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Wave-packet dynamics in quantum wells

A. V. Kuznetsov*
Department of Physics, University of Florida, Gainesville, Florida 32611

G. D. Sanders' and C. J. Stanton'
Mikroelektronik Centret, Danmarks Tekniske Universitet, DK-2800 Lyngby, Denmark
(Received 21 April 1995)

It has been recently recognized that in bulk semiconductors the displacement current caused by ul-
trafast optical generation of “polarized pairs” in the applied dc field is an important mechanism of
charge transport in addition to the usual transport current. In quantum-well systems, this polarized pair
creation is thought to be the only source of photocurrent at the early stages of photoexcitation since the
bulklike transport current is inhibited by the barriers. In this work we perform a full quantum-
mechanical analysis of ultrafast optical excitation in a dc-biased quantum well. We take into account the
multiple transitions that become allowed in the dc field which breaks the An =0 selection rule. As a re-
sult, the carriers are created as wave packets formed by coherent superposition of several eigenstates.
When the characteristic size of these wave packets (coherence length) is much larger than the well width
(for long pulses and/or narrow wells), we recover the polarized pairs behavior of the photocurrent. For
shorter pulses, when the coherence length becomes comparable to the well width, the photocurrent ex-
hibits quantum beats. Finally, for very short pulses (around 10 fs) we find that the carriers in a quantum
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well can behave as an ensemble of classical particles and produce a transportlike photocurrent.

I. INTRODUCTION

Ultrafast response in semiconductor quantum-well sys-
tems has been the subject of much experimental and
theoretical attention over the past few years.! At present,
a variety of complementary experimental techniques for
studying quantum-confined systems on a femtosecond
time scale is available. Typically, a multiple quantum
well or a superlattice sample is optically excited with a
femtosecond laser, and the resulting evolution of pho-
toexcited carriers is time resolved by measuring optical
[pump and probe, four-wave mixing (FWM)] (Refs. 1 and
2) or transport (THz radiation) (Refs. 2—7) properties of
the sample at different time delays.

A distinct class of ultrafast processes in quantum-well
systems arises when a dc electric field is applied to the
sample in the growth direction. In quantum-confined
systems, the field-induced separation of photoexcited
electrons and holes is hampered by the barriers. In a su-
perlattice, the carriers can tunnel through the barriers
and move according to the dispersion of the minibands,
which can lead to Bloch oscillations® of the photocurrent.
Such oscillations have been observed in superlattice struc-
tures.>”7 When the well spacing is large, tunneling is
suppressed, and one has a multiple-quantum-well system
as opposed to a superlattice. In quantum wells, the trans-
port current in the growth direction is completely inhibit-
ed by the barriers.

However, as it was experimentally3’4 and theoretical-
1y> 1% demonstrated, a different type of photocurrent is
still present in photoexcited single quantum wells. Be-
cause the quantum-confined states are polarized by the
applied dc field, electron-hole pairs are created by the op-
tical pulse with a nonzero dipole moment.’ The quantum
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well acquires a time-dependent dipole moment (dielectric
polarization) which is proportional to the total number of
pairs in the well [Fig. 1(a)]. The time derivative of the
polarization is the displacement current which has been
observed by measuring the transient electromagnetic ra-
diation it produces.>* 112 For excitation below the band
gap, the levels are populated by virtual carriers which
disappear after the pulse!>!* [Fig. 1(b)], but the propor-
tionality of the dipole moment to the number of pair still
holds in this case. In both cases, the photocurrent is only
present during the optical pulse. This feature has been
described as virtual photoconductivity,'* and opens a

j(t)

FIG. 1. Schematic representation of time-dependent carrier
density, dielectric polarization, and photocurrent after ultrafast
optical excitation for (a) quantum-confined sytem, excitation
above the band gap (real carriers); (b) virtual carriers (excitation
below the band gap); and (c) real carriers in a bulk sample.
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possibility for the generation of ultrashort electric current
pulses.’

A necessary condition for the instantaneous,
polarized-pair displacement photocurrent to occur is that
the well be narrow enough, since in a very wide bulklike
system the dynamics of photocurrent should be quite
different. In a three-dimensional (3D) system, the photo-
current is usually dominated by a transport component
that results from fleld-induced separation of real, pho-
toexcited electrons and holes, and does not vanish after
the pulse is over!®!2 [Fig. 1(c)]. As the width of the well
increases, one can expect a smooth transition from an
adiabatic 2D response depicted in Figs. 1(a) and 1(b) to
the slower bulklike current dynamics of Fig. 1(c). From
both theoretical and practical standpoints, it is desirable
to develop a quantitative method that can predict which
of the possible types of photocurrent response will be
present for a given system and excitation conditions. The
development of such an approach is the goal of this pa-
per.

Usually, carriers in a microstructure are considered to
be quantum confined if the energy spacing between quan-
tized levels is greater than collisional broadening of the
levels." (We will not consider excitons here for which
the criterion is different.!®) In the present paper, we in-
vestigate the 2D-3D transition in the ultrafast photo-
current, and identify the relevant physical parameters
affecting it. Our results indicate that the above criterion
does not work for excitation pulses shorter than the
relevant relaxation times. We find that the critical width
of the well beyond which it behaves essentially as a 3D
system depends on the optical pulse duration and the pho-
ton energy, and is different for electrons and the holes. We
formulate simple quantitative criteria for different types
of response in terms of the transient localization concept
introduced in Ref. 10. We demonstrate that for a well to
behave like a 2D system, the coherence length for pho-
toexcited carriers has to be greater than the width of the
well.

The paper is organized as follows: Section II describes
the theoretical model that we use to describe the quan-
tum well and its optical and transport properties. We
present our results for the photocurrent and related
quantities in Sec. III, where we also give a simple physi-
cal interpretation of our results, and discuss their
relevance for various experimental situations. The final
Sec. IV contains concluding remarks.

II. GENERAL THEORY

A. Quantum-well structure and electronic states

For simplicity, we consider a quantum well with
infinite barriers at z ==xL /2 (perpendicular to the [001]
direction). The wave functions for confined carriers in a
quantum well @ ,(r) are obtained by multiplying the
periodic part of the band-edge bulk Bloch states, u *(r),
by a slowly varying envelope function. Thus

ik

a — € a a
@ k(r) Vi FXz)ur), (1)
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where a=c, h, and [ labels the carrier type (electron,
heavy hole, or light hole, respectively), and » labels the
subband index. The complete envelope function is the
product of a plane wave (with cross-sectional area 4 and
wave vector k) describing translational motion in the x-y
plane multiplied by a slowly varying function FX(z),
which describes the confined motion of the carriers along
the z axis.

Inside the quantum well, the envelope functions F (z)
satisfy the one-dimensional effective-mass Schrodinger
equation

B4 4y (o) | P —EsFe) @)
2m,, dz? A il

where m ,, is the effective mass along the z direction.

The quantum-well band structure consists of a set of
parabolic subbands. For electrons the subband energies
are

(3)

and for heavy and light holes the subband energies are
#2k? #k?
2mh” ’ 2m1” ’

EMk)=—E}— Elk)=—E}— @)
The effective masses in the x-y plane are denoted m,.
For GaAs, the electron mass is isotropic with
mg, =my=0.067m,. The hole masses can be expressed
through the Luttinger parameters!'®!” which for GaAs re-
sults in m;,=0.408m, and m;, =0.109m, effective
masses for the heavy holes, while for the light-holes we
have m; =0.087m, and m;=0.244m,. In this model,
for simplicity, we have neglected the off-diagonal terms in
the Luttner Hamiltonian for the valence bands. The hole
masses are therefore isotropic in the plane of the wells,
but differ in the z direction.

The potential V,(z) which appears in the effective-
mass Schrodinger equation is the potential due to the dc
electric field F. For electrons V, (z)=eFz, and for holes
Vh(Z)= VI(Z)= —eFz.

We solve the Schrodinger equation wusing finite
differences on an evenly spaced mesh. We let f;=F%(z;)
denote the wave function, and v; =V ,(z;) denote the po-
tential where i =0, ..., N +1 labels the mesh points. In
a quantum well with infinite barriers, the wave function
vanishes at the boundary so that f,= f ;=0. Approxi-
mating the second derivative of the envelope function at
each interior mesh point as

dzfi — fi+1—2fi+fi—l
dz? h?

, i=1,...,N, (5)

where 4 is the spacing between mesh points, we obtain a
trigonal matrix eigenvalue problem of order N, whose ei-
genvalues are the energies E and whose eigenvectors are
the envelope functions FX(z;) at the interior mesh points.
In Fig. 2 we show the lowest-lying energy levels and
envelope functions of a 200-A-wide quantum well in a dc
field of 50 kV/cm. The electric field points from left to
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FIG. 2. Energy levels (a) and wave functions (b) for a 20-nm quantum well with infinite barriers in a 50-kV/cm electric field cal-

culted by the procedure discussed in the text.

right in the figure so the lowest-lying electron state is
shifted to the left while the lowest-lying hole states are
shifted to the right. Note that the hole states are visibly
more polarized due to their greater mass.

B. Density-matrix formalism

To describe the dynamics of carriers in a quantum
well, we define a density matrix in terms of the quantum-
well eigenstates described in Sec. IIIA. a.(¢) and
a,(t) are the Heisenberg operators that create and de-

J

stroy electrons in a state @ ,(r), and k represents the
vector in the plane of the quantum well. The density ma-
trix (DM) is defined as

N (=(ag(t)af () , (6)

where ) denotes the statistical average over the current
nonequilibrium state of the system. Writing out the den-
sity matrix in terms of its @ and 8 components, and intro-
ducing some notation for the components of the density
matrix, we have

(aff(ale () (aff(val (1)) (agf(val, (1))
N = (all(Dag (1)) (a) (t)amk (1)) (all(Da) ()
(alf(tat, () (all(nal () (alf(val, ()
[ nin () P () pih (D)
= Pk (D* np i (8) P (2) ™
Prmi(D* D (DF b (2)

The interband components of the density matrix,
p,‘,’,‘j,k(t), describe the coherence between different species
of carriers, a and f3, in subbands n and m, respectively.
They are related to the optical polarization. The intra-
band components of the density matrix, n,,, ,(¢), describe
correlations between different subbands of the same car-
rier type if n5m. The diagonal components of the densi-
ty matrix, ng, , (¢) represent the number of electrons in
the quantum-well state @ ().

C. Bloch equations

The density matrix obeys the general equation of
motion?1°

X aN,f‘,f,’k(t)
—zﬁT—([Hk,Nnmk 1, (8)

[
where the square brackets denote the commutator. The
Hamiltonian operator for a quantum well interacting
with a plane-polarized radiation field incident along z and
polarized along x is
=S Edk)ad (t)ab (1)
n nk nk

—E() 3 d2 adl(t)ab, (1), 9)
af3,nm

where E°PY(¢) is the time-dependent optlcal electric field
(with unit polarization vector x), and dnm x the projec-

tion of the electron dipole moment along x, is
d28, = [dr & (rlexgh,(r) . (10)

Since we are interested in pumping the quantum well
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with optical pulses with interband photon energy, we
neglect intraband optical transitions (i.e., dipole transi-
tions for which a=p). In the effective-mass approxima-
tion, the interband dipole matrix elements are given by

d = [dz F(2)*FE(2) [ dru®(n)*exuP(r) . (11)

The dipole matrix elements for optical transitions are
seen to be proportional to the product of the overlap in-
tegral between the envelope functions F¥(z) and F2(z)
and the dipole matrix element between the bulk Bloch
states #%(r) and u”(r). The conduction-band bulk Bloch
state (a=c) is s like, and the valence-band bulk Bloch
states (a=h,l) are p like. Consequently, within our ap-
proximations for the valence bands the dipole transitions
between heavy- and light-hole states are forbidden by
symmetry. A more realistic calculation would include
coupling of the valence bands to the lowest as well as
higher conduction bands, which would make these ma-
trix elements small but nonzero away from the zone
center.'®!® We neglect this effect, but point out that it
can be important in other experiments such as infrared
absorption in p-doped materials.?® The p-like bulk Bloch
states with x, y, and z symmetry (sixfold degenerate if we
include spin) are split by spin-orbit interaction into a pair
of J=3, m ==%3 heavy-hole states and a pair of J =3
m ==1 light-hole states.?! (The J =1,m =<+1 spin-split
states are far away in energy and we ignore them.) The
nonvanishing dipole matrix elements are?!

¢ e
[dru (r)*exuh(r)—T/—-j—do (12)
and
fdru *exu'(r)= \/6 —=d, , (13)

where dy=(s|x|x ) =0.7 nm is the reduced dipole matrix
element (along x) between the bulk conduction Bloch
state with s-like symmetry and the valence Bloch state
with x-like symmetry. For initial and final states from
the same band, the matrix element (10) is simply deter-
mined by the envelope functions. Physically, such inter-
band matrix elements describe movement of particles in
their respective bands which will play an important role
in further analysis.

Note that in the absence of the symmetry-breaking dc
field, the overlap integrals in (11) would be zero for all
transitions except m =n [strictly speaking, this is only so
in an infinite well at k=0, otherwise the transitions be-
tween the states of the same parity (e.g., m =n +2) be-
come weakly allowed; however, such transitions do not
affect the intraband dipole moment, so they are not essen-
tial to our analysis]. The dc field breaks the An =0 selec-
tion rule, so that each state in the valence band becomes
coupled to more than one state in the conduction band,
and vice versa. The presence of such crisscrossing transi-
tions considerably complicates the description of optical
excitation in such systems. These off-diagonal transitions
are usually left out because in perturbation theory the
overlap integrals with Ans0 are first order in the dc
field, i.e., smaller than the diagonal An =0 elements
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which are of zero order. However, as we shall see below,
these transitions are absolutely crucial to the dynamics of
charge transport, and are necessary to describe the cross-
over from 2D to 3D behavior.

If we substitute the Hamiltonian into the equation of
motion, we obtain the Bloch equations of motion for the
components of the density matrix

ONZE

nm,k

ar

EXk)—EB (k)
#
Eo t(t

ap

nm,k

z(N,,Jkdﬂ’ dYNIE) . (14)
vi

In the simple model we are considering, the equations for
different k are completely decoupled and can be solved
independently. The Coulomb interaction or the
electron-phonon interaction would couple different k,
making the problem extremely difficult to solve. There is
a considerable body of work on incorporating the
Coulomb interaction in the Bloch equations for both bulk
and quantum-confined systems.!*?? However, for quan-
tum wells in the electric field!® this was done in the diago-
nal approximation, i.e., neglecting the off-diagonal ele-
ments of the density matrix. In this paper, we neglect the
Coulomb interactions, concentrating instead on a full
quantum-mechanical description of the noninteracting
electron and hole dynamics. In this sense, our approach
is very similar to that of Ref. 2.

From the Bloch equations, we can extract equations of
motion for the various components of the density matrix.
For the time-dependent optical field, we introduce a real
electric field

E°Y(t)=E,f (t)Re(e ') . (15)
The frequency  is the central frequency of the pulse
describing the rapid oscillations of the electric field, and
S (2) is a slowly varying envelope function that describes
the pulse shape. For the pulse shape function, we assume
a Gaussian pulse shape of the form

f(t)=exp|

where 7, is the temporal width of the pulse. [Note that
the full width at half maximum (FWHM) of such a pulse
is 1.6657,.]

We adopt the rotating wave approximation (RWA),
and keep only those terms in the Bloch equations which
are close to resonance with the free oscillations of the
dens1ty matrix. We also factor out the rapid oscillations
in an x(2) and p,,m x(2) by introducing two variables

—(t/7,)°], (16)

iot

P (V=P (1)e

I an
prfm,k(t)

iwt

=P (t)e

Substituting these expressions into the Bloch equations
and factoring out the term e’®’, we obtain the following
six equations for the components of the density matrix:
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() [ ELO—EL(R) | (1= 8, 15 1 (£)
at =1 % nnm,k(t)-‘ T
f( E f (1)
2 E[ﬁnj k(t)dr;’}—dzfﬁ;lg,k(t)*]+l Oﬁ Z[ﬁnj k(t)d;‘tlj_drfjlﬁr‘r‘xl} k(t)*] H (18)
an:m,k(t) _ E:’(k)'“E,}:,(k) h () — (lﬁanm )nrtlm,k +E0f(t) [ (1) xkdch __dCh~£‘h () (19)
dt - # M yum,k ™ 1 # 2 ﬁjnk n P jm,k ] s
My (t) | Ef(K)—EL(K) | | (1=8,, b () | Eof () ,
nm, — n m _ nm " nm, . c * gcl cl =cl
=i ~ b (0) - i S0~ 0] (20)
~ch h ~ch
pmx(t) | Ef(k)—E,(k)— Pamx (1) | Eof (2) ch _ gehy h hL( )%
EY =i p pnmk(t) T P ?[ k(Ddjy —dg; ]mk(t) dnjp (D*], 21
APl (1) E{(k)—EL(k)—#w | Pimi(t) | Eof (1) . e .
ot - A nin,k(t) T4 #i g[n”j:k t)d d _d'l]l R jm, k(t)_d'l]hpli;'ll k(t)] ’ (22)
aphiu () _ | EMI—EL (k) Pl | B SO
ot =1 # r:xrln,k(t) T4 +i % ? jn, k(t) djr£1 _dlnﬁjmk t)] . (23)

The terms in curly brackets are dephasing terms which
have been added phenomenologically to allow for the
effects of electron-hole—phonon and carrier-carrier (e-h,
e-h, h-h) collisions. We allow for different relaxation
times for interband and intraband polarizations, but do
not include relaxation terms for the densities (longitudi-
nal relaxation) since their relaxation is typically much
slower than that of the polarizations. In all numerical
calculations below, we have assumed 100 fs as the inter-
band dephasing time, and 1 ps for intraband dephasing.>*

This is a set of coupled ordinary differential equations
that can be solved using an adaptive stepsize Runge-
Kutta routine. For boundary conditions, we assume that
in the remote past the conduction subbands are empty
and the valence subbands are occupied, so that
n k(t—> 00)'“ n,fm,k(t——»—oo)=8,,,m, and
n,ﬁm k(t——o0) m- The polarizations are assumed to
vanish so that p,ff, k(t——)=0, ~,ff,, k(t——0)=0,
and pM, (> — 0)=0.

Note that in zero dc field this set of equations is greatly
simplified since, in our model which neglects the band
mixing, the density-matrix components with n5m vanish
because of the An =0 selection rule in our calculation.
In a finite dc field, the off-diagonal terms of the DM are
first order in the dc field and have to be kept in order to
correctly describe the charge transport. Since we keep
several tens of subbands (mostly in the heavy-hole band),
we typically have to solve a few thousand equations for
each k;. The number of equations to be solved is deter-
mined dynamically by the program. It depends primarily
on well width and pulse duration. The more quantum-
well states that lie within the excitation spectral width,
the more equations that need to be solved.

D. Observables

Once the density matrix is known, we can calculate ob-
servable quantities such as charge density, dipole mo-
ment, and current densities.

Charge density

The simplest observable is the particle density which,
at a fixed value of k, is defined in terms of field operators
as

P (r,0)={l(r,)h(r,1)) .

In the basis of our effective-mass wave functions, the field
operator is given by

(24)

—xkr

1/Jk(r,t)—2 Vi FH2ur)ai(r) .

(25)

Inserting the field operator into the expression for the
particle density, we obtain the relation between the parti-

cle density and the density matrix:
F%z)FB(z)
Pyr,n)=3 _ﬁ_Ai_

aB,nm

X u(r)ul(r){a ()ab, (1))
FX(z)FB(z)
=3 ——A—u“(r)u Br)NZE (1) . (26)
af,nm
Leaving out interband terms which rapidly oscillate in
time and space, and averaging over the periodic part of
the Bloch functions, we obtain
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FX2)F7(z)

Pk(r,t)= 2 4

a,nm

ne, (1) . 27)

We can also write this result in terms of the charge den-
sity in a specific band. Thus

Py (r,1)= X pny(1,1) , (28)

a,n

where the charge density of species a in subband n with
wave vector k is defined as

F2(2)F2(z)
PiA(n D=3~ "

m

Re(n,, (1)) . (29)

The total charge density is obtained by summing over
k in the plane of the well. Since different k’s are uncorre-
lated in our formalism, the result is simply

palz,t)=F pp(z,1)
k
=%fowdk kpS i (z,1)
a a 1 *® a
=§Fn(z)Fm(z);Xf0 dk k Re(n2, (1) . (30)

Dipole moment

At a fixed value of k, the electron dipole moment in the
direction z of the dc field is defined in terms of charge
density as

d(0)= [dr P (r,er= 3 ng, ,(1D& 2, 31)
a,nm
where
D2, = [ dz Fi(z)ezFg(z) (32)

is just the dipole matrix element between the slowly vary-
ing envelope functions. Consistent with the approxima-
tions made in Eq. (27), we have neglected the rapidly
varying interband piece. Finally, the total dipole moment
per unit area is obtained by summing over k and dividing
by the area of the quantum well:

—lgg=1Lr " « a5
d(t)—Agdk o fo dk k3 ng, ()DZ,2 . (33)

anm

Note that the off-diagonal intraband matrix elements
are zero order in the dc field, while the diagonal ones are
first order. The first-order contributions to the dipole
moment are then formed in two ways: diagonal dipole
matrix element (first order) times a diagonal DM com-
ponent (zero order), or off-diagonal matrix element (zero
order) times an off-diagonal DM element (first order). In
the usual polarized-pair calculations, only the diagonal
contribution is taken into account. We will examine the
role of the off-diagonal terms below.

Current density

The current density is just the time derivative of the
displacement (31). Thus
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=

o [an

dt | Aw

This current is time dependent and produces transient
electromagnetic radiation which is experimentally acces-
sible.>*°12 The electric field of the radiated wave is
proportional to the time derivative of (34).

III. RESULTS

Using the above formalism, we are able to calculate the
coherent response of quantum wells for different well
geometries and excitation conditions. Because of the
large number of parameters involved (well width w, pulse
duration 7,, photon energy %, dc field E, and relaxation
times) we cannot explore all of the parameter space, but
only present results that are representative of the several
physically different regimes. The first case we consider is
that of narrow wells and/or long pulses. Here the energy
width of the excitation spectrum is smaller than the spac-
ing of quantized levels (we concentrate on the conduction
band for simplicity). In this case, electrons from a single
valence-band state are optically coupled to no more than
one final state in the conduction band [Fig. 3(a)]. Conse-
quently, there is no coherence between different
conduction-band states, and the charge density is an in-
coherent sum of densities of each populated state. As is
seen in Fig. 3(b), the charge-density distribution in this
case simply scales with the total number of carriers
preserving its shape which is determined by a weighted
sum of wave functions squared for each populated level.
The time dependence of the dipole moment in this case
[Fig. 3(c)] follows the number of carriers, since there is a
constant dipole moment per photogenerated electron-
hole pair.

In this confined limit the quantum well behaves as a
collection of independent two-level systems whose ob-
servables are added incoherently according to the original
polarized-pairs argument.”!3> The experimental condi-
tions of Refs. 3 and 4 correspond to this regime. Below
we will examine the quantitative conditions for this and
other regimes in more detail.

For shorter pulses and/or wider wells the energy width
of the excitation spectrum becomes comparable to the
level spacing, so that multiple transitions from valence-
band states become energetically possible [Fig. 4(a)]. If
two or more conduction-band states become optically
coupled to the same state in the valence band, the
conduction-band wave function is a coherent superposi-
tion of their wave functions. In density-matrix language,
this means that there are nonzero off-diagonal elements
nf, of the density matrix. The corresponding terms in
the expression for the charge density (30) and other ob-
servables (31) and (34) oscillate at the difference frequen-
cies. These oscillations (quantum beats) are clearly seen
in the time-dependent charge density [Fig. 4(b)] and the
dipole moment [Fig. 4(c)]. In this case, the carriers no
longer occupy definite eigenstates, instead they form wave
packets that can move inside the well. This regime is
easily achieved in asymmetric double-well structures,>*
where the level spacing can be made very small.



52 WAVE-PACKET DYNAMICS IN QUANTUM WELLS

c Excitation
y ~ spectra
width

hi

[

A
A
R

B
DR
W
i

R

R
A
i

S

‘c© 0.4 -

~

8

N

IS

)]

£

)

S

[

©

e

o T T T T

-200 0 200 400
Time (fs)

FIG. 3. (a) A schematic representation of optical transitions
in a narrow (10 nm) well. The energy splitting between the lev-
els is greater than the spectral width of the excitation. There is
only one final state for transitions from any given valence-band
state. (b) Time-dependent charge density for conduction elec-
trons in a 10-nm quantum well in a 50-kV/cm field excited by a
100-fs pulse. The central frequency of the excitation is 1.55 eV
(about 100 meV above the band gap). The shape of the distribu-
tion does not change in time because it is an incoherent sum of
wave function squared for the levels involved in the transition.
(c) Time-dependent polarization. The dashed line is the diago-
nal component of the polarization [neglecting off-diagonal terms
in (33)]. The polarization follows the diagonal component close-
ly. Note a small quantum beat contribution due to heavy holes.
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FIG. 4. (a) A schematic representation of optical transitions
in a wider (20 nm) well. The energy splitting between the levels
is now comparable to the spectral width of the excitation, so
that multiple transitions from a given valence-band state be-
come possible. (b) Time-dependent charge density for conduc-
tion electrons in a 20-nm quantum well in a 50-kV/cm field ex-
cited by a 25-fs pulse (central frequency 1.50 eV). Initially, the
charge density is practically uniform across the well. At later
times, the density exhibits oscillatory motion (quantum beats)
due to interference between different levels involved in the su-
perposition. (c) Time-dependent polarization contains quantum
beats created by all three carrier species. The beats for conduc-
tion electrons (c) contain multiple frequencies. Note the delay
between the diagonal component which follows the total density
(dashed line) and the full result (solid line), which is due to ini-
tial flatness of the density distribution.
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We shall call this regime the quantum beat limit. Let
us note that the magnitude of the quantum beat com-
ponent in the dipole moment is generally comparable to
the diagonal polarized-pair component: both are first or-
der in the dc field [see the discussion after Eq. (33)].
Therefore, for shorter pulses whose spectrum covers
more than one level, the polarized-pairs concept is not
applicable even for low dc fields (even for zero dc fields
there will be some coupling owing to the previously dis-
cussed violations of the An =0 selection rule).

For even shorter pulses, the number of levels involved
in the quantum beats becomes large [Fig. 5(a)], and the
beating pattern in the charge density becomes more com-
plicated with many different frequencies present [Fig.
5(b)]. The time evolution of the charge density in this
limit is quite different from the confined case of Fig.
3(b)—the charge density is initially uniform inside the
well. This is because initially there is a very large number
of levels contributing to the charge density (30), and the
oscillatory components of their wave functions squared
tend to cancel out. Because of this effect, there is a no-
ticeable delay between the rise of the density [represented
by a dashed line in Fig. 5(c)] and the rise of the dipole
moment—in this regime, the dipole moment does not fol-
low the number of carriers instantaneously. Let us also
point out that in spite of the large number of levels in-
volved in the formation of the wave packets shown in
Fig. 5(b), the dynamics of the dipole moment turns out to
be quite simple with almost monochromatic beats for
each carrier species. We will call this last regime the
classical limit for reasons explained below.

These different types of behavior can be very naturally
understood in terms of the transient localization concept.
As was demonstrated in Ref. 10, in bulk systems one can
describe the optical generation of carriers in a dc electric
field as a process of creation of electronic wave packets
which then propagate from the point of creation. The
size of these wave packets, /., is independent of the dc
field and is given by

I=7,v9, (35)

where 7, is the pulse duration, and v, is a characteristic
velocity the carriers are created with (it is given by the
condition v,=*k,/m ,, where k is determined by energy
and momentum conservation requirements:
ﬁw—Eg=ﬁk(2,/2,u.). For, e.g., a 100-fs pulse and
A=#w—E,=100 meV the size of conduction-electron
wave packets is about 50 nm. The size of the wave pack-
ets is a measure of the spatial extent of electronic wave
functions. We will call this quantity the coherence length.
This should be distinguished from the phase-breaking
length, which is the distance the wave packets can travel
before the relaxation destroys them (1, =7 Vo)

The different transport regimes identified above corre-
spond to different relations between the coherence length
and the well width. For the perfectly confined case of
Fig. 2, I, >>w, the spatial extent of electronic wave func-
tions in the bulk would have been much greater than the
width of the well. The wave packet has to adjust the
boundary conditions imposed by the well, which pro-
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FIG. 5. (a) Transition diagram for a wide well with a large
number of levels covered by excitation spectrum. (b) Time-
dependent charge density of conduction electrons in a wide 40-
nm well in a 50-kV/cm field. The excitation pulse is short (10
fs) and centered at 1.50 eV. The charge density is initially uni-
form across the well and exhibits very complex beating pattern
at later times. (c) The polarization for all three carrier species is
dominated by oscillations, and there is an appreciable delay be-
tween the rise of the density (dashed line) and that of the polar-
ization.

duces well-defined energy levels.

The classical limit of Fig. 5 corresponds to the opposite
relation between these two lengths: [/, <<w. In this limit,
the pulse creates wave packets that are much smaller
than the well. Wave packets that are created more than
I, away from either wall behave exactly as they would in
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the bulk until they approach the walls. Therefore, in this
regime the photocarriers in the quantum well behave like
an ensemble of classical particles that are created uni-
formly in the well with corresponding classical velocities,
and then move in the applied field according to classical
laws of motion. This is the reason for the initial flatness
of the density distribution which is evident in Figs. 4(b)
and 5(b). In a confined sample, the carriers cannot
separate indefinitely because they are reflected by the
walls. Therefore, even for classical particles, one can ex-
pect an oscillatory time dependence of the dipole moment
instead of a monotonic ¢ growth characteristic of bulk
samples [Fig. 1(c)]. For the ensemble of classical parti-
cles it can be shown that the average dipole moment
should exhibit quasimonochromatic oscillations with the
period equal to the maximum period of classical motion
for all particles in the ensemble. This explains why there
are no multiple frequencies present in the dipole moment
dynamics shown in Fig. 5(c).

In Fig. 6 we plot the time-dependent dipole moment
calculated for an ensemble of classical particles for the
excitation conditions of Fig. 5. We introduce point parti-
cles randomly across the width of the well according to
temporal profile of the excitation, and assign them a ran-
domly directed velocity (35). There is an excellent overall
agreement between the classical model of Fig. 6 and the
full quantum-mechanical calculation displayed in Fig. 5.
The agreement is especially good for the heavy holes,
whose coherence length is about 50 times smaller than
the well width in this example. For the electrons the
coherence length is about % the well width, but still the
agreement between quantum-mechanical and classical
calculations is very good at early times.

For a given value of detuning, we can represent
different possible regimes on a phase diagram like the one
shown in Fig. 7. This is a plot of the coherence length /,
for conduction electrons and heavy holes as a function of
pulse duration (we do not plot the line for light holes for
simplicity). The region far below the solid line corre-
sponds to pulse duration well width combinations for
which a confined behavior like the one shown in Fig. 3 is

Total

Dipole moments (pC/m)
© 0 = =~ NN
o o u o u
1 | L L 1 |
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FIG. 6. The time-dependent polarization for an ensemble of
classical particles in a biased well with the same parameters as
in Fig. 5. The classical polarization is very close to that shown
in Fig. 5(c), especially at earlier times.
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FIG. 7. Phase diagram for different excitation regimes. The
straight lines represent the condition /, =w for conduction elec-
trons and heavy holes. The upper left corner (wide wells and
short pulses) corresponds to a classical regime (the conditions of
Fig. 5 are represented by a circle), the lower right corner (nar-
row wells and long pulses) is the quantum-confined regime (the
square represents Fig. 3). The intermediate quantum beat re-
gime corresponds to the vicinity of the lines. The cross shows
the conditions of Fig. 4, where the conduction electrons are in
the quantum beats regime.

achieved. The region well above this line corresponds to
the classical limit where the well behaves like a 3D sys-
tem (Figs. 5 and 6). Finally, the region adjacent to the
w =1, line represents the intermediate quantum beat re-
gime shown in Fig. 4.

The relaxation can be included phenomenologically by
limiting the coherence length by the phase-breaking
length. For long pulses, the solid curves should approach
the plateaus w =I,, which represent the well widths
above which the wells can be considered 3D even in the
steady state. This would correspond to the usual cri-
terion of level spacing being equal to the broadening of
the levels.

IV. CONCLUSIONS

In Sec. III, we identified three distinct regimes for po-
larization dynamics in optically excited quantum wells.
The first (quantum confined) regime corresponds to the
conventional picture of polarized-pair creation,”!® and
occurs for long excitation pulses and narrow wells such
that the condition w <</, is met (Fig. 3). In the second
regime w ~ [, the carrier wave functions are formed by
coherent superposition of a few eigenstates connected by
the optical transition. This leads to quantum beats on
difference frequencies. Such quantum beats have been
previously predicted and observed®* in double-well struc-
tures where the level spacing can be made small. Finally,
the third, classical regime is obtained when the number of
levels involved in the superposition becomes large
(w>>1,). We have shown that in this case the carriers
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behave as classical pointlike particles moving between the
walls of the well in the applied dc field, so that the well
behaves essentially as a 3D system.

The dc field applied to the well breaks the An =0 selec-
tion rule for optical transitions, so that in principle there
is a nonzero optical matrix element between any state in
the valence band and any state in the conduction band.
For long pulses, most of these off-diagonal transitions are
forbidden energetically. One can then retain only diago-
nal transitions, which considerably simplifies the problem
and results in the standard polarized-pairs approach.*% 13
However, this cannot be done for shorter pulses whose
spectral width is large enough to cover several levels.
When transitions from one initial state to many final
states become possible, the carrier dynamics have to be
described in terms of wave packets (coherent superposi-
tions of the eigenstates) that can move inside the well
[Figs. 4(b) and 5(b)] and produce quantum beats in the
time-dependent polarization.

For still shorter pulses, the characteristic size of the
wave packets [coherence length (35)] becomes smaller
than the well, and the carriers start to behave like point-
like classical particles. This classical regime is very
difficult to analyze in our formalism since the number of
levels involved in the superpositions becomes quite large
(several tens for the heavy holes). However, the carrier
dynamics can be described in this case by modeling the
photocarriers with an ensemble of classical particles (Fig.
6) which is orders of magnitude easier computationally.

As is clear from Fig. 7, for experiments done with 100-
fs pulses almost any quantum well is in the quantum-
confined regime. This justifies the use of the diagonal ap-
proximation that was implicitly made in Refs. 4, 9, and
13 [although the heavy holes can exhibit quantum beats
even for 100-fs pulses; see Fig. 3(c)]. At present, howev-
er, much shorter pulses up to 10 fs are being used for
quantum-well studies.”? For such short-pulse experi-
ments, our predictions of quantum beats and possible
classical transport motion of carriers become important.
In particular, making the excitation pulses shorter does
not necessarily make current transients shorter, since for
short pulses the carriers can exhibit classical behavior
and produce a transportlike current which no longer fol-
lows the pulse adiabatically. This is illustrated in Fig. 8,
where we compare the calculated photocurrent with its
adiabatic (diagonal) component. For the case shown in
Fig. 8, the photocurrent does not follow the pulse adia-
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FIG. 8. A comparison of photocurrent calculated for a wide
quantum well in the classical regime (solid line) with the result
of the adiabatic following approximation that neglects the off-
diagonal components of the density matrix. The parameters are
those of Fig. 5. The duration of the photocurrent peak is much
longer than the excitation pulse duration (10 fs).

batically, and changes on a much slower time scale. In
fact the current oscillations in Fig. 8 (or the polarization
oscillations in Fig. 5) are so slow that they can be detect-
ed by conventional dipole antennas.> !?

Our approach allows us to describe the dynamics of
electronic wave packets in quantum wells. However, due
to computational limitations we have to leave out a num-
ber of experimentally relevant effects. For near-band-gap
excitation, excitonic effects should play a major role. Our
formalism also neglects the above-barrier states (they are
too numerous to include), while the results of Ref. 10 sug-
gest that virtual population of these states can make a
large adiabatic contribution to the polarization. In spite
of these limitations, we believe that our formalism cap-
tures the essential features of the wave-packet dynamics
in quantum wells.
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