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Abstract— Non-negative matrix factorization (NMF), i.e. V ≈
WH where both V, W and H are non-negative has become
a widely used blind source separation technique due to its part
based representation. The NMF decomposition is not in general
unique and a part based representation not guaranteed. How-
ever, imposing sparseness both improves the uniqueness of the
decomposition and favors part based representation. Sparseness
in the form of attaining as many zero elements in the solution
as possible is appealing from a conceptional point of view and
corresponds to minimizing reconstruction error with an L0 norm
constraint. In general, solving for a given L0 norm is an NP hard
problem thus convex relaxation to regularization by the L1 norm
is often considered, i.e., minimizing ( 1

2
‖V−WH‖2F+λ‖H‖1). An

open problem is to control the degree of sparsity λ imposed. We
here demonstrate that a full regularization path for the L1 norm
regularized least squares NMF for fixed W can be calculated
at the cost of an ordinary least squares solution based on a
modification of the Least Angle Regression and Selection (LARS)
algorithm forming a non-negativity constrained LARS (NLARS).
With the full regularization path, the L1 regularization strength
λ that best approximates a given L0 can be directly accessed and
in effect used to control the sparsity of H. The MATLAB code
for the NLARS algorithm is available for download.

I. INTRODUCTION

Non-negative matrix factorization (NMF) is a blind source
separation algorithm (BSS) given by the decomposition

Vn,m ≈
∑
d

Wn,dHd,m, (1)

where V ∈ RN×M+ , W ∈ RN×D+ and H ∈ RD×M+ , i.e. such
that the variables V, W and H are non-negative. The decom-
position is useful because it results in easy interpretable part
based representations [1]. Non-negative decompositions is also
named positive matrix factorization [2] but was popularized by
Lee and Seung due to a simple algorithmic procedure based
on multiplicative updates [3]. The decomposition has proven
useful for a wide range of data where non-negativity is a
natural constraint. These encompass data for text-mining based
on word counts, image data, biomedical data, and spectral
data. The algorithm can also be useful even when the data
in itself is negative by considering, say, the amplitude of
a spectral representation [4]. The model is often estimated
alternatingly solving for W and H. While the estimation of
H for fixed W is a convex problem, the joint problem solving
for W and H is not convex and as such a global minimum
is not guaranteed. For data with modality more than two, i.e.,

tensors, purely non-negative decompositions are also relevant.
The two most widely used decompositions for tensors are the
PARAFAC model independently proposed in [5], [6] and the
Tucker model [7]. The two model read

PARAFAC:

Vi1,i2,...,iN ≈
∑
d

A(1)
i1,d

A(2)
i2,d
· · ·A(N)

in,d

Tucker:

Vi1,i2,...,iN ≈
∑

j1,j2,...,jN

Gj1,j2,...,jnA(1)
i1,j1

A(2)
i2,j2
· · ·A(n)

iN ,jN

In [8] it was demonstrated how NMF generalizes well to the
PARAFAC model and in [9] how NMF also generalizes to
the Tucker model forming fully non-negative decompositions
as for regular NMF resulting in part based representation.
The generalization of NMF to the two models are based on
the observation that by matricizing the array, i.e. V(n) ∈
RIn×I1I2In−1In+1···IN the optimization of the loading of each
mode can be restated as regular NMF-problem, for details on
this see [9]. As such, the PARAFAC and Tucker models can be
estimated through algorithms for regular matrix decomposition
alternating solutions for each mode keeping the other modes
fixed. We will here only treat the matrix case keeping in mind
that the approach generalizes to tensors.

The non-negative decomposition is in general not unique
[10] which hampers interpretation of the decomposition. Fur-
thermore, the representation is not guaranteed to be part-based
for instance if the data resides well inside the positive orthant.
To improve the uniqueness of the decomposition as well as
enforcing a part based representation sparseness constraints
have been suggested for the NMF decomposition. This has
been implemented by penalizing with the L1 norm [11], [12],
i.e.

CSparseNMF =
1
2
‖V −WH‖2F + λ‖H‖1 (2)

where ‖H‖p is the Lp-norm of H given by Lp(H) =
p

√∑
d,m |Hd,m|p (Notice, for the L0 norm we use L0(H) =∑

d,m |Hd,m|0). The L1 norm is often used as a penalty for
sparsity as it is known to mimic the behavior of the L0

norm [13] while keeping the alternating optimization problem
estimating H for fixed W convex. Thus, although often the
aim is to find a sparse solution with respect to the L0-norm,



in practice the NP-hard optimization problem is sought solved
with the L1-norm as a proxy to avoid local minima in the
optimization problem.

In [14] the sparseness of the decomposition was controlled
by the sparseness measure

spPH−L1/L2(Hd,:) =
1√

M − 1
(
√
M − ‖Hd,:‖1

‖Hd,:‖2
), (3)

where Hd,: denotes the dth row of H. Notice, spPH−L1/L2

takes values between 0 and 1. This was achieved solving a
constrained minimization problem forming the Non-negative
matrix factorization with Sparseness Constraint (NMFSC)
algorithm described in [14]. Solving for a specific sparsity
level for each component is a difficult problem. However,
solving for a specific sparsity on the full matrix H mounts
to controlling the single parameter λ which we presently
demonstrate has a simple solution.

Consider the unconstrained Least squares minimization with
L1-norm constraint also referred to as the Least Absolute
Shrinkage and Selection Operator (LASSO) [15] or Basis
Pursuit De-noising (BPD) [16], i.e., the problem

CLASSO =
1
2
‖y −Xβ‖2F + λ‖β‖1. (4)

Through the Least Angle Regression and Selection algorithm
(LARS) [17] or the equivalent homotopy algorithm [18] the
entire regularization path, i.e., solution for all values of λ
can be achieved for the cost of an ordinary least squares
(OLS) solution. We will in the present paper modify the
LARS algorithm such that the entire regularization path can
be found for the Sparse NMF decomposition. With this result
the sparsity can be directly controlled for the following two
new types of sparsity measures on the full matrix H

spL0(H) = 1− ‖H‖0
DM

(5)

spL1/L2(H) =
1√

DM − 1
(
√
DM − ‖H‖1

‖H‖2
). (6)

The measure spL1/L2(H) is equivalent to the measure pro-
posed in [14], but for the full matrix rather than for each row
of H and is included to give a qualitative comparison to the
measure given in equation 3. spL0 on the other hand gives
direct control of the percentage of active elements in H, i.e.,
the L0 norm of H. Both measures take values between 0 and
1, for instance spL0(H) = 1 implies that all elements of H are
turned off while spL0(H) = 0 that all elements are nonzero.

II. METHOD

In the paper on Least Angle Regression and Selection
(LARS) [17] an algorithm was proposed for the LASSO
by considering normalized data X and y formed by
an active set algorithm. Let A be the indices of
the active set and I the indices of the inactive set.
Then the LARS algorithm solves for the LASSO as

LARS
while ∃j ∈ I : |cj | > 0
c = X>(y −Xβ)
j = arg max(|cI |)
A = [A j]
I = I \ j
βA = βA + µ(X>X)−1

A,A sign(cA)

µ = arg minµ

 ∃β̃Ak
= 0 then I = [I Ak], A = A \Ak

∃l ∈ I : |c̃l| = |c̃A|
c̃A = 0

where c̃ is the gradient and β̃ the value of β at the step of
size µ. We make the following observations

1) c = X>(y −Xβ) is identical to the negative gradient
of the un-regularized problem.

2) Since the inverse Hessian is given by (X>X)−1 the
step (X>X)−1

A,A sign(cA) will be in the direction such
that the amplitude of the gradients in the active set are
identical, i.e. |cA1 | = |cA2 | = . . . = |cAn

|.
3) Since the amplitude of the gradients of the active set are

identical the update correspond to the Newton-Raphson
step βA = βA + γ(X>X)−1

A,AcA where γ = µ
|cA| .

4) The gradient of the L1 penalty is λ sign(β) and as such
thresholds the gradient of the un-regularized problem
such that the solution for a given regularization λ is
found when |cA| = λ.

From observation one there is no reason to normalize
the data. This serves only the purpose of interpreting the
selection by angles, however, in general the selection is
according to the largest absolute gradient. Add 2 and 3 it
follows that the update is along the line where the gradients
cA in the active set are identical and corresponds to a
Newton-Raphson step in the active variables. Notice, for
least squares problems the inverse Hessian is a constant
within each active set forming the piecewise linearity of
the LARS path. Since the gradient of the L1 constraint is
λsign(β), λ serves as a threshold of the gradient of the
LASSO problem given by g = −c + λsign(β). Thus, does
not allow for additional elements to enter the active set when
|cj | < λ. By simply replacing the criterion j = argmax(|cI |)
with j = argmax(cI) for cj > 0, i.e. considering only
negative gradients of the least squares objective - variables
are only introduced if they reduce the objective by becoming
positive. Once a variable is updated to zero it is taken out
of the active set. Thus, the following modification of the
above LARS algorithm forms the non-negativity constrained
LARS (NLARS) (i.e., for β ≥ 0). For more details on
the algorithm see the MATLAB code available from [19].

NLARS
while ∃j ∈ I : cj > 0
c = X>(y −Xβ)
j = arg max(cI), cj > 0
A = [A j]
I = I \ j
βA = βA + µ(X>X)−1

A,A1

µ = arg minµ

 ∃ βAk
= 0 then I = [I Ak], A = A \Ak

∃l ∈ I : c̃l = c̃A
c̃A = 0

Where 1 is a vector of ones. The sparse NMF problem can



now be separated into N LASSO problems where the nth

problem is given by

CSparseNMF =
1
2
‖vn −Whn‖2F + λ‖hn‖1 (7)

Notice, the algorithm works even when W and V are un-
constrained. Having solved for each column of H we need
to order the given LASSO solutions. However, this is easy
since we can directly calculate the value of λ corresponding to
each part of the regularization path of each given non-negative
LASSO solution as

λ = (W>
A,:vm − (W>W)A,AhA,m). (8)

Notice, all entries in λ take the same value λ. Hence, the
solutions of each column of H can be sorted according
to this value. The sparseness measures given in equation 5
can now be controlled by evaluating the sparseness degree
over the entire regularization path. Where several values of
λ result in same sparseness degree, the smallest value of λ
was chosen as regularization strength. Let ·· and · • · denote
element wise division and multiplication, respectively. Then,
W was updated according the the normalization invariant
multiplicative updates proposed in [11] given by

W←W •
VH> + W diag(1(WHH> •W))

WHH> + W diag(1(VH> •W))
, (9)

such that Wd is constrained to have unit L2 norm, i.e.,
Wn,d = Wn,d

‖Wd‖2 . We solve for H alternatingly according to
the NLARS and return the H corresponding to the correct
degree of the spL0 criterion and update W as given above.
The algorithm was stopped after 100 iterations or when the
relative change in λ was less than 10−6.

III. RESULTS

We tested our spL0 constrained NMF algorithm on the 2429
training faces of size 361 pixels obtained from the MIT face
database [20] (see figure 1) as well as the US Postal Service
(USPS) database of 7291 handwritten digit each of size 256
pixels - the training set (see figure 2). We compared our
sparseness measure given in equation 5 to the corresponding
decomposition obtained from the same degree of sparseness
according to equation 3 using the algorithm given in [14]. As
the algorithm given in [14] converges slowly we terminated
this algorithm after 2500 iterations. Finally, we compared
the performance of the proposed algorithm with the fast Non-
Negative Least Squares (fNNLS) algorithm described in [21]
which is also based on an active set approach. Contrary, to
the present NLARS algorithm essentially progressing each
step until inactive elements have same negative gradient as
the active elements, the fNNLS takes the step in the active
set to the optimal unconstrained solution and backtracks this
solution to the positive orthant. Thus the strategies employed
by NLARS is entirely different from the strategy of the fNNLS
algorithm. The computational time for the two algorithms
tested on the USPS and MIT face data sets are given in table
3.

Fig. 1. Result obtained analyzing the MIT face database using the NLARS
to control the sparsity of the decomposition. Top left panel: Sparsity set to
spL0 = 0.6. Top right panel: Sparsity set to spL0 = 0.9. Bottom left panel:
Sparsity set to spL0 = 0.96. Bottom right panel: The NMFSC algorithm with
sparsity set to spPH−L1/L2 = 0.76 corresponding to the value of sparsity
given in the top right panel of spL1/L2 = 0.76. The result obtained by
the proposed NLARS resembles well the results obtained by the NMFSC
algorithm. However, regularizing on the full matrix H does not fix the degree
of sparsity within each components and as such each component has different
degree of sparsity. Thus, component 16 is completely turned off when spLO =
0.96.

IV. DISCUSSION

We have proposed an algorithm for non-negative matrix
factorization with an L0 norm constraint based on convex
relaxation, i.e, invoking an L1 norm as a proxy. This has
the benefit that the NP-hard problem of constraining H by
a given L0-norm, spL0, for a fixed W can be approximated
by a convex problem which is efficiently solved through the
also proposed NLARS algorithm. The main benefit is that
the entire regularization path can be found for the cost of an
ordinary least squares solution. By evaluating the L0 norm of
the solution throughout the path, we can find the appropriate
strength of the L1 regularization term λ that will provide a
specific value of the L0 norm.

In [14] sparseness was controlled by constraining each
component to a given degree of sparseness. The present
measures of sparseness given by controlling the degree of
sparsity on the full matrix H rather than each row Hd,:

has the benefit that the control of regularization reduces to
the single parameter λ. This is a much simpler problem in
which the entire regularization path formed by the NLARS
algorithm can be used to directly control this value. In general,
controlling the sparseness componentwise versus controlling



Fig. 2. Result obtained analyzing the USPS handwritten digit database using
the NLARS to control the sparsity of the decomposition. Top left panel:
Sparsity set to spL0 = 0.8. Top right panel: Sparsity set to spL0 = 0.9.
Bottom left panel: Sparsity set to spL0 = 0.96. Bottom right panel: The
NMFSC algorithm with sparsity set to spPH−L1/L2 = 0.77 corresponding
to the value of sparsity given in the top right panel of spL1/L2 = 0.77. Again
the solution for spL0 = 0.9 having spL1/L2 = 0.77 correspond well to the
solution obtained for spPH−L1/L2 = 0.77 using the NMFSC algorithm.

USPS Handwritten Digit MIT face database
NLARS 3361 sec 2520 sec
fNNLS 2901 sec 2129 sec

Fig. 3. Comparison of the NLARS and fNNLS algorithm for the USPS
and MIT face data sets. The solution given is obtained for the regular NMF
problem without regularization corresponding to finding the full regularization
path for the NLARS algorithm. The fNNLS and NLARS were also used for
the update of W. The time is given as the time it took each of the two
algorithms to perform 100 iterations. Clearly, the two algorithms are of same
order of magnitude, hence the full regularization path can be calculated at the
cost of the ordinary LS solution given by fNNLS.

the sparsity of the full matrix as here have different properties.
It was demonstrated for the MIT face data that sparseness
imposed on the full matrix enabled some components to be
less sparse than others and also for components to be turned
off completely whereas controlling the degree of sparseness
of each component separately enabled us to fix the number
of components used to represent the data. Both for the MIT
face as well as the USPS data the results obtained using the
proposed algorithm corresponded well to the results obtained
for the corresponding degree of sparsity using the NMFSC
algorithm. Thus, controlling the sparseness of the full matrix
H through the NLARS is a viable approach to control the
sparsity of the solutions.

Both the present NLARS algorithm as well as the fNNLS

algorithm given in [21] for non-negativity constrained least
squares minimization are based on an active set approach. As
seen from figure 3 the two algorithms had about the same
computational cost. Thus, the present NLARS algorithm is
comparable to ‘state of the art’ non-negative least squares
algorithms such as the fNNLS while also allowing for finding
the full regularization path solution.

The sparsity measures proposed can also be used to control
the degree of sparsity for sparse coding [22], i.e., uncon-
strained decompositions with L1-norm regularization by the
regular LARS algorithm rather than the non-negative extension
presently derived. Finally, it is worth emphasizing that solving
for the spL0 constrained problem using the L1-norm is only
approximate and as such does not necessarily find the optimal
combination of elements to be active. The NLARS algorithm
can be downloaded from [19].
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