1 + 8Nz) ≈ 0.75NxNy times faster than the straightforward
approach in (13).

A. 2.5-Dimensional Case

In GPR analysis, it is often of interest to calculate scattering
by buried objects that are invariant in one direction. This is,
for instance, the case for pipes. In the 2.5-dimensional (2.5-D)
case considered in this section, it is assumed that the buried
object is invariant in the x̂ direction, and that the antennas
are x̂-directed Hertzian dipoles. The x̂-polarized antennas are
considered for simplicity, but without loss of generality; other
antenna polarization can easily be analyzed as well. The 2.5-D
versions of (14)–(19) become

V (yr) =

∞∫
−∞

F (k′′
y) exp

(
ik′′

yyr

)
dk′′

y (22)

F (k′′
y) = 2π

∫
z′∈Vs

H
(
k′′

y, z′
)
S

(
k′′

y, z′
)
dz′ (23)

H
(
k′′

y, z′
)

=
∫

y′∈Vs

O(y′, z′) exp
(−ik′′

yy′) dy′ (24)

S
(
k′′

y, z′
)

=

∞∫ ∫
−∞

C1 (kx, ky, z′)

· C2

(−kx, k′′
y − ky, z′

)
dkx dky

= (2π)2
∞∫ ∫
−∞

C̃1(x, y, z′)

· C̃2(x, y, z′) exp
(−ik′′

yy
)
dx dy (25)

where C̃1 and C̃2 are defined according to (21) and hence

C1(kx, ky, z) =ωµ0Vt exp (i [γ0zr − γ1z
′])

· (32π4Y0Vtr(γ0 + γ1)
(
k2

x + k2
y + γ0γ1

))−1

· (x̂ (
k2

y + γ0γ1

) − ŷkxky − ẑkxγ0

)
(26)

C2 (kx, ky, z′) = − ωµ0 (Vt(γ0 + γ1)

· (k2
x + k2

y + γ0γ1

))−1

· exp(i [kxx∆ + kyy∆ + γ0zr − γ1z
′])

· (x̂ (
k2

y + γ0γ1

) − ŷkxky − ẑkxγ0

)
. (27)
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Fig. 2. Magnitude of the output voltage calculated by the Born
approximation-based method in this letter and the exact method in [12].

Assume now that the object is a homogeneous cylinder with
permittivity εs, conductivity σs, axis at the depth z = z0, and
with rectangular cross section of dimension 2a × 2b. In this
case, H(k′′

y, z′) in (24) becomes

H
(
k′′

y, z′
)

=

b∫
−b

O(z′) exp
(−ik′′

yy′) dy′

= O(z′)2b sinc
(
k′′

yb
)

(28)

where

O(z′) =
{

σs − σ1 − iω(εs − ε1), |z′ − z0| < a
0, otherwise.

(29)

Similarly, in case the homogeneous cylinder has circular cross
section with radius a, H(k′′

y, z′) becomes

H
(
k′′

y, z′
)

= 2O(z′)
√

a2 − (z′ − z0)
2

· sinc
(

k′′
y

√
a2 − (z′ − z0)

2

)
. (30)

The asymptotic calculation time of the 2.5-D efficient for-
mulation in (22) is 13T0NzN

2
y log2 Ny as Ny → ∞, whereas

that of the 2.5-D version of the straightforward procedure in
(13) is 3NzN

3
y log2 Ny . Hence, in the 2.5-D case, the efficient

formulation is 3Ny/13 times faster than the straightforward
approach.

V. NUMERICAL INVESTIGATION

To show the correctness of the efficient formulation de-
rived in Section IV, a 2.5-D case involving scattering by
a circular cylinder is considered. The radius of the cylin-
der is 10 cm, its permittivity and conductivity are εs =
8.03ε0 and σs = 0.01 S/m, respectively, and it is buried

Fig. 3. Phase of the output voltage calculated by the Born approximation-
based method in this letter and the exact method in [12].

at z0 = −1 m in soil with ε1 = 8ε0 and σ1 = 0.01 S/m. The
antennas of the GPR are x̂-directed Hertzian dipoles with an
offset of y∆ = 10 cm and height 5 cm above the soil, and
the radar uses the frequency 241 MHz. Equations (22), (23),
(25)–(27), and (30) with Vt = Vtr = 1 V and Y0 = 20 mS
are used to calculate the output voltage V of the receiving
Hertzian dipole for 660 values of yr equally spaced between
−6 and 6 m.

Figs. 2 and 3 show the magnitude and phase, respectively, of
the calculated output voltage compared with the result obtained
by using the method described in [12]. The method of [12] is
based on an exact eigenfunction expansion of the field scattered
by the cylinder. The close agreement between the two results
underlines the correctness of the proposed efficient procedure
for fixed-offset configurations. The minor discrepancy observed
for the magnitude around yr = 0 is due to the limited accu-
racy of the first-order Born approximation. For the considered
configuration, in which Ny = 660 observation points are con-
sidered, the efficient method derived in this letter is approx-
imately 3Ny/13 ≈ 152 times faster than the straightforward
approach.

VI. SUMMARY

An efficient FFT-based formulation is derived for the cal-
culation of linear scattering by buried objects, as involved in
the simulation of fixed-offset GPR surveys. The formulation
is particularly useful for validation of linear inverse scatter-
ing schemes for fixed-offset GPR configurations. For the 3-D
case, in which the fixed-offset GPR is placed on a rectangular
grid containing Nx × Ny points, the efficient formulation is
approximately 0.75NxNy times faster than a straightforward
evaluation. Similarly, for the 2.5-D case involving Ny ob-
servation points, the efficient formulation is 3Ny/13 times
faster. Ongoing research involves the derivation of a similar
efficient formulation based on the nonlinear extended Born
approximation [13].
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