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Theory of phase equilibria and critical mixing points in binary lipid bilayers
Jens Risbo, Maria M. Sperotto, and Ole G. Mouritsen
Department of Physical Chemistry, The Technical University of Denmark, Building 206, DK–2800 Lyngby,
Denmark

~Received 29 November 1993; accepted 19 May 1995!

The fundamental problem of determining the phase equilibria of binary mixtures is discussed in the
context of two-component phospholipid bilayer membranes of saturated phospholipids with
different acyl-chain lengths. Results are presented from mean-field calculations and Monte Carlo
simulations on a statistical mechanical model in which the interaction between lipid acyl chains of
different length is formulated in terms of a hydrophobic mismatch. The model permits a series of
binary phase diagrams to be determined in terms of a single ‘‘universal’’ interaction parameter. The
part of the free energy necessary to derive phase equilibria is determined from the simulations using
distribution functions and histogram techniques, and the nature of the phase equilibria is determined
by a finite-size scaling analysis which also permits the interfacial tension to be derived. Results are
also presented for the enthalpy and the compositional fluctuations. It is shown, in accordance with
experiments, that the nonideal mixing of lipid species due to mismatch in the hydrophobic lengths
leads to a progressively nonideal mixing behavior as the chain-length difference is increased.
Moreover, indications are found that a phase transition in a strict thermodynamic sense may be
absent in some of the short-chain one-component lipid bilayers, but a transition can be induced
when small amounts of another species are mixed in, leading to a closed phase separation loop with
critical points. The physical mechanism of inducing the transition is discussed in terms of the
molecular properties of the lipid acyl chains. The results of the numerical model study are expected
to have consequences for the interpretation of experimental measurements on lipid bilayer systems
in terms of phase diagrams. ©1995 American Institute of Physics.

I. INTRODUCTION

Phase equilibria in many-component mixtures are gov-
erned by the free-energy function which, however, usually is
never readily available from either experiment or theoretical
calculation. In particular, under experimental circumstances,
usually only first derivatives of the free energy, such as den-
sities and order parameters~e.g., spectroscopic!, or second
derivatives, such as specific heats and susceptibilities, are
experimentally accessible. The phase equilibria then have to
be derived indirectly from the behavior of such derivatives,
e.g., from changes in the temperature and composition de-
pendence of the densities or order parameters and in particu-
lar from possible singular features in the response functions.1

Generally, the accuracy of the phase equilibria, e.g., in terms
of a phase diagram, obtained from such an indirect determi-
nation depends on how pronounced the first-order nature of
the transition is and how perpendicular to the actual phase
boundary the chosen thermodynamic path is. The stronger
the density and compositional fluctuations of the mixed sys-
tem, the more delicate it becomes to determine the phase
equilibria from derivatives of the free energy. It is particu-
larly difficult to determine the accurate position of phase
boundaries for mixtures close to critical mixing points.

In the present paper we are going to discuss a numerical
method based on Monte Carlo simulations by which it is
possible to derive very accurately the phase equilibria in
many-component mixtures. A prerequisite for the application
of the method is a statistical mechanical model in terms of a
Hamiltonian which describes the mixture. The approach is
general but for the sake of simplicity we shall apply it to a
particular class of mixtures, phospholipid bilayers, which are

notoriously known to display phase equilibria that are diffi-
cult to assess experimentally as well as theoretically.2 Lipid
bilayers are model systems for biological membranes1,3 and
it is important for the understanding of the functioning of
membranes, which are complex many-component mixtures,
to be able to describe the phase equilibria in simple few-
component lipid mixtures in planar bilayer aggregates. Al-
though our methods and results are presented within the con-
text of lipid systems, the approach is fairly general and
should prove useful for other mixtures with intricate phase
equilibria and for which statistical mechanical models can be
formulated.

Lipid bilayers display a number of thermotropic phase
transitions4 of which the main transition is the one which is
most intensively studied since it constitutes the lower bound-
ary for the physiologically interesting fluid phase. At the
main transition the bilayer is transformed from a low-
temperature solid~gel! phase to a high-temperature fluid
~liquid-crystalline! phase.1 The main transition is usually as-
sumed to be a first-order transition associated with strong
precursor effects and fluctuations. The phase equilibria in
lipid bilayer systems are conventionally studied experimen-
tally by calorimetric5,6 or spectroscopic means.7,8

The nature of the main transition in one-component
phospholipid bilayers is still a controversial issue, although it
is usually assumed to be of first order.2,9 There is, however,
no clear-cut experimental proof of this, and the usual as-
sumption of a first-order transition is mainly due to the tra-
dition which developed after the original finding by Chap-
manet al.10 of a very intense and narrow specific-heat peak
with a large heat content for phospholipid bilayers at their
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main transition temperature,Tm . This finding was later ac-
curately quantified in the classical high-sensitivity
differential-scanning calorimetry study by Albon and
Sturtevant.11 Nevertheless, there is no single piece of experi-
mental observation which reveals the kind of discontinuities
which are usually associated with first-order behavior. In
fact, the most recent and accurate calorimetric study9 leads to
the conclusion that the transition is at best weakly first order
and possibly there is no transition at all in a strict thermody-
namic sense, i.e., the bilayer transition may be close to a
critical point. Whether it is on the side of the critical point
corresponding to a~weakly! first-order transition or on the
side where there is no phase transition in a strict thermody-
namic sense may critically depend on details of the particular
system. The current picture of a lipid bilayer at its main
transition is hence one of a strongly fluctuating system.2 The
strong fluctuations are signalled on the macroscopic level by
dramatic peaks in the response functions,9 strong variations
in the order parameters,12 and anomalous swelling
behavior.13 Microscopically, the fluctuating state is mani-
fested by formation of lipid clusters and domains leading to
a heterogeneous lateral structure which is dynamically
maintained.14 It is interesting to note a well-established fact,
experimentally as well as theoretically, that the appearance
of the main bilayer transition is strongly dependent on small
perturbations, such as imperfections, impurities, sample mor-
phology, trans-bilayer interactions, as well as environmental
conditions. One of the aims of the present paper is to dem-
onstrate that, if a phase transition is absent in a one-
component lipid bilayer, it may well be induced when a sec-
ond lipid component is introduced even in a very small
amount.

In order to shed some light on the question as to how the
nature of the main transition in one-component lipid bilayers
controls the phase equilibria in mixtures, it is of interest to
study a simple and well-defined theoretical model system for
a lipid bilayer in which one can systematically unravel the
effects of various system parameters on the phase equilibria.
The numerical approach described in the present paper is
based on a statistical mechanical model of the molecular in-
teractions between lipid molecules in pure bilayers and mix-
tures. The approach employs a particular combination of~i!
the histogram techniques advanced by Ferrenberg and
Swendsen15 to perform reweighting of thermodynamic distri-
bution functions and~ii ! the finite-size scaling analysis ap-
plied by Lee and Kosterlitz16,17 to the logarithm of appropri-
ate distribution functions from which the part of the free
energy needed to determine phase equilibria can be derived.
Histogram- and finite-size scaling techniques have proved
indispensable for problems where there has been doubt as to
the nature of the phase transition in one-component systems
due to strong fluctuations, e.g., Potts models,16–18 hard-disc
models,19,20Abrikosov vortex-lattice models,21 models with
randomness,22microemulsion models,23 and models of liquid
crystals.24–26Recently the approach was applied to study the
nature of the main phase transition in some one-component
lipid bilayers27–29 and critical mixing in a lipid-polypeptide
mixture.30 The present paper shows the full potential of the
approach when applied to a binary lipid mixture.

The statistical mechanical model on which our numeri-
cal study is based is described in Sec. II. Three different
mixtures of a homologous series of saturated di-acyl phos-
phatidylcholines are considered, specifically D14PC-D16PC,
D14PC-D18PC, and D12PC-D18PC.~Abbreviations used
are D12PC: dilauroyl phosphatidylcholine, D14PC: dimyris-
toyl phosphatidylcholine, D16PC: dipalmitoyl phosphatidyl-
choline, D18PC: disteroyl phosphatidylcholine, D20PC: di-
arachidoyl phosphatidylcholine, corresponding to 12, 14, 16,
18, and 20 carbon atoms in the acyl chain.! Section III de-
scribes a mean-field approach to the phase equilibria and a
calculation of the system properties at coexistence. The nu-
merical simulation methods are described in Sec. IV, includ-
ing conventional Monte Carlo simulation in the grand ca-
nonical ensemble as well as histogram techniques and finite-
size scaling analysis applied to binary mixtures. The results
from the numerical simulations are described in Sec. V, and
the paper is concluded by a discussion in Sec. VI.

II. MODEL

The statistical mechanical model used in the present pa-
per for binary lipid mixtures is based on the ten-state Pink
model31 to describe the main transition for each of the pure
lipid-bilayer components of the mixture. We consider two
different di-acyl lipid species, A and B, which only differ in
the length of the acyl chains. The two lipid species are
coupled by a term which reflects the incompatibility of acyl
chains of different hydrophobic lengths, cf. Fig. 1. This type
of hydrophobic mismatch interaction is related to the mis-
match interaction of the so-called mattress model of lipid-
protein interactions.30,32,33The model was also used recently
to describe local structure in binary lipid mixtures34 and bi-
nary lipid mixtures incorporated with transmembrane
proteins.35

The ten-state Pink model for the main transition in one-
component lipid bilayers has earlier been described in
detail.31,36,37Despite its simplicity, the model has proved suc-
cessful in describing a great variety of physical properties of
lipid bilayers and showing how lipids interact with a number
of other membrane components.2 The Pink model describes
chain melting on a lattice by taking into account the lipid
acyl-chain conformational statistics and the van der Waals
interactions between various conformers in a detailed man-
ner, while the excluded volume effect is partially accounted
for by assigning each lipid chain to a single site of a trian-

FIG. 1. Schematic illustration of the hydrophobic mismatch between two
acyl chains belonging to two different species, A and B, of saturated phos-
pholipid molecules.
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gular lattice. The lipid bilayer is considered as being com-
posed of two noninteracting monolayers. Therefore, the
model does not account for possible effects due to chain
interdigitation. The acyl chain conformations are represented
by ten single chain states,m51,...,10, each described by a
cross-sectional area,Am , an internal energy,Em , and an in-
ternal degeneracy,Dm . The cross-sectional area is recipro-
cally related to the hydrocarbon chain length,dm , since the
chain volume is approximately invariant under temperature
changes. The nine lower states are characteristic of the gel
phase and the tenth state is typical of the fluid phase. Of the
nine gel states, the lowest state is the all-trans ground state
and the eight remaining states are low-lying conformational
excitations of the ground state. In terms of these variables the
Hamiltonian for the ten-state Pink model for lipid species A
~and analogously for B! can be written

HA5(
i

(
m51

10

~Em
A1PAm

A !L im
A

2
JA
2 (

^ i , j &
(

m,m851

10

I m
A I m8

A
L im

A
L jm8

A , ~1!

whereL im
A 50,1 is an occupation variable and the pair inter-

actions are extended over nearest-neighbor sites only. The
values of the single-chain properties (Em

A , Dm
A , Am

A , and
dm
A) for di-acyl saturated phosphatidylcholine bilayers have
previously been determined by Pinket al.31 P represents an
intrinsic effective lateral pressure exerted on a lipid bilayer
due to interfacial effects~hydration, polar head interactions,
etc.!. The interactions between an acyl chain and its six near-
est neighbors are given by van der Waals interactions of
strengthJA in Eq. ~1!. I m

A is a product of a term related to the
van der Waals interaction between chains and a phenomeno-
logical expression for the shape-dependent nematic
parameter.31 The values of the interaction strengthsJA ,
which we have derived by simple scaling from the previ-
ously determined value for D16PC,36 are as follows:JA
50.5232, 0.618, 0.70985, 0.815, 0.915310213 erg for
D12PC, D14PC, D16PC, D18PC, and D20PC, respectively.
The parametersJD16PC andP ~530 dyn/cm independent of
acyl-chain length! were originally found by fitting to experi-
mental values for the transition temperatures and transition
enthalpies of pure D16PC.31,36

The Hamiltonian function for the binary mixture of the
two lipid species A and B is now written

H5HA1HB1HAB, ~2!

where the two first terms describe the interaction between
like species and the last term accounts for the interaction
between different species. The interaction between different
lipid species is described by the symmetric Hamiltonian

HAB5
2JAB
2 (

^ i , j &
(

m,m851

10

~ I m
A I m8

B
L im

A
L jm8

B
1I m

B I m8
A
L im

B
L jm8

A
!

1
G

2(^ i , j & (
m,m851

10

~ udim
A 2djm8

B uL im
A
L jm8

B

1udim
B 2djm8

A uL im
B
L jm8

A
!. ~3!

The first term inHAB describes the direct van der Waals
hydrophobic contact interaction between different acyl
chains. The corresponding interaction constant is taken to be
the geometric averageJAB5(JAJB)

1/2. G in the second term
of Eq. ~3! represents the mismatch interaction, cf. Fig. 1, and
is assumed to be ‘‘universal’’ in the sense that its value does
not depend on acyl-chain length. It was previously shown
within a two-component regular solution theory38 that a wide
range of binary lipid phase diagrams could be described in
terms of such a single universal parameter, once the chain-
length characteristics were isolated in the chain-length vari-
ablesdm . The value of the mismatch parameter to be used
within the simulation approach to the statistical mechanics of
the model in Eq.~3! was found to beG50.038310213

erg/Å.34 In the present paper we shall demonstrate that a
similar universal description is furnished by the detailed sta-
tistical mechanical model in Eqs.~1!–~3! both within a
mean-field solution scheme and when it is solved by a con-
siderably more reliable computer-simulation approach.

Since all of the theoretical results presented in the
present work have been derived from the statistical mechani-
cal lattice model described in Eqs.~1!–~3!, for which the
thermodynamic internal energy and the enthalpy are the
same, we shall use these two terms synonymously through-
out the paper.

III. MEAN-FIELD CALCULATIONS

A. Mean-field theory for binary lipid mixtures

We have modified the mean-field theory previously de-
veloped for one-component lipid bilayers and mixtures of
lipids with cholesterol37 to apply to binary mixtures of phos-
pholipids described by the statistical mechanical lattice
model in Eqs.~1!–~3!. The theory takes its starting point in
writing the free energy of the mixture as

F5Tr~rH!1kBTTr~r ln r!, ~4!

wherer is the equilibrium probability distribution andH is
the Hamiltonian of the model. In the mean-field approxima-
tion the N5L2 sites of the two-dimensional lattice are
treated as being statistically independent andr can therefore
be expressed as

r5)
i51

N

r i , r i5r1 , ~5!

wherer1 is the single-site probability distribution. It is then
possible to replaceL im

A andL im
B in the Hamiltonian by their

mean valueŝLm
A& and^Lm

B&. The molar fraction of compo-
nent B is defined asxB[(m^Lm

B&. The average occupation
variables^Lm

A& and ^Lm
B& satisfy the completeness relation
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(m(^Lm
B&1^Lm

A&)51. r1 is obtained by minimizing the
free energy with respect tor1 under the constraints
Tr(r1)51 and Tr((mr1Lm

B)5xB , i.e.,

d

dr1
S F1l1Tr~r1!1l2TrS (

m51

10

r1Lm
B D D 50. ~6!

The Lagrange multipliersl1 andl2 must be chosen so that
the constraints are fulfilled. The solution to the minimization
problem in Eq.~6! can now be written as

r15
exp@2~h1l2(m^Lm

B&!/kBT#

Tr~exp@2~h1l2(m^Lm
B&!/kBT# !

. ~7!

The mean-field Hamiltonianh in Eq. ~7! is defined as

h[
1

N

d

dr1
Tr~r1H!5(

m
~hm

A
Lm

A1hm
B
Lm

B !, ~8!

wherehm
A andhm

B are local energies

hm
A5~Em

A1PAm
A !2I m

A z

2 S JA (
m851

10

I m8
A ^Lm8

A &

1JAB (
m851

10

I m8
B ^Lm8

B & D 1G
z

2 (
m851

10

udm
A2dm8

B u^Lm8
B &,

~9!

~and similarly forhm
B). z is the coordination number (z56

for the triangular lattice!. Equation~8! together with the con-
straint Tr((mr1Lm

B)5xB leads to a determination of the
mean value of the occupation variables from a solution to the
following set of self-consistent equations

^Lm
X&5Tr~r1Lm

X !5xXS Dm
Xexp@2hm

X/kBT#

(m8Dm8
X exp@2hm8

X /kBT# D ,
X5A,B and m51,...,10. ~10!

The mean-field free energy per lattice site is then expressed
as

FMF~xB!5 (
m51

10 FhmA^Lm
A&1hm

B^Lm
B&1kBT

3H ^Lm
A& lnS ^Lm

A&

Dm
A D 1^Lm

B& lnS ^Lm
B&

Dm
B D J G . ~11!

Finally, the phase diagram in the (xB ,T)-plane is obtained by
minimizing the function

F~xB ,x1 ,x2!5S x22xB
x22x1

DFMF~x1!1S xB2x1
x22x1

DFMF~x2!,

x1<xB and x2>xB ~12!

with respect tox1 andx2 for at fixed temperature and com-
position xB . The values forx1 and x2 determine the phase
boundaries of a two-phase coexistence region if they are dif-
ferent fromxB .

For each temperature,T, the slope of the function
FMF(xB) at xB5x1 , determines the chemical potential differ-
ence,m m

MF , between the two species A, B, corresponding to
coexistence. It is hereby possible to derive the phase diagram
in the (mm

MF ,T) plane.

B. Mean-field results for phase diagram, enthalpies,
and mixing energies

The mean-field phase diagrams for the three mixtures,
D14PC-D16PC, D14PC-D18PC, and D12PC-D18PC, are
shown in Fig. 2. The ‘‘universal’’ value of the mismatch
parameter used for these mean-field calculations is
G50.025310213 erg/Å which was determined by a fit to the
experimental phase diagram for D14PC-D18PC.6 Figure 2
shows that, as the difference in acyl-chain length is in-

FIG. 2. Phase diagrams for three lipid mixtures determined from mean-field calculations.~a! D14PC-D16PC,~b! D14PC-D18PC, and~c! D12PC-D18PC. The
labels denote gel~ g,g1 , g2! and fluid ~ f! single-phase regions. Fluid-gel and gel-gel phase coexistence regions are denoted byg1f, g11f, g21f, and g1
1g2, respectively.
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creased, there is a progressive enhancement of the nonideal
mixing behavior. The D14PC-D16PC is closest to ideality
and there is full mixing in the two phases. For the D14PC-
D18PC system this is still the case and the phase behavior is
isomorphic but the solidus line is considerably flattened. For
an even larger hydrophobic mismatch, the D12PC-D18PC
mixture exhibits only limited solubility in the gel phase, and
a dramatic peritectic behavior with gel–gel coexistence has
evolved. These observations are consistent with previous
studies of this homologous series of lipid mixtures.38,39 In
particular we have verified that the phase diagrams for these
mixtures can be reproduced reliably by means of a single
‘‘universal’’ parameterG.

The enthalpy~or internal energy! of the two phases at
coexistence,Eg(x) and Ef(x), and the transition enthalpy,

DH(x)5Ef(x)2Eg(x), as obtained from the mean-field
theory are shown as a function of composition in Fig. 3 for
the three mixtures. For the D14PC-D16PC and the D14PC-
D18PC mixtures it is found for both components thatEg

tends to decrease as small amounts of the other component
are mixed in, whereasEf has a monotonous behavior. This
implies that for D14PC-D16PC the transition enthalpy devel-
ops a maximum as a function of composition~around 80%
D16PC!. In the case of D14PC-D18PC the minimum inEg is
only sufficient to produce a flattening ofDH close to pure
D16PC. The situation for the peritectic mixture, D12PC-
D18PC, is somewhat more complicated since small amounts
of D12PC in D18PC lead to a dramatic decrease inEg and
subsequent phase separation of the gel phases. This leads to

FIG. 3. Mean-field results as a function of composition for the enthalpy along the liquidus,Ef (h), the enthalpy along the solidus,Eg (s), and the transition
enthalpy,DH5Ef2Eg (d), cf. the phase diagrams in Fig. 2.

FIG. 4. Mean-field results as a function of temperature for the enthalpy along the liquidus,Ef (h), and the enthalpy along the solidus,Eg (s), cf. the phase
diagrams in Fig. 2.
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a pronounced maximum inDH around 93% D18PC.
The mean-field enthalpies of the gel and fluid phases,

Eg(T) andEf(T), as functions of temperature along the co-
existence curve are shown in Fig. 4. The data for the D12PC-
D18PC peritectic mixture again has a special behavior com-
pared to that of the two isomorphic mixtures. The enthalpy
of the gel phase,Eg , displays a singularity at the three-phase
line implying thatEg is not determined by temperature alone
but is also dependent on composition. The very dramatic
variation in Eg(x) observed over the range 93%–100% of
D18PC in Fig. 3~c! is by help of Fig. 4~c! seen to occur over
a very wide temperature range of about 60 degrees. A com-
parison between the phase diagrams for the three mixtures in
Fig. 2 as well as the enthalpy data in Fig. 4 shows that as the
mismatch in chain length is increased, the phase-separation
region gets more pronounced and the two lipid species melt
at temperature regions which are increasingly wider apart.
This is particularly pronounced for the D12PC-D18PC mix-
ture, cf. Fig. 4~c!, where basically all of the short-chain lipid
melts within a narrow temperature interval around 273 K and
the long-chain lipid predominantly melts in the temperature
range 315–330 K.

Previous theoretical model calculations of lipid binary
phase equilibria are mostly built on the use of various phe-
nomenological theories of solution, e.g., regular solution
theory39 which is basically a mean-field approach. With these
theories it is fairly easy to reproduce experimental phase dia-
grams with just one or two nonideal interaction parameters
for each mixture. However, to accurately reproduce a whole
family of different phase diagrams for a series of mixtures
using a single common parameter, as was done in Fig. 2, is
highly nontrivial.38 This is one advantage of the present ap-
proach. Another advantage is that the present mean-field cal-
culation is performed on a statistical mechanical model
which explicitly contains information about the internal de-
grees of freedom of the acyl chains, whereas this type of
information in conventional regular solution theories is hid-
den in the standard chemical potentials of the different
phases. These standard chemical potentials are usually
treated as an experimental input to the regular solution
theory by using experimental data for transition enthalpies
and temperatures and by assuming that the specific heat
within the one-phase regions is independent of temperature.
In other words, the phenomenological regular solution theo-
ries do not provide a description of the transitional properties
of the pure components.

The present approach permits a discussion of the phase
equilibria in terms of nonideality and how this is controlled
by the molecular properties of the involved species. Let us
study the results presented in Fig. 3 in the light of deviations
from regular solution theory and consider the gel and fluid
components of the phase coexistence as being mixtures of
the gel and fluid phases of the pure components. Under this
assumption the enthalpy of the mixture can be written

E~x,T!5xEB,a
+ 1~12x!EA,a

+ 1Emix~x,T!, ~13!

where the enthalpies of the pure phases are denoted by
EX,a

+ , which are assumed to be constant and evaluated at the

appropriate transition temperature, X5A,B and a5g,f.
Emix is a nonideal mixing enthalpy which not only includes
nonideal interaction energies but also the variation of the
lipid-chain conformational energy due to temperature
changes and mixing. In a similar fashion the entropic contri-
bution to the free energy is written

2TS~x,T!52T@xSB,a
+ 1~12x!SA,a

+ 1Smix~x,T!#,
~14!

whereS°X,a is the entropy of the pure component X in phase
a and is assumed to be temperature-independent and deter-
mined at the appropriate transition temperature. Within the
mean-field picture the compositional part of the mixing en-
tropy is just that of an ideal mixture. Hence the total mixing
entropy,Smix(x,T), in Eq.~14! can be written as a sum of the
ideal mixing entropy and a contribution,Schain, which is due
to the internal conformational degrees of freedom of the acyl
chains

Smix~x,T!5Sideal~x!1Schain~x,T!. ~15!

Within this descriptionSchain is the deviation from the mixing
entropy of an ideal mixture. In Fig. 5 are given the various
entropy terms together with the mixing enthalpy for three
typical cases. Figures 5~a! and 5~b! give results along the
solidus line for the D14PC-D16PC and D14PC-D18PC mix-
tures. The corresponding results for the solidus line for the
D12PC-D18PC mixture are not shown since this mixture
does not mix in the gel phase except at low compositions.
Figure 5~c! shows instead the results along the liquidus line
of the D14PC-D18PC mixture. The results for the liquidus of
the two other mixtures are qualitatively very similar and are
hence not shown.

An important observation to be made from the data in
Fig. 5 is that the real mixture displays a significantly en-
hanced transition enthalpy compared to that of an ideal mix-
ture. Furthermore, it is found that the deviation from ideality
is stronger for small amounts of D14PC in D18PC than for
small amounts of D18PC in D14PC. This is apparently in
contradiction to the conclusion made in a theoretical study
by von Dreele40 based on the Prigogine approximation for
the partition function. However, it is difficult to compare the
two different theoretical analyses since only the present
study takes the internal acyl-chain degrees of freedom into
account.

The data displayed in Fig. 5 may serve to facilitate a
comparison with results obtained from solution theories in
which the temperature variation of the properties of the pure
components are neglected. The essential feature of the mix-
ture of lipids seen as molecular species with internal degrees
of freedom is that at the entry to the gel phase the acyl chains
become conformationally ordered by stretching into a mo-
lecular state with a lower internal energy and a lower con-
formational entropy. This leads to a non-negligible decrease
in the total entropy of the mixture. Conversely, at the entry to
the fluid phase the acyl chains become conformationally dis-
ordered associated with an increase in conformational en-
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tropy, i.e., a negative contribution to the free energy, whereas
the nonideal mixing enthalpy,Emix , increases the free energy
of the mixture. The consequence of this mixing behavior is
that the melting process of the mixed lipid system, compared
to that of the pure components, proceeds from a more con-
formationally ordered state to a more conformationally dis-
ordered state. The observed enhancement of the nonideal
melting entropy over that of an ideal mixture is hence likely
to be due to the mixing behavior of the conformational en-
ergy rather than the nonideal interaction energies. In the fluid
phase there is some degree of cancellation of the enthalpic
and entropic contributions to the free energy implying that
the mixture in the fluid phase is closer to an ideal mixture.
This suggests that regular solution theory is inappropriate for
describing mixtures of lipids due to the substantial contribu-
tion of the chain conformational degrees of freedom to the
total entropy and the total enthalpy of the mixture.

IV. NUMERICAL SIMULATION METHODS

A. Monte Carlo techniques

The Monte Carlo simulations are carried out on finite
lattices subject to periodic boundary conditions. In order to
determine system properties in the thermodynamic limit, a
series of different linear lattice sizes,L, have been investi-
gated. The simulations are performed within the grand ca-
nonical ensemble where the composition of the mixture fluc-
tuates and is controlled by a field,m, which is the chemical
potential difference between the two species. For these simu-
lations Eq.~2! is modified accordingly

H2mNB5HA1HB1HAB, ~16!

whereNB is the number of lattice sites occupied by compo-
nent B. The grand canonical simulations provide the distri-
bution functions, see Sec. IV B below, which are used to

assess the phase equilibria and serve as input for the finite-
size scaling analysis needed for calculating the interfacial
tension, cf. Sec. IV C below. The statistics required to accu-
rately determine the phase coexistence at a given temperature
typically involve 106 Monte Carlo steps per lattice site.

The simulations are carried out using standard Monte
Carlo Metropolis sampling. Thermal equilibrium of the
model system is attained using single-site Glauber excitation
for the acyl-chain degrees of freedom on each lipid species.
Equilibrium with the particle reservoir within the grand ca-
nonical ensemble is simulated by single-site conversion of
the lipid species and simultaneous assignment of a random
acyl-chain conformation.

B. Histogram techniques

In order to use the Lee-Kosterlitz finite-size scaling
method effectively to study phase equilibria in mixtures, it is
a prerequisite that the joint distribution function~or histo-
gram!, P (E,NB), for the extensive variables, namely inter-
nal energy~the enthalpy! and the composition,NB , is calcu-
lated very accurately close to coexistence, cf. Sec. IV C.
P (E,NB) for a given set of thermodynamic parameters
(T,m) is defined by

P T,m~E,NB!5
n~E,NB! exp@2~E1mNB!/kBT#

(E,NB
n~E,NB! exp@2~E1mNB!/kBT#

,

~17!

where n(E,NB) is the temperature-independent density of
states. IfP is calculated with sufficient accuracy for a spe-
cific set, (T,m), it is possible15 to determine the distribution
function for a nearby set of parameters, (T8,m8), by simple
thermodynamic reweighting of the histogram according to

FIG. 5. Mean-field results for the different contributions to the free energy of a binary lipid mixture. Results are shown for the total mixing entropy,Smix , the
ideal mixing entropy,Sideal, and the conformational acyl-chain entropy,Schain, cf. Eq. ~15!. Emix is the nonideal mixing enthalpy, cf. Eq.~13!. ~a!: Along the
solidus of the D14PC-D16PC mixture.~b!: Along the solidus of the D14PC-D18PC mixture.~c!: Along the liquidus of the D14PC-D18PC mixture.
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P T8,m8~E,NB!5

P T,m~E,NB! expF2S 1

kBT8
2

1

kBT
DE2S m8

kBT8
2

m

kBT
DNBG

(
E,NB

P T,m~E,NB! expF2S 1

kBT8
2

1

kBT
DE2S m8

kBT8
2

m

kBT
DNBG . ~18!

From the joint, two-dimensional distribution function,
P (E,NB), the two one-dimensional distribution functions
can readily be derived as

P ~E!5(
NB

P ~E,NB!, ~19!

P ~NB!5(
E
P ~E,NB!. ~20!

In Eqs.~17!–~20!, E denotes the total internal energy. In the
following we shall use the same symbol for the internal en-
ergy per molecule.

C. Finite-size scaling theory

Phase equilibria can be examined by the powerful
method of Lee and Kosterlitz.16,17 This method, which is
built on finite-size scaling analyses of distribution functions
~histograms! derived from computer simulations, constitutes
an unambiguous technique for numerically detecting first-
order transitions and phase coexistence.26 The method in-
volves calculation of a certain part of the free energy using
the distribution functions in Eqs.~19! and ~20!. From these
distribution functions, free-energy-like functions, e.g.,
F (x,T,L), can be defined as16

F ~x,T,L !;2 ln P T,m~L !, ~21!

where the dependence of the linear system size,L, has ex-
plicitly been expressed. The quantityF differs from the total
free energy by a temperature- and anL-dependent additive
quantity. However, at fixedT and L, the shape of
F (x,T,L) is identical to that of the total free energy and
furthermoreDF (m,T,L)5F (x,T,L)2F (x8,T,L) is a cor-
rect measure of free-energy differences. At a first-order tran-
sition, F (x,T,L) has pronounced double minima corre-
sponding to two coexisting phases atx5x1 and x5x2
separated by a barrier,DF (m,T,L), with a maximum at
xmax corresponding to an interface between the two phases.
The height of the barrier measures the interfacial free energy
between the two coexisting phases and is given by

DF ~m,T,L !5F ~xmax,T,L !2F ~x1 ,T,L !

5g~m,T!Ld211O ~Ld22!, ~22!

whered is the spatial dimension of the system (d52 in the
present case!. g(m,T) is the interfacial free-energy density
or interfacial tension. ThereforeDF (m,T,L) increases
monotonically withL at a first-order transition corresponding
to a finite interfacial tension. The detection of such an in-
crease is an unambiguous sign of a first-order transition17

and two-phase coexistence.26,30 In contrast,DF (m,T,L) ap-
proaches a constant at a critical point, corresponding to van-
ishing interfacial tension in the thermodynamic limit. In the
absence of a transition,16,27DF (m,T,L) tends to zero.

D. Tuning-in at coexistence

The iterative procedure for tuning in at coexistence is as
follows: A trial value of the chemical potential at coexist-
ence,m5mm , for a given temperature is guessed or esti-
mated from a short simulation on a very small lattice. The
accurate value ofmm for that system size is then determined
by a long simulation~typically 106 Monte Carlo steps per
lattice site! at this trial value ofm and a more accurate value
of m5mm is then determined by the Ferrenberg-Swendsen
reweighting technique, cf. Eq.~18!. If the trial value turns
out to be too far from coexistence to allow a sufficiently
accurate sampling of the two phases, a new trial value is
estimated from the long simulation. The system size is then
increased and the value ofm5mm for the previous system
size is used as trial value for the long simulation on the larger
system. After the reweighting, the accuracy of the reweight-
ing procedure is checked by a direct calculation at a chosen
value of the chemical potential. This rather tedious and
lengthy iterative procedure assures a very accurate determi-
nation of the chemical potential at coexistence and hence
leads to an accurate determination of the compositional
phase diagram via the finite-size scaling analysis described
in Sec. IV C.

The Ferrenberg-Swendsen reweighting technique be-
comes more and more troublesome the larger the size of the
system studied because the distribution functions get nar-
rower for larger systems. The method works best for small
systems which are subject to large fluctuations allowing
more information about a larger part of phase space to be
sampled. Reweighting of data obtained for one value of the
chemical potential to another value gives a greater uncer-
tainty for the larger system simply because it is the extensive
composition that enters the Hamiltonian and hence the re-
weighting procedure, cf. Eq.~18!. This implies that one
needs to know the chemical potential at coexistence with an
accuracy which varies approximately asL22. Another
bottleneck of a more principal and physical nature is the
time, t, associated with the crossing of the free-energy bar-
rier between the two phases. This time increases exponen-
tially with the linear dimension of the two-dimensional
model system,t;exp(gL/kBT). In order to facilitate the re-
weighting, the actual simulation time has to be much larger
thant. For a given model, the value of this relaxation time
puts a very sharp upper limit to the system sizes which can
be studied by these simulation techniques.
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V. SIMULATION RESULTS

Monte Carlo simulations involving histogram techniques
and detailed finite-size scaling analysis for determining
phase equilibria are very demanding with respect to the sta-
tistics. Hence we have not performed detailed simulations for
all three mixtures considered by the mean-field calculations
above. Instead we have concentrated on a single mixture,
D14PC-D18PC, which however clearly illustrates the points
we want to make.

From previous simulations using both histogram and
finite-size scaling techniques,29 it is known that the pure lipid
bilayers of D16PC, and D18PC described by the ten-state
Pink model in Eq.~1! do not display a phase transition in a
strict thermodynamic sense but undergo a continuous, nons-
ingular transformation within a very narrow temperature
range. The results for D18PC have been confirmed by the
present calculations. For completeness, the phase behavior of
D14PC and D20PC has also been investigated. Figure 6~a!

shows the system-size dependence of the free energyF as a
function of the average area per lipid molecule,A, for pure
D14PC, D18PC, and D20PC lipid bilayers. Figure 6~b!
shows the height of the free energy barrier,DF (A), as a
function of L. It is found that, as the chain length is in-
creased, the bilayer gets closer to a critical point which is
present inbetween chain lengths corresponding to 18 and 20
carbon atoms. For the lipid species with the longest chain
length studied, D20PC, we indeed find that there is a clear
first-order transition within the ten-state Pink model, as de-
termined by the linear dependence ofDF (A) on L.

A. Histograms, free-energy functionals, and phase
equilibria

The bottom graph in Fig. 7~a! shows an example of the
compositional distribution function or histogram,P (x), at a
temperatureT5319 K for a D14PC-D18PC system of linear
sizeL510. Results are given before and after reweighting to
a chemical potential corresponding to coexistence. The cor-
responding free energy functional,F (x), is shown in the top
of Fig. 7~a!. The size dependence ofF (x) is shown in Fig.
7~b! while Fig. 7~c! shows the size dependence ofF (E),
whereE is the internal energy~enthalpy! per molecule. The
distribution functions are shown at the appropriate size-
dependent chemical-potential values corresponding to phase
coexistence. As the system size is increased, it is seen that
there is a dramatic increase in the free-energy barrier be-
tween the two phases and that the composition of the mixture
is xD18PC

g 50.95 andxD18PC
f 50.42. Similarly, the enthalpy

distribution function shows that at coexistence the two
phases have enthalpies aroundEg.21310213 erg/molecule
andEf.8310213 erg/molecule.

From the size dependence of the free-energy barrier,
DF (L), shown in Fig. 8 the interfacial tension,g, can be
calculated using Eq.~22!. From the plot in Fig. 8,g is de-
termined to beg50.57310213 erg/lattice unit.

The simulation data shown in Fig. 7 correspond to a
temperatureT5319 K where the D14PC-D18PC mixture ex-
hibits a clear first-order transitional behavior associated with
two-phase coexistence. Figures 9~a! and 9~b! show data for
the free energy-functional,F (x,L), and the free-energy bar-
rier, DF (L), for lower temperatures. This data set demon-
strates that the model for the D14PC-D18PC mixture exhib-
its a critical mixing point at a certain temperature. Figure
9~b! shows unequivocally, that the free-energy barrier de-
creases with system size atT5299.0 K and lower tempera-
tures indicating that the interfacial tension vanishes and there
is no phase transition or phase coexistence in the thermody-
namic limit. Conversely, the data forT5299.5 K and higher
temperatures shows a free-energy barrier that increases with
system size and hence phase coexistence prevails in the ther-
modynamic limit. Hence, the combined data set in Fig. 9~b!
strongly suggests that there is a lower critical mixing point at
a temperature betweenT5299.0 and 299.5 K. By a similar
type of analysis we have found that there is an upper critical
mixing point at a temperature,T.327 K.

FIG. 6. Monte Carlo results for pure D14PC, D18PC, and D20PC lipid
bilayers.~a! Free-energy functional,F (A), as a function of average cross-
sectional area,A, per lipid molecule for different system sizes,L, as indi-
cated on the curves.~b! Free energy barrier height,DF , as a function ofL;
D14PC (n), D18PC (s), D20PC (h).
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B. Phase diagrams

Based on simulation results of the type presented in Figs.
7 and 9 we are able to construct a complete phase diagram
for the D14PC-D18PC mixture described by the statistical
mechanical model in Eqs.~1!–~3!. This phase diagram, as

well as the physical properties associated with the phase
lines, has been determined from the data derived from the
largest systems that are feasible to treat with current com-
puter resources. These systems are taken to represent the
thermodynamic limit. The phase diagram is shown in Fig.
10~a! together with the corresponding diagram derived from
mean-field theory using the same value of the mismatch pa-
rameter,G50.038310213 erg/Å, as in the computer simula-
tions. This mean-field phase diagram is different from that
presented in Fig. 2~b! because the values used for the mis-
match interaction parameter are different. In fact for the
higher value ofG the mean-field theory predicts peritectic
behavior for the D14PC-D18PC mixture. However, the over-
all numerical accordance between the accurate Monte Carlo
phase diagram and that derived from the approximate mean-
field theory is surprisingly good, except for the slope of the
solidus ~three-phase line!. As expected, on the basis of the
fact that mean-field theory tends to suppress correlations be-
tween fluctuations, there is a close correspondence between
mean-field theory and simulation data only in the region of
the phase diagram where the mixing of the two lipid compo-
nents has induced a strong first-order phase transition. Within
the mean-field theory there is a first-order phase transition in
each of the pure components, whereas the more reliable
computer-simulation results predict critical points at low and
high contents of D18PC, specifically at compositions
xD18PC.0.08 and 0.97. The corresponding phase diagram
spanned by temperature and chemical potential is shown in
Fig. 10~b!. In this representation, the critical points are
clearly exposed as end points of the line of coexisting
phases. Again, a close correpondence between the Monte
Carlo and the mean-field results is found for temperatures
between the critical points.

The Monte Carlo results for the enthalpy of the coexist-

FIG. 7. Monte Carlo computer-simulation data for the D14PC-D18PC mixture.~a!: Distribution function for the composition,P (x) in Eq. ~20! ~in arbitrary
units!, and the corresponding free-energy functional,F (x) in Eq. ~21!, for a system of linear sizeL510 at temperatureT5319K. Results are shown before
~- - - -! and after~——! reweighting of the data to a chemical potential corresponding to coexistence.~b! and ~c!: Size-dependence of the free-energy
functional,F (x,L), and the enthalpy distribution function,F (E,L), respectively, evaluated at coexistence at temperatureT5319K. The linear sizes of the
systems correspond toL55(h), 6(s),7(n),8(,),9(L),10(1), and 11(3). For the sake of clarity the different data sets have been shifted vertically.

FIG. 8. Monte Carlo computer-simulation data for the D14PC-D18PC mix-
ture. Dependence of interfacial free energy~the barrier height!, DF (L) in
Eq. ~22!, on the linear size,L, of the system. The slope of the solid line is
the interfacial tension,g, in Eq. ~22!.
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ing phases are shown in Figs. 11~a! and 11~b!, both as func-
tions of temperature and composition. For comparison, the
mean-field results are also given. The discrepancies between
the Monte Carlo and mean-field results are largely due to the
basic difference in the phase equilibria, in particular with
respect to the presence/absence of critical points.

C. Interfacial tension and compositional fluctuations

The full temperature dependence of the interfacial ten-
sion,g(T), is obtained from plots like that displayed in Figs.
8 and 9~b! and is shown in Fig. 12. This figure clearly shows
that g vanishes at the critical points, as expected for a
second-order phase transition. A maximum of the order
g.0.6310213 erg/lattice unit (;10214 erg/Å! is attained
somewhere in the middle of the temperature range between
the two critical points.

In the grand canonical ensemble the composition of a

mixture is a fluctuating quantity and a corresponding re-
sponse function

x~T!5S ]2G

]m2D
T

5~kBT!21~^xB
2&2^xB&2!L2 ~23!

can be defined.G is the Gibbs free energy. It is possible to
determine the compositional susceptibility,x(T), from the
composition distribution function, cf. Fig. 7~a!, by separating
the histogram into two parts corresponding to the two
phases. The value ofx(T) for an ideal mixture,x ideal(T),
along the same (T,x) lines~cf. phase diagram in Fig. 10! can
also be calculated. The expression forx ideal(T) is derived by
using the relation which connects the second derivatives with
respect to the chemical potential and molar fraction of the
Gibbs and the Helmholtz free energy, respectively, i.e.,
(]2G/]m2)T52(]2F/]x2)T

21 . The ideal compositional sus-
ceptibility can therefore be expressed asx ideal(T)
5 (kBT)

21xB(12xB). Figures 13~a! and 13~b! show the re-

FIG. 9. Monte Carlo computer-simulation data for the D14PC-D18PC mix-
ture. ~a!: Size dependence of the free-energy functional,F (x,L). Results
are shown for two different temperatures,T5299.0 andT5300 K for a
series of different linear lattice sizes,L, as indicated on the curves.~b! Size
dependence of the free-energy barrier,DF (L), for temperatures in the vi-
cinity of the critical mixing point.

FIG. 10. Phase diagrams for the D14PC-D18PC mixture.~a!: Computer-
simulation data for the liquidus (h) and the solidus (s) lines. The solid
lines indicate the corresponding mean-field phase diagram.~b!: Computer-
simulation results (s) and mean field results~—! for the phase diagram
spanned by temperature,T, and chemical potential,mm . The positions of
critical points corresponding to the Monte Carlo phase diagram are indicated
by * . Fluid and gel phases are denoted byf andg. g1 denotes a gel phase
only occurring in the mean-field phase diagram.
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sults for x(T) and x ideal(T) along the solidus and liquidus
lines, respectively. It is seen from the expression for
x ideal(T) that the ideal fluctuations reflect the positions of the
phase lines in a simple way.x ideal(T) is small for small val-
ues ofxA or xB and exhibits a maximum at equimolar com-
position. For most temperatures,x(T) follows the qualitative
variation of x ideal(T), but x(T) is amplified in a nonlinear
way compared tox ideal(T). This amplification is most pro-
nounced in the gel phase. The similarity betweenx ideal(T)
andx(T) does not hold near the critical points.

In the fluid phase, strong compositional fluctuations oc-
cur near the lower critical point. The fluctuations decrease
rapidly and reach a minimum around 300 K corresponding to
the steep part of the liquidus line between 10%–20%
D18PC, cf. Fig. 10~b!. The fluctuations then increase and
reach a maximum near 320 K corresponding to the more flat
portion of the liquidus line between 40%–60% D18PC, cf.
Fig. 10~b!. The fluctuations then decrease again. One would
then expect that the fluctuations should rise again as the up-
per critical point is approached. The simulations are not ex-

tensive enough to capture this latter feature in the composi-
tional fluctuations. The compositional fluctuations along the
solidus, cf. Fig. 13~a!, vary very dramatically with tempera-
ture and close to the lower critical point they are about two
orders of magnitude more intense than those along the liqui-
dus near the critical point. Also the gel-phase compositional
fluctuations are expected to blow up near the upper critical
point. Similarly to the data for the liquidus, the simulation
results along the solidus are not extensive enough to reveal
the feature at the upper critical region which appears to be
limited to an extremely narrow temperature interval.

VI. DISCUSSION AND CONCLUSIONS

In the present paper we have presented a mean-field and
Monte Carlo simulation study of a statistical mechanical
model of the phase equilibria in binary mixtures of saturated
phospholipids with mismatch in the hydrophobic acyl-chain
lengths. This binary mixture is qualitatively different from
that of most other binary mixtures since its properties are
strongly influenced by the internal degrees of freedom of the
two species. The simulations account accurately for density
and compositional fluctuations in the mixture, whereas ef-
fects due to fluctuations are to some extent suppressed in the
mean-field approximation. However, compared to conven-
tional phenomenological solution theories applied to lipid
mixtures, the present mean-field approach captures effects
due to the internal degrees of freedom of the acyl chains and
it provides independently for a description of the phase be-
havior of the pure components.

The essential part of the model for the mixture is a term
in the Hamiltonian which associates an interaction between

FIG. 11. Enthalpy as a function of composition~a! and temperature~b!
along the liquidus,Ef (h), and along the solidus,Eg (s), for a D14PC-
D18PC mixture. Monte Carlo data are shown as points and corresponding
mean-field data are shown as solid lines.

FIG. 12. Monte Carlo computer-simulation data for the interfacial tension,
g, of the D14PC-D18PC mixture shown as a function of temperature along
the coexistence curve. The solid line is a guide to the eye.
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the two different species which is proportional to the differ-
ence in the hydrophobic lengths of the acyl chains. In accor-
dance with an earlier phenomenological model study also
built on the concept of hydrophobic mismatch,38 it is found
that the phase equilibria in the homologous series of phos-
pholipid mixtures, D14PC-D16PC, D14PC-D18PC, and
D12PC-D18PC, can be described by a single ‘‘universal’’
mismatch parameter,G. The theoretical results show that the
phase diagram becomes progressively more non-ideal as the
difference in acyl-chain length increases. The overall theo-
retical predictions of the phase diagrams based on our model
calculations are in good agreement with experimental data,
considering the uncertainties involved in an experimental de-
termination of lipid phase equilibria using either calorimetric
techniques or, e.g., local-probe techniques such as spec-
troscopies. The nature of the D14PC-D18PC mixture is
somewhat controversial and some small-angle neutron scat-
tering results have been interpreted in terms of peritectic
behavior.41

Our computer simulations of the phase diagrams, which
should be considered as very reliable due to the fact that the
simulations operate on the free-energy level, reveal some
surprising features. They show that whereas within the ap-
plied statistical model there is no phase transition in the pure
components, such a phase transition and the associated phase
equilibria can be induced when two lipid species are mixed.
The simulations reveal that the phase diagram for D14PC-
D18PC displays a closed coexistence loop with two critical
mixing points. It is predicted that these critical points are
further removed from the pure-component limits the more
closely the acyl-chain lengths are matched. The possibility of
occurrence of critical points in these simple two-component
phospholipid mixtures has not been previously addressed.
There is however no observation in the experimental litera-
ture which points to their absence. The published phase dia-
grams for lecithin mixtures usually do not include data for
very dilute mixtures, and the boundaries in the phase dia-
grams for the less dilute situations have been extrapolated to
the pure-component limits under the tacit assumption that the
pure components display first-order phase transitions. How-
ever, as we have pointed out, no definite experimental proof
of the first-order transitional behavior exists. Rather, the
most accurate calorimetric work9 suggests that the transition
is at best weakly first order. Our results put the importance of
sample impurities into perspective. A small amount of a for-
eign lipid species~e.g., a lysolipid! in an apparently pure
~99%! lipid bilayer may restore the first-order transitional
behavior.

The finding that a first-order transition can be induced by
mixing lipid species of different chain lengths is probably
unique for membrane systems. Usually the opposite is found
when other membrane components are mixed in with a lipid
bilayer, e.g., cholesterol,37 polypeptides,30 or proteins,33 i.e..
the transition is gradually broadened and removed. Further-
more, our results show that the transition enthalpy in some
cases may increase as the pure lipid bilayer is mixed with
another component, cf. Fig. 3. When cholesterol, polypep-
tides, and proteins are incorporated into a lipid bilayer, the
transition enthalpy invariably decreases with the concentra-
tion. The effect of a long-chain lipid in suppressing the fluc-
tuations in a bilayer composed of lipids with shorter chains is
somewhat surprising. One might have expected that the long
chain would act as a stiff molecular object at temperatures
close to the transition temperature of the short-chain lipid.
Hence it appears that the peculiar property of the binary lipid
mixture is due to the capacity of lipid acyl chains to adapt to
very different environments by undergoing internal confor-
mational changes.

The model calculations of the present paper show that
the strong density fluctuations present in pure lipid bilayers
become suppressed when the other lipid species is mixed in
and at the same time the coexistence is enforced. The weak-
ening of the density fluctuations in the coexistence region is
related to the concomitant increase in interfacial tension. The
transition enthalpy of the mixture is considerably larger than
that predicted for an ideal solution. The contribution to the
mixing energy due to the internal conformational degrees of
freedom of the acyl chains is quite substantial. To our knowl-

FIG. 13. Monte Carlo computer-simulation data (d) for the compositional
fluctuations,x(T) in Eq. ~23!, in the D14PC-D18PC mixture. For compari-
son is also shown the behavior ofx ideal(T) corresponding to an ideal mix-
ture (s). Results are given along the coexistence curve for the solidus~a!
and the liquidus~b! lines of the Monte Carlo phase diagram@cf. Fig. 10~a!#.
The solid lines are guides to the eye.
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edge there are no systematic experimental measurements of
transition enthalpy as a function of composition for the mix-
tures considered in the present paper. A brief statement in the
experimental paper by Mabrey and Sturtevant6 however in-
dicates that the transition enthalpy obtained from integration
of the total excess specific heat for mixtures of D14PC-
D18PC is on the average 20% larger than that expected for
an ideal mixture. It would clearly be of interest to test ex-
perimentally the theoretical predictions of the variation of
transition enthalpy shown in Fig. 3.

The model simulations reveal very strong compositional
fluctuations in the mixture. These fluctuations are very pro-
nounced near the critical points. Along the liquidus line for
D14PC-D18PC the compositional fluctuations display a
maximum in the range 40%–60% D18PC which is consis-
tent with a recent study of the local compositional structure
in binary lipid mixtures.34 These strong lateral fluctuations in
composition, which persist deep out in the one-phase fluid
region, may be of relevance for membrane organization and
function.34

It is interesting to consider our finding of suppressed
density fluctuations in the series of binary lipid mixtures in
the context of dynamic lipid-bilayer heterogeneity14,42,43

which is a term covering the microscopic events accompa-
nying density and compositional fluctuations. Bilayer hetero-
geneity may be relevant for controlling membrane
functions.43 It is possible that by adding a third lipid compo-
nent to the mixture, which can mediate the interactions be-
tween the two, the density fluctuations may be restored and
the phase coexistence be suppressed. The emulsifying effects
of such third components are likely to be relevant for
biomembrane systems consisting of a large number of differ-
ent lipid species.
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