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Abstract
Cascaded quadratic soliton compressors generate under
optimal conditions few-cycle pulses. Using theory and
numerical simulations in a nonlinear crystal suitable for
high-energy pulse compression, we address the limits to
the compression quality and efficiency.

Introduction
Soliton compressors are attractive because only a single
nonlinear medium is needed to achieve many-fold pulse
compression. In cascaded quadratic soliton compressors
(CQSCs) soliton compression of high-energy fs pulses
is possible, and few-cycle pulses can be reached in the
near-infrared [1–6]. The cascaded quadratic nonlinear-
ity is achieved by phase-mismatched second-harmonic
generation (SHG), where the fundamental wave (FW)
experiences a strong nonlinear phase shift from the
cyclic energy transfer to the second harmonic (SH).
Unique for the CQSC is that solitons exist with nor-
mal dispersion, because the effective cubic nonlinear-
ity induced by the cascaded SHG can be made self-
defocusing [1]. Consequently the CQSC can compress
arbitrarily high-energy pulses, and soliton compression
may occur even in the near-infrared where the ab-
sence of anomalous dispersion prevents traditional soli-
ton compressors to work. It is well known that in the
stationary regime clean compression is possible in the
the CQSC, while in the nonstationary regime group-
velocity mismatch (GVM, given by the parameter d12)
distorts the compressed pulse [1,3]. Using nonlocal the-
ory we showed that the GVM-induced Raman-like term
found previously [3] originates from a temporally non-
local response function [4], and an accurate transition to
the stationary regime was found. Here we seek to inves-
tigate in details what really limits the compression [6].

Nonlocal theory
The CQSC works with the phase-mismatchΔk = k2 −
2k1 � 0 to get a self-defocusing cascaded nonlinearity,
so solitons exist with normal FW group-velocity disper-
sion (GVD) k(2)

1 = ∂2k1/∂ω2|ω=ω1
> 0. In the cascad-

ing limit |Δk|LD,1 � 1 the usual coupled SHG equa-
tions can be reduced to a single equation for the FW [4],
neglecting HOD, self-steepening and Kerr cross-phase
modulation (XPM) effects
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quadratic nonlinearity, and nKerr,j is the cubic (Kerr)
nonlinear refractive index. Time and the propagation co-
ordinate are normalized to the FW input duration T0

and the FW GVD length LD,1 = T 2
0 /|k

(2)
1 |, and U1 =

E1/E0 is scaled to the peak input electric field. This gen-
eralized nonlinear Schrödinger equation (NLSE) shows
that the cascaded quadratic nonlinearity imposes a tem-
poral nonlocal response on the FW, with the nonlocal
response functions
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where the dimensionless nonlocal time scales τa and
τb depend on the FW and SH dispersion. According
to the nonlocal theory the GVM effects dominate for
Δk < d2

12/2k
(2)
2 : this nonstationary regime is con-

trolled by the oscillatory response function R−. For
Δk > d2

12/2k
(2)
2 the cascaded nonlinearities dominate:

this stationary regime is controlled by the localized re-
sponse functionR+.

Weakly nonlocal limit
In the weakly nonlocal limit, where the nonlocal re-
sponse is much faster than the response of U2

1 , Eq. (1)
can be approximated as [6]
[
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where sb = +1 (sb = −1) in the stationary (non-
stationary) regime, and sa = sgn(d12k

(2)
2 ). The LHS

is an NLSE supporting solitons if the effective soli-
ton order Neff = (N2

SHG − N2
Kerr)

1/2 is above unity.
Neff also controls the compressor performance through
the NLSE-like scaling laws [5]. The RHS gathers two
detrimental terms: (1) A GVM-induced Raman-like
perturbation with a characteristic dimensionless time
τR,SHG ≡ 2|d12/ΔkT0|. (2) A GVM-induced term
U∗1 ρ(τ, U1) containing oscillatory components with pe-
riods dictated by τa and τb, which explains the trailing
oscillations often observed in the nonstationary regime,
see Fig. 1(a) forΔk = 30 mm−1. ρ(τ, U1) is caused by
the oscillatory nature of |R−|, so it appears only in the
nonstationary regime. The RHS of Eq. (4) holds another
insight: for a givenΔk, increasing NSHG by increasing
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the intensity does not necessarily lead to better compres-
sion because the Raman-like term, which causes strong
pulse asymmetry and soliton splitting, scales as N2

SHG.
Similarly in the nonstationary regime, the detrimental
oscillatory term U∗1 ρ(t, U1) also scales as N2

SHG.

Numerical results and discussion
Fig. 1 shows numerics all having the same soliton or-
der Neff = 8. Thus, the 200 fs input pulse should in
all cases be compressed to 6.0 fs [5]. This is indeed ob-
served in the stationary regime for Δk = 50 mm−1.
For larger Δk, still in the stationary regime, Kerr XPM
gradually degrades compression. For smaller Δk the
transition to the nonstationary regime is approached
(Δk = 43 mm−1), where pulse compression is lim-
ited by the nonlocal time scale tb = τbT0. In the non-
stationary regime (Δk < 42), pulse compression de-
grades due to increasing Raman-like effects (τR,SHG ∝
Δk−1), and to slow trailing oscillations (evident for
Δk = 30 mm−1), caused by the GVM-induced oscilla-
tory term ρ in Eq. (4). All simulations have a FW peak
around 3 μm, which is a dispersive wave phase-matched
to the FW soliton, causing the fast trailing oscillations
for Δk = 50, 43, 41 mm−1; these prevent reaching
single-cycle pulses for larger Neff . In the nonstation-
ary regime a distinct red-shifted peak appears in the SH
spectrum at a frequencyΩ+ determined by the nonlocal
theory. In turn, close to the transition (Δk = 41 mm−1)
the FW has a corresponding spectral hole at Ω+, while
further away (Δk = 30 mm−1) it becomes a spectral
peak. We show in Fig. 1(d) the red-shifted holes/peaks
found numerically versusΔk, with an impressive agree-
ment with the nonlocal theory.

Conclusions
In summary the compression limits in the nonstation-
ary regime are the GVM-induced Raman-like effects
and oscillatory components. In the stationary regime
the GVM-induced Raman-like effects, nonlocal effects,
competing cubic nonlinearities and XPM effects, and
dispersive waves, which only exist when taking into ac-
count higher-order dispersion, all limit compression.
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Fig. 1: Soliton compression with Neff = 8 of a 200 fs
FWHM λ1 = 1064 nm pulse in a BBO crystal. (a) FW
time plot, (b) the FW and (c) SH spectra at the optimal
compression point. (d) The red-shifted spectral peaks
in the nonstationary regime from numerics (symbols)
and nonlocal theory (lines). The full coupled SHG equa-
tions are used, including self-steepening on all nonlinear
terms and higher-order dispersion.
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