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Introduction 

 
The optical-fiber communication system operating at 100 Gbit/s is recently considered to be 
an ideal candidate as the next generation communication system [1]. High speed 
photodetectors (PDs) with high efficiency are key components for 100 Gbit/s transceivers. 
InP-based PD chips exceeding 130 GHz bandwidth have been developed [2]. PD chips are 
packaged in modules for the purpose of system experiments. Figure 1 (a) shows the inside 
view of a packaged PD module. In the module, a conductor-backed coplanar waveguide 
(CBCPW) line is adopted to bridge from the PD chip to the 1mm coaxial connector [3]. The 
CBCPW line is connected to the chip with bonding wires, and the connector is conductively 
glued directly on it. Figure 1 (b) shows the relative frequency response of both the chip and 
the module, which is a normalized O/E conversion characteristic of the device. The 
bandwidth of the module decreases to be 80 GHz comparing with the one of the chip being 
about 110 GHz.   
 
The degraded bandwidth, which is due to the packaging structure of the PD module, will 
have an impact on the bit-error rate (BER) in an optical transmission system. The packaging 
of these high-speed components is very challenging when aiming at the rate of 100 Gbit/s, 
especially due to the multi-chip module (MCM) structure involving several chip-to-chip 
and/or chip-to-substrate transitions. The transition from the CBCPW to the connector was 
previously investigated and optimized using electromagnetic (EM) simulations [4], [5]. In 
this paper, full 3D electromagnetic (EM) behavioral models of PD chips are firstly proposed 
for the EM simulations on chip-to-CBCPW wire-bonding transitions. Afterwards, bonding 
wires employed in transitions are systematically analyzed by EM simulations using Ansoft 
HFSS.          
 

Full 3D Electromagnetic Behavioral Modeling of PD Chips  
 

EM models of PD chips, which contain the relative frequency response of the PD chip, are 
necessary for identifying the source of bandwidth limitation in chip-to-CBCPW wire-bonding 
transitions by EM simulation. Although full 3D EM modeling usually refers to passive 
structures, this paper firstly demonstrates that active devices such as photodiodes can also be 
fully modelled in the 3D EM simulator.   
 
Figure 2 (a) shows an EM model of the PD chip which resembles a typical on-wafer 
measurement setup. At the end of the chip, a taper shaped excitation structure models the 
ground-signal-ground probe in measurements. In order to obtain an accurate simulated 
characteristic of the chip model compared to the measured one, the parasitic elements of the 
excitation structure have to be removed by EM calibration [6]. The metallization layout of the 
chip is consistent with the real device including large block capacitors and air-bridge 
structures. Matching resistance is employed to improve the bandwidth of the chip. The 
bandwidth of the chip is affected by the parasitic elements on the chip, which are built in the 
EM model, and the embedded pin photodiode. The bandwidth of the photodiode is mainly 
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limited by the capacitance of the diode and the transit-time effect. The insert in figure 2 (a) 
shows the equivalent circuit of the pin photodiode in the EM model. Due to the limitation of 
the EM simulator, only a capacitance is included in the model to capture the bandwidth 
limitation of the photodiode. The photocurrent source and the parallel inversed biased 
resistance of the photodiode are modeled by the lumped port with high internal impedance in 
the simulator. As shown in figure 2 (b), the relative response of the EM behavioral PD model 
perfectly fits the measured one. 
  

Systematic Analysis on the Wire-bonding Transitions 
 

The EM behavioral model is then used to analyze the impact of the bonding wire interconnect 
up to 130 GHz. An EM model of PD chip-to-CBCPW wire-bonding transitions is illustrated 
in figure 3 (a). Three bonding wires connect each pad of the chip to the signal (S) or ground 
(G) strips of the CBCPW, respectively. The transmission characteristic of wire-bonding 
transitions is considered to be influenced by the arrangement of bonding wires, the number of 
bonding wires in the transition, the length of the wires (l), the height of the wires (h), the 
horizontal level difference (d) and the gap (g) between the chip and the CBCPW. The 
parameter abbreviations are indicated in figure 3 (b). We have already shown previously that 
wire bonding can exhibit a similar performance compared to flip-chip technology even at 
frequencies in the millimeter-wave range.  
 
Selected simulated relative responses of the wire-bonding transition are shown in figure 4. 
The attenuation of them becomes very serious beyond 60 GHz, which is similar to the 
measured one of the module. Therefore, wire-bonding transitions are identified be to the 
major bandwidth limitation of the PD module. Figure 4 (a) demonstrates that there should be 
an optimized gap between the chip and the CBCPW to avoid fast attenuation beyond 60 GHz 
and the deep notch around 90 GHz. Figure 4 (b) shows that more bonding wires result in 
better relative response. Figure 4 (c) and (d) show that bonding wires connecting ground 
traces should be placed close to the gap of CBCPWs and all wires should spread well along 
the width of strips. Following these guidelines the impact of the bonding wires can be 
diminished substantially. 
 

Conclusion 
 
In this paper, we propose an accurate full 3D EM behavioral model of PD chips for the first 
time. The model, which is meshed at 130 GHz, runs for about 17 minutes on an Intel Core2 
Duo CPU@3GHz PC with 3.5GB of RAM. The impact of various parameters in wire-
bonding transitions for transmission characteristic is summarized in the Table I. When 
numbers of bonding wires are placed separately all through strips of CBCPWs as well as 
keeping an optimized gap of transitions, more than 10 GHz bandwidth improvement can be 
achieved compared the worst case. We also notice that optimization on bonding wires does 
not significantly improve the fast decay beyond 60 GHz. Further investigation and 
optimization of the transition is required including a redesign of the CBCPW.  
 
Acknowledgements: The authors would like to thank the European commission for support 
under the 6th frame work program to the project “Opto-electronic integration for 100 Gigabit 
Ethernet Optical Networks (GIBON)”, http://www.ist-gibon.eu/index.htm.  
 
 
 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 05:54 from IEEE Xplore.  Restrictions apply. 



 
References 

 
[1] A. Zapata & al, “Next-generation 100-Gigabit Metro Ethernet (100 GbME) using 

multiwavelength optical ring,” J. Lightwave Technology, 22, 2004, pp. 2420-2434 
[2] H-G. Bach, “Ultra-fast Efficient Photodiodes Exceeding 100 GHz Bandwidth”, Invited 

paper, in Proc. Int’l Conf. on Indium Phosphide & Related Materials, Matsue, Japan, 
May 2007, pp. 71-76. 

[3] Agilent Technology, “11923A Launch Assembly Operating and Service Manual”, 
2005. 

[4] C. Jiang, T.K. Johansen, V. Krozer, G. G. Mekonnen and H-G. Bach, “Optimization of 
Packaging for PIN Photodiode Modules for 100Gbit/s Ethernet Applications”, in Proc. 
APMC2007 Bangkok, Dec. 2007. 

[5] C. Jiang, G. G. Mekonnen, V. Krozer, T.K. Johansen and H-G. Bach, “Packaging 
Aspects of Photodetector Modules for 100 Gbit/s Ethernet Applications”, Accepted in 
EuMC2008 Amsterdam, Oct. 2008. 

[6] T. K. Johansen, C. Jiang, D. Hadziabdic, V. Krozer, “EM simulation accuracy 
enhancement for broadband modeling of on-wafer passive components”, in Proc. 
EuMIC2007 Munich, Oct. 2007, pp.447-450 

 
Figures 

               
0 20 40 60 80 100 120

-8

-6

-4

-2

0

2

R
el

at
iv

e 
re

sp
on

se
 [d

B]

Frequency [GHz]

 

 

The PD Module
The PD Chip

 
                                                (a)                                                                               (b) 

Figure 1. (a) Microphotograph of the PD module including the packaging structure and the chip; (b) Measured 
frequency response of the PD module and the chip.  
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Figure 2. (a) A fully 3D electromagnetic model of the PD chip, the insert is the equivalent circuit model of the 
embedded photodiode; (b) Comparison between the measured and the modeled relative response of the PD chip. 
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Figure 3. (a) The EM model of the PD chip-to-CBCPW wire-bonding transition; (b) Schematic view of the 
bonding wires.   
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Figure 4. Simulated relative responses of chip-to-CBCPW wire-bonding transitions; (a) g = 0 μm, 5 μm and 20 
μm; (b) different numbers of bonding wires indicated by “GxSy”: x and y means the numbers of bonding wires 
connecting the ground and signal trance, respectively; (c) three typical arrangements of bonding wires as 
illustrated in (d). g = 20 μm in (b) and (c).    

TABLE I 
Important Parameters Negligible Parameters (within certain range)  

Gap (g) Length (l), (S: 60μm~100μm; G: 90μm~150μm) 
Number Height (h), (10μm~50μm) 

Arrangement Horizontal level shifting (d), (-20μm~40μm)* 
* Negative value means chips are higher than CBCPWs  

Bonding wires 
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