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Feasibility of non-linear simulation for Field II
using an angular spectrum approach
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Abstract— Simulation of non-linear fields is most often re-
stricted to single element, circularly symmetric sources, which
is not used in clinical scanning. To obtain a general and
valuable simulation, array transducers of any geometry with any
excitation, focusing, and apodization should be modeled. Field II
is restricted to simulate these for the linear case and the purpose
of this paper is to develop a general frame work for extending it
to non-linear simulation. The extension to the non-linear domain
is made by using the angular spectrum approach (ASA), where
the field is calculated in a plane close to the transducer surface.
This calculation is performed using Field II and, thus, includes
modeling array transducers of any geometry with any excitation,
focusing, and apodization. The propagation in the linear or non-
linear medium is then performed using the angular spectrum
approach. The first step in deriving this procedure is to find the
accuracy of the approach for linear propagation, where the result
can be validated using Field II simulations. The ASA calculations
are carried out by 3D fast Fourier transform using Matlab,
where λ/2 is chosen as the spatial sampling rate to reduce
aliasing errors. Zero-padding is applied to enlarge the source
plane to a (4N − 1) × (4N − 1) matrix to overcome artifacts
in terms of the circular convolution. The source plane covering
an area of 9 × 9 mm2 with N = 61 samples along both side,
is 0.05 mm away from a 5 MHz planar piston transducer, which
is simulated by Field II. To determine the accuracy, different
sampling intervals and zero-paddings are compared and the
errors are calculated with Field II as a reference. It can be
seen that zero-padding with 4N − 1 and λ/2 sampling can
both reduce the errors from 25.7% to 12.9% for the near-field
and from 18.1% to 5.8% for the far-field, and improve the
price of an increase in computation time. The angular spectrum
approach in combination with Field II opens for the possibility
of simulating the non-linear acoustic propagation for any kind
of array transducers.

I. INTRODUCTION

Non-linear imaging is extensively used in the clinic due to its
improved image quality [1] [2]. It has been observed that the
contrast is significantly better. However, there is still a limited
understanding of the inner workings of non-linear imaging [3]
[4]. It is very difficult to realistically simulate the non-linear
propagation and often it is not understood why the non-linear
images are better.

To archive an optimal image quality, it is of great importance
to obtain a simulation software, by which array transducers
of any arbitrary geometry with any excitation, focusing and
apodization can be modeled.

Field II [5] [6] is a program for simulating ultrasound
transducer fields and any kind of linear imaging can be

simulated as well as realistic images of human tissue.
To expand Field II for the same application into the non-

linear domain, an angular spectrum approach is used to solve
the non-linear Westervelt wave equation. A source plane is
selected as the initial plane for simulating acoustic propaga-
tion, and the second harmonic component will be calculated
from the fundamental pressure. In this paper, the linear ASA
is investigated with reference to Field II and the accuracy is
improved using zero-padding and λ/2 sampling, which aim at
validating the feasibility and optimizing the implementation of
the non-linear simulation for Field II.

II. THEORY

A. Westervelt equation

Non-linear propagation can be described by the Westervelt
equation [3]. It is composed of a state equation, a continuity
equation, and an Euler force equation [7]

P

P0
=

(
ρ

ρ0

)γ
, (1)

∂ρ

∂t
+∇ · (ρ~u) = 0, (2)

ρ0
∂~u

∂t
+∇p = 0, (3)

where P0 and P are the equilibrium pressure and instantaneous
pressure, ρ0 and ρ are equilibrium density and instantaneous
density, γ is the rate of specific heats, and ~u is the particle
velocity.

One solution to (1) can be expressed by a Taylor expansion

P = P0+
(
∂P

∂ρ

)
ρ0

(ρ−ρ0)+
1
2

(
∂2P

∂ρ2

)
ρ0

(ρ−ρ0)2+· · · (4)

With the help of the relations s = (ρ−ρ0)/ρ and p = P −P0,
(4) can be rewritten as

s =
p

ρ0c2
− 1

2
(γ − 1)

p2

ρ2
0c

4
. (5)

For plane waves, the characteristic acoustic impedance is
defined as

z = p/u = ρ0c, (6)

where c =
√
P0γ/ρ0 is the speed of sound [7]. Thus,

combining (2), (3), (5) and (6), the lossless Westervelt equation
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Fig. 1. Schematic view of angular spectrum approach

is expressed as(
∇2 − 1

c20

∂2

∂t2

)
p = − β

ρ0c40

∂2p2

∂t2
, (7)

where β is the coefficient of nonlinearity, defined as β =
(γ + 1)/2.

B. ASA for linear propagation

Linear acoustic propagation can be simulated in an efficient
way by an angular spectrum approach, by calculating the
acoustic pressure in the spatial frequency domain superposing
plane waves traveling perpendicular to the original source
plane [8]. In Fig. 1, the plane at z = z0 is the source plane.
The spatial Fourier transform of P0(x, y, z0) is given by

P̂0(kx, ky, z0) =
∫∫

P0(x, y, z0)e−j(kxx+kyy)dxdy. (8)

The acoustic pressure in the plane at z = z1 can be obtained
by

P1(x, y, z1) = F−1
{
P̂0(kx, ky, z0)ejkz(z1−z0)

}
, (9)

where F−1{} represents the inverse Fourier transform. kx, ky
and kz are the wave numbers along the respective axis and
satisfy k = ω/c =

√
k2
x + k2

y + k2
z .

C. ASA for nonlinear propagation

The ASA technique was introduced in non-linear acoustics by
Alais and Hennion [9]. It was further developed by Lands-
berger and Hamilton [10], where non-linear generation was
investigated from a planar source in solid materials using ASA.
In this paper, ASA is applied to solve the Westervelt equation
derived in the previous section based on the solution derived
by Xiang [11].

With the assumption of p1 � p2, a quasi-linear approxima-
tion is applied to solve the lossless Westervelt equation and
the sound pressure is expressed as

p = p1 + p2, (10)

where p1 and p2 denote the fundamental and second harmonic
components of the sound pressure, respectively. Using the
separate variable solution [7] [10] [12],

pn(x, y, z, t) =
1
2
Pn(x, y, z)e−jnωt + c.c., n = 1, 2 (11)

where Pn is the amplitude of the sound wave, ω is the
fundamental angular frequency given by the source plane
and c.c. means the complex conjugate of the preceding term.
Substitute (10) and (11) into (7) leads to

(∇2 + k2)P1 + (∇2 + 4k2)P2e
−jωt =

2βk2

ρ0c20
P 2

1 e
−jωt. (12)

Equation (12) can be divided into two equations since the first
term of the left hand side of (12) is not a function of time t.

(∇2 + k2)P1 = 0, (13)

(∇2 + 4k2)P2 =
2βk2

ρ0c20
P 2

1 . (14)

The linear equation (13) is solved by (9) and the solution to
the non-linear one (14) is derived by taking the 2D spatial
inverse Fourier transform for P1 and using the convolution
theorem

f ∗ g = F
{

F−1{f} · F−1{g}
}
, (15)

where F{} represents the Fourier transform. Then equation
(14) can be expressed as

(∇2 + 4k2)P2 = F−1

{
βk2

2π2ρ0c20

∫∫
P̂1(k′x, k

′
y, z)

×P̂1(kx − k′x, ky − k′y, z)dk′xdk′y

}
.

(16)

An ordinary differential equation with an inhomogeneous in-
tegral term is obtained by taking the inverse Fourier transform
for P2 in (16),(

d2

dz2
+ k2

z2

)
P̂2(kx, ky, z) = αM(kx, ky, z), (17)

where

M(kx, ky, z) =
∫∫

ej(z−z0)(k
′
z+k′′

z )P̂1(k′x, k
′
y, z0)

×P̂1(kx − k′x, kx − k′y, z0)dk′xdk′y,
(18)

kz2 =
√

4k2 − k2
x − k2

y, (19)

α =
βk2

2π2ρ0c20
, (20)

k′z =
√
k2 − (k′x)2 − (k′y)2, (21)

k′′z =
√
k2 − (kx − k′x)2 − (ky − k′y)2. (22)

Finally, the solution to (17) gives [10] [11]

P̂2(kx, ky, z) =
βk2

2π2ρ0c20

∫∫
P̂1(k′x, k

′
y, 0)

kz2 − (k′z + k′′z )2

×P̂1(kx − k′x, ky − k′y, 0)

×(ejz(k
′
z+k′′

z ) − ejkz2z)dk′xdk
′
y. (23)

This is the exact final ASA equation for simulating the non-
linear acoustic field.
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III. METHOD

So far, a non-linear propagation model is set up by the
Westervelt equation and that is solved by the angular spectrum
approach. From the solution (23), the second harmonic wave
pressure in any position can be obtained as long as the
fundamental pressure is known in the source plane, which
can be generated by Field II. To make sure the angular
spectrum approach can work with Field II, the first step is
to simulate the linear acoustic field by using (9) to find the
best way to improve the accuracy. The linear simulation of
ASA can be compared with Field II in any position with any
arbitrary source plane. The fast Fourier transform is applied
to this simulation by Matlab and the errors are calculated with
reference to Field II.

IV. RESULTS

The linear acoustic field simulation for a planar piston trans-
ducer with the center frequency of 5 MHz and 4 mm diameter
is generated by using Field II. The source plane is 0.05 mm
away from the surface of the transducer due to the singularity
at z = 0. In the beginning, 61× 61 samples with λ/2-spacing
covering an area of 9 × 9 mm2 is used as the source plane
to avoid the aliasing. Zero-padding is applied to enlarge the
source plane twice to overcome artifacts in terms of circular
convolution. This is shown in Fig. 2(a), where the calculated
plane is 10 mm away from the source along the z-axis. The
values are calculated in the temporal frequency domain by the
3D fast Fourier transform using Matlab. The amplitude at the
center line of the plane are shown at a frequency of 5 MHz
and the mean error is calculated by

mean error =
N∑
i=1

∣∣(PASA(i)/PField II(i) − 1)
∣∣/N, (24)

where PASA(i) and PField II(i) are the pressures calculated by
the ASA and Field II for the ith point, and N is the number
of points. After using zero-padding by 4, the mean error is
reduced from 25.7% to 12.9% as shown in Fig. 2(b).

In the far field, the improvement is more obvious when
zero-padding is increased as shown in Fig. 3. The mean
error is reduced to 1.6%. Furthermore, λ/4 is used as the
spatial sampling interval to see whether the better accuracy for
eliminating the aliasing can be obtained. The complete results
are shown in Table. I. Consequently, only for z = 10 mm and
2N−1, the accuracy of λ/4 is improved obviously comparing
to λ/2 as shown in Fig. 2(c).

2N-1 4N-1 6N-1 8N-1 10N-1
Near-field (z = 10 mm)
λ/2 25.7% 12.9% 10.4% 9.8% 10.1%
λ/4 14.6% 12.0% 9.6% 9.7% 9.5%

Far-field (z = 100 mm)
λ/2 18.1% 5.8% 4.2% 4.1% 1.6%
λ/4 17.5% 6.2% 2.9% 3.2% 3.8%

TABLE I
MEAN ERRORS WITH DIFFERENT ZERO-PADDINGS AND SPATIAL

SAMPLING RATES BETWEEN THE SIMULATIONS OF FIELD II AND ASA
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Fig. 2. Near-field comparison between the simulations of Field II and ASA
using different zero-paddings for (a),(b) and λ/4 for (c).
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Fig. 3. Far-field comparison between the simulations of Field II and ASA
using different zero-paddings.

V. CONCLUSIONS

The non-linear acoustic field was set up by the Westervelt
equation, to which an analytical solution was obtained in this
paper using the angular spectrum approach. Using Field II any
arbitrary shaped, apodized, and excited ultrasound transducers
can be modeled to generate any arbitrary source resulting
in possible implementation of a general non-linear acoustic
field simulation. The ASA for solving the linear acoustic field
is validated by Field II. The agreement of the comparison
between the simulations of Field II and ASA is obtained and
the accuracy can be improved by using the different zero-
paddings and spatial sampling rates. The angular spectrum
approach in combination with Field II opens for the possibility
of simulating the non-linear acoustic propagation for any kind
of array transducers.

VI. FUTURE WORK

The implementation of (23) for the non-linear propagation
will be carried out with the comparison of the experimental
measurements of the non-linear acoustic signals in the future
work. Thus, the new frame work of the non-linear field will
be established by the angular spectrum approach and has the
application for simulating any kind of array transducer as long
as the linear acoustic source is simulated by the current version
of Field II.
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