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II. SUB-BAND MINIMUM VARIANCE BEAMFORMING

compared; these are forward-only spatial smoothing, diagonal
loading and forward-backward averaging.

Ilf(xmt) - fi(z)11 + IIrgcv) - fi(z)11
Tm l(Z) == , (2), c

(1)

for m == O,l, ... ,M - 1 and f == O,l, ... ,L -1, where z
denotes the spatial position along the fth scan line, s(t) is
the received waveform. The delay, Tm,i(Z), is found from the
propagation path of the sound waves from the transmitting ele
ment to the focal point and returning to the receiving element,
and is given by

As in conventional beamforming, the sensor signals are pre
steered, so that each scan line is dynamically focused. Con
sidering a linear array transducer with M sensor elements, the
mth dynamically focused sensor signal along the fth scan line
is given by

where W l (k, zo) is a vector of sensor weights, Y l (k, zo) is a
vector of short-time Fourier transforms of the segmented sen
sor signals, Ym,l(Z + zo), z E [-Z/2; Z/2]. The superscripts,
{.}T and {.}H, denote the non-conjugate and the conjugate
transpose, respectively. Note that the sub-band division pro
vides the possibility of weighting both each sub-band and each
point differently.

The MV beamformer continuously updates the weights, so
that the variance (or power) of the beamformer output is
minimized, while the response from the focus point is passed

where f (xmt) and rgcv) are the spatial positions of the
transmitting and the mth receiving sensor elements, fi (z )
denotes the focal point, and c is the speed of sound.

The MV beamformer [8] is originally developed for narrow
band applications. Applying MV to broad-band ultrasound
data, the sensor signals are divided into sub-bands using the
short-time Fourier transform. For a given point, fi(zo), the
beamformer output for each spatial frequency sub-band, k, is
given by

Abstract- Previous studies have shown that adaptive beam
formers provide a significant increase of resolution and contrast,
when the propagation speed is known precisely. This paper
demonstrates the influence of sound speed errors on two adaptive
beamformers; the Minimum Variance (MV) beamformer and
the Amplitude and Phase (APES) beamformer. Simulations of
a single point target are carried out in Field II, and a percentage
error is applied on the speed of sound. As the error increases,
MV and APES provide amplitude drops of 17 dB and 3 dB on
the signal strength. Two approaches to overcome this amplitude
drop is proposed; diagonal loading (DL) and forward-backward
(FB) averaging of the covariance matrix. The investigations
show that DL provides a slightly decreased resolution and
amplitude compared to FB. It is noted that APES provides
more robust estimates than MV at the mere expense of a slight
decrease of resolution. From the investigations, it is concluded the
performance of the adaptive beamformers are not outperformed
by the conventional delay-and-sum beamformer.

I. INTRODUCTION

In medical ultrasound imaging beamforming is conventionally
carried out using the delay-and-sum (DS) beamformer. Thus,
the achievable resolution, and contrast is dependent on the
inherent compromise between the main-lobe width and the
side-lobe level. Although data-dependent, adaptive beamform
ers have been used in other fields of array signal processing
for decades, the application of adaptive beamforming to the
field of medical ultrasound imaging has only recently become
an area of increasing interest [1 ]-[4].

Adaptive beamformers are highly sensitive to steering vector
errors; and robust approaches for adaptive beamforming is
a widely studied subject, see e.g. [5]. In medical ultrasound
imaging, the primary cause of steering vector errors is incor
rect sound speed estimates. As this estimate varies with the
characteristics of the different tissue types within the human
body [6], the variation cannot be eliminated. In the field
of medical ultrasound imaging, robust methods for adaptive
beamforming have been suggested by e.g. Wang et ale [3]
and Synnevag et ale [4].

In this paper, we demonstrate the influence of sound speed
errors on two adaptive beamformers; the Minimum Variance
(MV) beamformer and the APES beamformer. The adaptive
beamformers are implemented in the frequency domain as
suggested in [7], and it provides a set of data-dependent,
complex weights for each frequency sub-band. Furthermore,
three different covariance matrix estimation approaches are
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without distortion. The power of the beamformer output is
given by

Pf(k, zo) == E {IBf(k, zo) 1
2

} (4)

== wf(k, zo)HRf(k, zo)wf(k, zo) , (5)

B. APES Beamforming

The APES (Amplitude and Phase Estimation) Beamformer
is based on the analogue spectral estimator [10]. The APES
estimate can be found by replacing the covariance matrix in
(8) by

where E { .} denotes the expectation value, and Rf (k, zo) is
the covariance matrix given by

P-1

Q = R- GGH
, G= ~ L Gp

p=O

(12)

Mathematically, the MV beamformer is expressed as [8]

min wf(k, zo)HRf(k, zo)wf(k, zo)
w.e(k,zo)

subject to wf(k, zo)He(k, zo) == 1 ,

(6) with Rand Gp given in (9)-(10). For more on the APES
algorithm see e.g. [11].

c. Diagonal Loading

A commonly used approach for robust adaptive beamforming
(7) is to use diagonal loading [5], where a small scalar value, €,

is added to the diagonal of the covariance matrix estimate.
where e(k, zo) is the so-called steering vector, which charac
terizes the response from the focus point. The solution to the
optimization problem (7) can be found in a single iteration
using Lagrangian multiplier theory as [8]

provided that Rf (k, zo) -1 exists. Due to presteering and sub
band division, the response from the focus point will resemble
a plane wave incident directly onto the array. Thus, the steering
vector is constant across the array and independent on the
frequency, and it simply becomes a M x I-vector of ones.

for p == 0,1, ... , P - 1. Note that this reduces the dimension
of the covariance matrix, and thus the number of weights will
be reduced correspondingly. The reduced weight vector, W, is
applied to the data by averaging over the P subarrays, which
is expressed as

A. Spatial Smoothing

To obtain a useful estimate of the covariance matrix, a number
of realizations is needed. Here, data from a single acquisition
is divided into a number of subgroups and averaged spatially,
as suggested in [9]. The spatially smoothed covariance matrix
estimate is obtained by dividing the array into P overlapping
subarrays of length L. For each subarray, a sub-covariance
matrix is estimated, and these are averaged across the array.
The covariance matrix estimate can be expressed as

(k)
Rf(k, zo)-le(k, zo)

Wf ,Zo == H 'e(k, zo) Rf(k, zo)-le(k, zo)

P-1
AI,", H

R== P L..J GpGp ,
p=O

where G p denotes the pth subarray given by

P-1

B(fp) = wH~ L Gp •

p=O

(8)

(9)

(11 )

(13)

where I denotes the identity matrix. The choice of € will have a
large influence on the provided weights. The larger € becomes,
the more the diagonal will dominate the result; and as shown in
e.g. [4], the result will converge to the DS result. As suggested
in [4], € is chosen to be relative to the trace, Tr{·}, of ft. In
Sec. III, a value of € == 10-3Tr{ft} is used.

D. Forward-Backward Averaging

The covariance matrix estimate in (9) is sometimes referred
to as the forward-only estimate. Yet another covariance matrix
estimate is the Forward-Backward (FB) average [11] defined
by

R=~(R+JRTJ), J=[: .. :] (14)

This approach has previously been used in radar imaging in
combination with APES by Wang et al. [12].

III. ApPLICATION TO ULTRASOUND DATA

The two adaptive beamformers are applied on simulated
ultrasound data, obtained using Field II [13], [14]. For the
simulations, a 7 MHz linear array transducer with A./2
spacing was used. Data is obtained using a single element
as the transmitting aperture and all M == 128 elements
as the receiving aperture. The MV and APES beamformers
are implemented in the frequency domain using the short
time Fourier transform with a segment size corresponding to
the length of the excitation pulse convolved with the two
way impulse response of the transducer. A subarray size of
L == If == 32 was used, and before beamforming, additional
white, Gaussian noise was added to each of the sensor signals.
The signal-to-noise ratio was 60 dB, and the correct sound
speed was 1540 mIs.

The sound speed estimate is changed percentage-wise from
the true value by 2%, 4%, and 6%, which correspond to ve
locities of {1571, 1602, 1632} mls. The adaptive beamformers
with the three covariance matrix estimation approaches are
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Fig. 1. Lateral variation of the beamformed responses at depth z = 40 mm. The beamformed responses are DS, Boxcar (gray solid), DS, Hanning (gray
dashed), MV (black solid) and APES (black dashed). (a) Forward-only, no diagonal loading has been applied. (b) Forward-only, diagonal loading factor of
€ = 10-3Tr{R} is used. (c) Forward-backward averaging is used (no diagonal loading). The percentage error of the sound speed is given at the top right in
each figure.
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Fig. 2. Minimum variance beamformed responses from a single point target for different percentage error on the sound speed. Images are shown with a
dynamic range of 50 dB.
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Fig. 3. APES beamformed responses from a single point target for different percentage error on the sound speed. Images are shown with a dynamic range
of 50 dB.
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Fig. 4. Delay-and-sum (Hanning weights) beamformed responses from a
single point target for different percentage error on the sound speed. Images
are shown with a dynamic range of 50 dB.

compared to the DS beamformer using Boxcar and Hanning
weights. The lateral variation of the beamformed responses
os a single point target are seen in Fig. 1. Furthermore, a
selection of the MV and APES beamformed responses are
seen in Fig. 2 and Fig. 3. For comparison the DS beamformed
responses using Hanning weights are shown in Fig. 4.

At the top in Fig. l(a)-(c), the beamformed responses for
the correct sound speed are shown. The inherent compromise
between main-lobe width and side-lobe level is evident from
these figures; the Hanning weights lower the side-lobe level at
the expense of a broader main-lobe compared to the Boxcar
weights.

It is seen that the MV and APES beamformers provide a sig
nificant increase in both resolution and contrast. Furthermore,
it is noted that diagonal loading results in a slightly decreased
resolution; as would be expected due to the convergence to
the DS solution. As seen the forward-backward (FB) approach
does not diminish the resolution significantly. However, these
investigations are based on single point targets; as adaptive
beamformers are strictly data-dependent, a truly thorough
investigation should include a variety of simulations.

As the percentage error increases, the MV and APES beam
formers are not as robust compared to the DS beamformer.
Using the forward-only approach without diagonal loading,
MV and APES provide amplitude drops on the signal strength
of 17 dB and 3 dB, respectively. This amplitude drop can be
avoided by using either diagonal loading or FB as seen in
Fig. 1(b)-(c). However, a slight amplitude drop is seen for
MV at 4% and 6% error using diagonal loading.

In general, it is observed that the APES beamformer provide
more robust estimates than MV; in terms of less amplitude
drop at the expense of a slightly decreased resolution. How
ever, the resolution decrement seems insignificant compared
to the robustness gained from using this beamformer.

The investigations have shown that the performance of
the adaptive beamformers are significantly decreased for in
creasing sound speed errors. However, it is noted that the
conventional DS beamformer does not outperform the adaptive
beamformers within the investigated region of errors. Thus,
incorrect sound speed sound estimates will not lead to a

performance degradation worse than that of the conventional
DS beamformer.

IV. CONCLUSIONS

The adaptive MV and APES beamformers have been applied
to simulated ultrasound data with three different covariance
matrix estimation approaches; forward-only spatial smoothing,
diagonal loading (DL), and forward-backward (FB) averag
ing. For correct speed of sound estimates, both MV and
APES provide significant performance gains with respect to
resolution and contrast. As the sound speed error increases,
MV and APES provide 17 dB and 3 dB amplitude drops on
the signal strength. However, using DL or FB the amplitude
drop is avoided. Furthermore, it is seen that APES provides
more robust estimates than MV. In general, it is observed that
even though the performance of the adaptive beamformers is
much degraded, when incorrect speed of sound is used in
the beamforming. However, the performance was shown to
outperform the conventional delay-and-sum beamformer.
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