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Analysis of the Temporal Electric 
Fields in Lossy Dielectric Media 

I .  W. McAllister and G. C. Crichton 
Physics Laboratory 11, 

The  Technical University of Denmark, Lyngby, 
Denmark 

ABSTRACT 
The time-dependent electric fields associated with lossy dielec- 
tric media are examined. In the analysis, it is recalled that 
space charge, which accumulates at an interface, is an inher- 
ent feature of lossy dielectrics. This behavior can lead to en- 
hanced normal and tangential electric fields. The analysis illus- 
trates that, with respect to the basic time constant E / Y ,  these 
lossy media can take a considerable time (> ~ E / Y )  to attain 
a steady-state condition. Time-dependent field enhancement 
factors are considered, and inherent surface-charge densities 
quantified. Thereafter, the calculation of electrostatic forces 
on a free, lossy dielectric particle is illustrated. An extension 
to the basic analysis demonstrates that, on reversal of polari- 
ty, the resultant tangential field at the interface could play a 
decisive role in the insulation integrity of a system. The paper 
concludes with a discussion of the relevance of the field aspects 
presented to the behavior of dielectric spacers as used in DC 
GIS, and introduces the importance of surface conductivity. 

1. INTRODUCTION 

N practice, all solid insulators are lossy dielectrics, ex- I hibiting both permittivity E and conductivity 7. The 
value of-y/E is often so small in comparison to the frequen- 
cy of the applied voltage, that  the influence of the con- 
ductivity on insulation behavior can be neglected. This 
assumption cannot be made in relation to dc insulation, 
which is effectively controlled by the conductivity of the 
spacer material. Although Maxwell’s Treatise [l] has an 
entire chapter on lossy dielectrics, the significance of lossy 
dielectric media for dc insulation only becomes fully ap- 
parent following a detailed study of the overall field char- 
acteristics of the problem in question. 

In the present paper, we will examine these field aspects 
for an insulation system consisting of two lossy media. In 

particular, we will examine the fields established following 
polarity reversal: i.e. the fields which result from a super- 
position of the field due to the existing interface charge 
with that of the reversed applied field. In both cases our 
starting point is the derivation of the associated potential 
distributions. 

2. GENERAL FIELD ASPECTS 

E consider a system of two homogeneous isotropic W media a and b which possess permittivities E ~ ,  t h  

and conductivities yn, ya, respectively. Medium b repre- 
sents an uncharged inclusion embedded within medium a 
which occupies the remaining volume extending to infin- 
ity. This system of two lossy dielectrics is located in an 
extended uniform field. 
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514 McAllister et al.: Temporal Electric Fields in Lossy Dielectrics 

To enable general field expressions to  be developed pri- 
or to referring to  specific geometries, we will use initially 
generalized orthogonal coordinates U; (i = 1,2,3). The 
interface between media a and b is assumed to  be a sur- 
face of constant u1 (= a) and hence the two remaining 
coordinates u 2  and u3 represent surface coordinates on 
the interface. 

In deriving the time-varying potential solution for lossy 
dielectrics, we must refer t o  the continuity equation 

where J' is the volume current density, p the volume 
charge density, and t the time. _This equation express- 
es the r$ationship between the J field and the 5 field, 
where D is the electric flux density. However, to  satisfy 
the boundary conditions a t  the interface between m e d i t  
a and_ b , i .e.  continuity of the normal components of J 
and D ,  we must express (1) in a form applicable to  a sur- 
face of discontinuity. This leads to  an equivalent interface 
continuity equation 

- aU G . A J + - = O  
at 

where U is the surface charge density. _The term 5 .  A f  
represents the interface divergence of J and, with refer- 
ence to  the present analysis, can be expressed as 

- + -  

5 . A f = n ' . ( J a -  Jb) (3) 

G is a unit vector normal to  the interface in the direction 
b to  a . This orientation is also associated with increasing 
values of ul, so that  qa 2 ulb. Similarly, with respect t o  
the fi field, we have 

U = 5 .  (fia - &) (4) 

As both .f and are+ propoftionaf to the electric field 
strength E, i.e. J = yE and D = &E, (2) can be rewritten 
in terms of E'. In addition, at the interface (u1 = a) the 
normal component of E' is El, where El is given by 

(5)  

9 represents the potential in question and 911 is the rel- 
evant metric coefficient with 

Consequently, if 9n(u1, uz, u3, t )  and 9 b ( u 1 ,  u 2 ,  u3, t )  de- 
note the potential distributions in media a and b , re- 
spectively, then the interface continuity equation for the 

surface (ul = a) may be expressed in terms of generalized 
coordinates as 

This expression represents the general boundary condi- 
tion t o  be fulfilled by and 9b a t  the interface (111 = a). 

The other boundary condition to  be fulfilled a t  the in- 
terface is of coyrse the continuity of the tangential com- 
ponent of the E field across the interface. This condition 
is equivalent to the equality of the potentials a t  the in- 
terface, i.e., for u1 = a, we must have 

@a(% u2, u3, t )  = %(a, 212, u3, t )  (8) 

3. POTENTIAL 
DISTRIBUTION FOR AN 

APPLIED DC FIELD 

3.1 GENERAL ANALYSIS 

N the dc steady state ( t  -+ CO), the potential distribu- I tion will be independent of time and will be controlled 
by the conductivities of the media, whereas a t  time ze- 
ro, the system permittivities will determine the potential 
distribution. These characteristics of the potential distri- 
bution in the two media can be accounted for by assuming 
that  the potential function 9 can be expressed as 

@ ( u l , ~ , u 3 , t )  = [ p c ( u l r ~ u 3 )  - ~ 7 ( u l , W , u 3 ) ] T ( t )  

-k 'Pr(ulr u 2 ,  u 3 )  

(9) 
where pE and pr are the potential functions associated 
with the system permittivity and the system conductivity, 
respectively, and as such must be solutions of Laplace's 
equation. On the basis of pE and p7, the function T( t ) ,  
which represents the temporal variation of 9, is consid- 
ered to  be normalized such that T(0)  = 1 and in addition 
we require that  as t -+ 00, T ( t )  -+ 0. 

By expressing 9 in the above manner, we have imple- 
mented the first step in applying the separation of vari- 
ables method. A further assumption of this method is 
that ,  with reference to the problems under discussion, the 
p function is simply separable [2], i.e. 'p can be expressed 
as 

p(ul, 2121 213) = u(211)V(uZ)w(u3) (10) 
For any coordinate system, the necessary and sufficient 
conditions to  be satisfied with respect to  the separability 
of Laplace's equation are discussed in Moon and Spencer 
PI. 
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With reference to  (9), the potential distributions in the which attains a steady-state value, c,, as t -+ CO. If Yb = 
0, i.e. zero conduction in medium b, coo. can be obtained 
from (18). Similarly with (19) for 7, = 0. Furthermore, 
it should be noted that the polarity of c is determined 
not only by the applied voltage but also by the condition 

two media may be expressed as 

(I1) 

(12) 

an = ( v a c  - p n y ) T  + (Pay 

ab = ('Pbc - 'Pb-y)T + (Pbr 
At the interface u1 = a, the potential-equality boundary 
condition must be fulfilled by both the (P, and the vr 
originally. Thus 9, and will fulfill this condition au- 
tomatically. Inserting the above expressions for 9, and 
@b into (7) enables the interface continuity equation for 
the present class of problems to  be derived. Taking ac- 

Finally, (18) and (19) also provide confirmation of the 
analysis in [3] which shows that,  for = 7b/~r,,  there 
is no accumulation of charge a t  the interface. 

count of the boundary conditions which the yE and the 
vv must in turn fulfill, we can obtain for u1 = a 3.3 APPLICATION T O  A SPHERICAL 

INCLUSION 

This expression represents one form of the boundary con- 
dition to  be fulfille_d by @,+and % a t  the interface. Fur- 
ther, owing to  the D, and J, boundary relationships, (13) 
can be re-expressed in different ways. 

To utilize the above general analysis, we consider me- 
dium b to  be a sphere of radius R. Hence with respect 
to  spherical coordinates r ,  8, $ we have u1 = r ,  212 = 8, 
213 = $, 911 = 1 and 922 = r2 [4]. The applied field EA 
is oriented in the negative z direction so that the undis- 
torted applied potential is EATcos8, i .e.,  the oy plane is 
at zero potential, and EA is applied at time zero, 

As each Of the 'P derivatives is independent o f t ,  it is 
evident that  (13) can be written as 

with 

G+AT=O dt 

The general solution for (14) is 

(14) From the potential solution for ideal dielectrics and 
field EA given in standard textbooks [3,5], we have for 
medium a 

1 + E a r c o s 8  (21) 
2 ~ n  r 

(15) 

T = Cexp(-At) (16) and for medium b 

where C is a constant. On this occasion we take C = 1. 

3.2 INTERFACE CHARGE DENSITY 

The field continuity boundary conditions a t  the inter- 
face lead to  an important feature of lossy dielectrics, viz. 
the existence of a surface charge density a t  the interface 
[l ,  31. This feature follows directly from (3) and (4), which 
together with (5) enables this interface charge density 0 
to be expressed, with respect to  the present analysis, as 

(17) 

Substituting for 9, and @ b  and using the fie and 51 
relationships enables ~7 to  be expressed either as 

To obtain the equivalent conductivity potential solutions, 
E is simply replaced by 7. Consequently for medium a we 

and 

(24) 

for medium b. Hence upon substitution for '.$be and '.$by 

into (15) we obtain for r = R 

(25) 

Consequently by combining (21) to  (24), the potential 
solutions associated with the two media can be expressed 
as 

or as - 

From (18) and (19), it is evident that  a t  t = 0, 0 = 
0. Subsequently there will be a n  accumulation of charge 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 10:03 from IEEE Xplore.  Restrictions apply. 



516 McAllister et al.: Temporal Electric Fields in Lossy Dielectrics 

and 

whilst from (18) and (24) the corresponding interface 
charge density is 

3.0 1 
m 

2.6 

2.2 

1.8 . .  
We will now examine the relevance of this solution for 
two different situations. 

g Lo 1L 

E, = E, 

2 6 8 10 
10 

t/Tb 
0 

Figure 2. 
Temporal variation of the field enhancement fac- 
tor associated with a lossy-dielectric protrusion 
(yo = 0 ,  e,, = e,,). €,b is the relative permittivity 
of the protrusion material. 

Figure 1. 
Temporal variation of the field strength in the 
void (yb = 0 ,  E b  = e,,). E,,, is the relative per- 
mittivity of the bulk medium. 

3.3.1 GASEOUS VOID 

One of the principal causes of electrical failure of solid 
insulation follows from the effects of partial discharges 
which occur in the gaseous voids within the material. 
Apart from gas pressure, the occurrence of such discharges 
is effectively governed by the field strength attained in 
the void. In particular by the field along the void axis 
which represents the longest discharge path length in the 
field direction. For the void we will consider 7 b  = 0 and 
&b = while r cos6  = z. Hence with reference to (27), 
the potential distribution in the void is given by 

where r, = cO/ya and E, is used to denote the relative 
permittivity. By expressing the potential in this manner, 
it is evident that  @ b  is a linear function 2f the z coordinate 
alone. This feature implies that  the E field in the void 
is uniform and oriented in the same direction (negative z 
direction) as the applied field EA.  Hence the axial field 
strength Ebz in the void is 

exp [&(;)]] (30) 

The variation of Ebz with t for different values of is 
shown in Figure 1, which indicates tha t ,  with respect to 
the time constant T,, it  takes a considerable time ( t  > 
57,) to establish the steady-state value of 1 .5E~.  Al- 
though the permittivity of the bulk medium influences 
the time to attain this condition, its more significant in- 
fluence is upon the initial value of Eaz. From (30) and 
Figure 1 it can be readily confirmed that the maximum 
increase in Eg, from its initial value can not exceed 50%. 

From (26) we have for the bulk medium 

From this expression it can be deduced that the radial 
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- 
component of E,, E,, is given by 

R 
E,, = -Ea cos 8 [l - ( ,)3 

from which it is evident that ,  a s  E,, > 1, IE,r/EAl is 
alweys < 1, and that,  as t -+ 00, the normal component 
of E, a t  the interface tends to zero. This feature implies 
that  a conduction steady state has been attained in medi- 
um a, while an electrostatic steady state exists in medium 
b. 

The other field parameter of interest is the tangential 
field Et a t  the interface. In the present case Et is given 
bv 

( 3 3 )  

For the void situation, it is readily shown that 

1 -2 

( 3 4 )  
A comparison of ( 3 0 )  and ( 3 4 )  indicates that  Et is iden- 
tical in form to Ebs, apart from the sinusoidal variation 
around the void wall. The  temporal behavior is identical. 

0 2  

2 6 8 10 0 
O ,I- 

<I L a  

Figure 3. 
Temporal variation of the charge accumulation at 
the void interface ( 'yb = 0 ,  E b  = E " ) .  is the 
relative permittivity of the bulk medium. 

3.3.2 LOSSY DIELECTRIC PROTRUSION IN 
A GASEOUS MEDIUM 

Owing to the symmetry of the potential field, the zy 

517 

'd = o  'd,=o 

Figure 4. 
Relationship between the polarity of the interface 
charge and the direction of the normal field com- 
ponent at the interface. (a) Void situation, (b) 
protrusion situation. 

plane (8 = 7r /2)  is an equipotential surface a t  zero poten- 
tial, and hence ( 2 6 )  and (27) also represent the potentia1 
solution for a hemispherical inclusion on a plane conduc- 
tor. If 7, = 0 and E, = E ~ ,  the system geometry degener- 
ates t o  a lossy dielectric hemispherical protrusion. Under 
such conditions, the solutions for 9, and a b  reduce to 

where = E o / 7 b .  Because the gaseous medium will be 
dielectrically weaker than the protrusion, we will begin 
with an  examination of the axial field strength E,, in the 
gas. Along the +z axis, 8 = 0 and hence after differenti- 
ating ( 3 5 )  we can deduce that 

The increase in field strength in the gas due to the pro: 
trusion can be quantified in terms of a field enhancement 
factor m which is defined as 

( 3 8 )  

with m 2 1. E,,, is obtained from ( 3 7 )  for R / r  = 1 and 
hence m can be expressed as 

The variation of this parameter with time for several val- 
ues of &,b is illustrated in Figure 2. I t  is evident that ,  
with reference to 'Tb, a time in excess of 10Tb is required 
to achieve the steady-state condition. 
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With respect to  the protrusion, it is clear from ( 3 6 )  
that  

As 
for t + 00 Eaz + 0. 

> 1, then a t  t = 0, IEbl/EAI is always < 1, while 

With reference to  Et, it can be shown that,  for the 
protrusion, we have 

from which it is clear that ,  as t ++ 00, Et + 0. Such a 
feature taken together with the Eb behavior implies that  
an electrostatic steady state has been achieved in medium 
a , while the hemispherical interface is an equipotential 
surface. 

2 5  

F, 
IT E o  R2 €1 

2 0  

15 

10 

Figure 5. 
Temporal variation of the electrostatic force on a 
lossy dielectric particle (7, = 0, e, = eo). €TI, is 
the relative permittivity of the particle material. 

3.3.3 VOID/PROTRUSION INTERFACE 
CHARGE DEN SIT1 ES 

From (28), i t  is readily deduced that  for the void 

Figure 6. 
Relation between the ring charge geometry and 
the spherical coordinate system. 

than U,, equal values. Each respective rate is signifi- 
cantly reduced by an increase in the relative permittivity 
of the medium in question, see Figure 3 .  

For the situations presently under discussion, the po- 
larity of U can-be predicted if we examine the normal 
component of E ,  E,  at the interface. As E, -+ 0 in the 
lossy medium as t + 00 we need only consider E, in the 
gaseous medium. 

With reference t o  the spherical geometry, E,is given 
by 

(44) 
a+ E n -  a r l  r = R  

From (29) i t  is readily shown that for the void we have 

-2 

(45) 
3 -2 t 

U,, = -E,EACOSO 2 
[ l - e x p  [-(-)I] 2% + 1 7, (42) 

while for the protrusion we have 

Apart from the obvious differences of polarity and magni- 
tude, U,, attains a steady-state condition at a faster rate 

\ ,  

Similarly from (35), we obtain for the protrusion situation 

(46) 
The relevance of E ,  in the gaseous medium with respect 
t o  the polarity U is indicated in Figure 4; i.e., if E,  is 
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directed towards the interface, then the U polarity is neg- 
ative and vice-versa if En is directed away from the in- 
t er face. 

From (42) and (43), it  should be noted that um is in- 
dependent of the lossy-medium y value. The influence of 
this y value is confined to the temporal evolution of U .  

Figure 7. 
Location of the ring charges a t  the interface. 

10 ' 1 1 I 1 I I 

ld8 10' 1d6 10" It;" l$ 1d2 
i/(S", 

Figure 8. 
Variation of time constant with volume conductivity. 

3.3.4 FORCE ON A LOSSY DIELECTRIC 
PARTICLE IN A GASEOUS M E D I U M  

As a consequence of the increase in U,, with time, the 
electrostatic force on the protrusion will also increase with 
time. Hence, if instead of a fixed protrusion on the zy 
plane, we have a hemispherical particle that  is free to 

move, the force tending to levitate this particle will in- 
crease with time. This force can be evaluated as follows. 

For a dielectric or conducting body in a fluid, the force 
per unit area acting a t  the interface in the direction from 
medium b t o  medium a is given by [5] 

1 1 
2 2 f = [za( za . Z) - - EXG] - ~b[l?b( ,?& . Z) - - EiG] (47) 

As before, 6 is a unit vector normal to the interface, and 
directed outward from the encl2sed region,j.e. from me- 
dium b into medium a. If the E field and f are resolved, 
with respect to the interface, into their normal and tan- 
gential components, then, as Eat = Eat = Et ,  we obtain 

1 1 
2 f n  = j [ E a E X n  - &bEin] - - [ E ,  - E ~ ] E ;  (48) 

f t  [ ~ a E a n  - &bE~n]Et (49) 

Hence the net normal force Fn exerted by the field on a 
body of surface area S is given by 

(50) 
S 

A similar expression is obtained for the net tangential 
force Ft. 

In relation to  the present discussion, it is evident that ,  
on the grounds of symmetry, there can only be a resul- 
tant force along the axis of symmetry, i.e. the z axis. 
With respect to spherical coordinates, this force F, can 
be evaluated from 

X I 2  R 

F, = 2xR2 / [fn cos e - f t  sin e] sin e de - 2a  / fn dr 
0 0 

(51)  
The first integral term refers t o  the hemispherical surface, 
while the second is concerned with the circular base of the 
particle. Upon evaluating the integrals in ( 5 1 ) ,  we find 
that 

The variation of this force with time is shown in Fig- 
ure 5 for several &sh values. As t -+ w, the value of 
F, tends asymptotically to that associated with a con- 
ducting hemispherical particle, i.e. : R2 E;. Like m, 
it requires a time in excess of l O q ,  for F, to attain its 
steady-state value. 
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4. POTENTIAL for which the relevant solution is 

Dl STRl B UTION FOLLOW I N G T = exp( -pi) (56) 

(57) 

POLARITY REVERSAL with 
?'a* - ? ' b e  

0 = i%ao &3?= LTHOUGH the applied field can be removed and a field Ea alll &b au, 

Because the interface charge distribution is axially sym- 

Laplace's equation associated with spherical coordinates, 

A of the opposite polarity applied following a short in- 
terval of time, the configuration of the interface charge 
density does not immediately reflect this change in 

attain a steady-state configuration, so will it take a con- 
siderable time to disperse. Consequently, immediately the appropriate for and pba are [41 

(9,) will be the superposition of the new applied field pau = An(R/r)n+lPn(cosO), r 2 R (58) 

larity. Just as this charge takes a considerable time to metric, then, with respect to the genera' Of 

following polarity reversal, the effective field distribution 

To quantify the effects of polarity reversal, we will again 

W 

(Go) and the space-charge field a,, i.e. Qi, = Go + 9,. n=O 

00 

refer to a spherical inclusion in the bulk medium. p b ,  = An(r/R)"Pn(c0s8), r < R (59) 
n = O  

Hence, of opposite Polarity, the Potential dis- where Pn(cos 0) is a Legendre polynomial. At the inter- 
tribution of the new applied field will be the same as that 
derived previously in Section 3.3, i .e. @,o = -a, and 
@bo = - @ b .  Consequently only the potential distribu- 
tions associated with the interface charge density remain 
to be derived. This will be undertaken in the following 
Sections. 

face (. = R), pan and pba fulfill the potential-equality 
condition automatically. 

Upon differentiating (58) and (59), and on this occasion 
inserting into (55), we can deduce that, for = R, 

4.1 GENERAL ANALYSIS FOR A 

The general potential solutions associated with the two 
media are thus 

',, = 

CHARGE SOURCE AT AN INTERFACE 

(n $. I)?', -k n?'b 

(n + I)&, + neb 
(61) 

[ 

[ 

Owing to the nature of the field source (a), the con- 
ductivity of the media and the geometry of the system, a 
steady-state conduction field cannot exist. Consequent- 

" R  An(~)n+ lPn(CoSe)  exp - 
n = O  

t1 (n + I)?', + n?'b 

(n + I)&, + n E b  

(62) 

ly, we assume that the potential distributions in the two 

@ao(ui1 ~ z ,  % l t )  = 4aa(~i, W ,  ~ 3 ) T ( t )  (53) 

00 

media can be expressed as @bo = ~ A , ( ~ ) " P , ( c o s B ) e x p  - 
R 

n = O  

To obtain A, it is necessary to derive paa and pau for 
the initial charge distribution at the interface. 

and 

If T is normalized so that  T(0)  = 1, then pa,, and 
%a(%, %,743, t )  = d b o ( U i 1  Uzl  ~ 3 ) T ( t )  (54) 

represent the time-zero potential distributions, i.e. those 
associated with the system permittivity, and they must 
therefore be solutions of Laplace's equation. In addition, 
a t  the interface u1 = CY, the potential functions and 
' b o ,  must fulfill both the continuity Equation (7) and the 
potential-equality condition (8). 

4.2 INITIAL POTENTIAL 
D IST RI B U TI 0 N S FO R I N T ER FACE 

CHARGE DISTRIBUTION 

To determine the potential of a spherical shell of charge, 
we begin with the potential of an isolated elemental ring - 

Consequently if we proceed as in Section 3.1 and sub- charge dq.  If the ring is located a t  a radial distance s from 
the coordinate origin, see Figure 6, then the potential of 
this elemental charge distribution is given by [6,7] 

stitute for a,, and in (7), we obtain for '111 = a 
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if either r > s or r = s and 8 # p. Alternately, 

if r < s or r = s and 8 # p, where p is the polar angle 
subtended by the ring charge. If now this ring charge is 
located a t  the interface between the two media, then by 
taking account of the boundary conditions a t  the inter- 
face, the potential in the two media can be shown to be 
with s = R 

m 

( 6 5 )  
(R/r)"+l 

dq 2 n +  1 
d v a  = - 

47rR ( n  + 1 ) ~ ~  + no, 
n=O 

and 

P, (cos p )  P, (cos e) 

To take account of the inherent symmetry of the inter- 
face charge density, a second ring charge -dq subtending 
a polar angle of (7r-p) is introduced, see Figure 7 .  By em- 
ploying the principle of superposition, we can obtain the 
relevant solutions for d v ,  and dpb by simply adding two 
solutions of the type given in ( 6 5 )  and ( 6 6 )  for dq. With 
-dq as the source, P,(cos p )  is replaced by Pn(cos[7r-p]). 
However, as 

P,(cosp) - P,(-cosp) = 0 ( 6 7 )  

for n even, while for n odd we have 

P,(cosp) - P,(-cosp) = 2P,(cosp) ( 6 8 )  

we can express the potentials in a more elegant form by 
replacing n by 2 n  + 1. This substitution leads to 

The subscript 0 indicates that  these potential functions 
relate to a zero net charge condition at the interface. 
By integrating the elemental potential functions over the 
spherical surface we can obtain the required solutions for 
Pau and vbn. 

From Figure 7 ,  it can be deduced readily that the ele- 
mental ring charge is related to the interface charge den- 
sity by 

On substitution for dq into the d v o  expressions, we find 
that the relevant integrals reduce in effect to 

dq = 27rR2a(p)  sin p d p  ( 7 1 )  

1 = J a ( p )  sin ppzn+l(cos p )  d p  ( 7 2 )  
0 

Prior t o  polarity reversal, the system was assumed to be 
in a steady state and thus the interface charge is the value 
of CT in ( 2 8 )  as t -+ 00. Thus, with respect to I ,  we have 

Inserting this expression into ( 7 2 )  and using the recur- 
rence relationships obeyed by Legendre polynomials, we 
find that,  for n 2 1, 

cos p sin pPZ,+l(cos p )  d p  = 0 ( 7 4 )  ?' 
whereas 

( 7 5 )  
1 

cos psin pPz,+1(cos p )  d p  = - 3 

for n = 0 

Consequently as only the n = 0 term in the summation 
need be retained, the initial potential distributions asso- 
ciated with the interface charge distribution are simply 

vaa represents a dipole potential, while is aJinear 
function of the z coordinate, implying that the E field 
in medium b is uniform. This linearity was exhibited 
previously by and vbr .  

4.3 EFFECTIVE POTENTIAL 
DlSTRlB UTlON 

The effective potential distributions in the two media 
a and b are, respectively, 

@a, = @Go + @a, 
and 

@be = @bo + a b n  

A$ the undistorted potential is now -EAT cos 8, ( 2 6 )  and 
( 2 7 )  represent --aa(, and -@bo,  respectively. 

( 7 8 )  

( 7 9 )  
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On the basis of the change in index (n) employed to  
derive pan and pha, it is necessary to  replace n in (60) 
with 2n + 1 to obtain &(n), and then set n = 0. In this 
way we discover that  o"(0) = A,  ( 2 5 ) .  Thus, with respect 
to  (61) and ( 6 2 ) ,  we can obtain @,, and @ha from (76),  
(77)  and ( 2 5 ) .  Consequently upon combining the various 
potential expressions we arrive a t  

As both 9," and @ h n  are exponentially decaying poten- 
tials, we see from (80) and (81) that  the effect of polarity 
reversal is to  double the magnitude of the transient po- 
tential component. Consequently as this component will 
have its maximum influence a t  the instant of polarity re- 
versal, we will concentrate on this aspect in the remainder 
of the present discussion, and proceed to  examine the two 
situations of interest. 

4.3 .1  GASEOUS VOID 

Upon substituting for Yh and E h ,  we find that the po- 
tential functions of interest reduce to  

and 

where as before z = r cose. 

By inspection, the axial field strength E b e Z  in the 
is given by 

2 -2 
exp [ ""(31 I 

while the radial field component E,,, in the bulk material 
can be readily shown to be 

A comparison of ( 8 4 )  with (30) indicates that ,  as the 
magnitude of the transient term is doubled, the field 
strength in the void is effectively reduced following polar- 
ity reversal; Ehes < Ehoz. In contrast from a comparison 
of ( 8 5 )  with (32), we see that ,  as E,,, > E,, the radial 
field strength in the bulk is effectively increased initially. 
However this increase is only significant for E,, < 2.5, as 
only then is JE,,,/EA) > 1. 

With respect to  the tangential field strength Et, a t  the 
void wall, we can deduce from either ( 8 2 )  or (83) that  Et, 
is given by 

2 -2 

( 8 6 )  
from which i t  is evident that ,  like Eho, Et, will also un- 
dergo an effective reduction initially. 

4.3.2 LOSSY DIELECTRIC PROTRUSION IN 
A GASEOUS MEDIUM 

For this situation, the relevant potential functions are 

From (87),  it can be deduced that  the axial component 
of the electric field E,,, in the gaseous medium is given 
by 

( 8 9 )  
By comparing (89) and (37) it is evident that  the axial 
field strength effectively undergoes a reduction following 
polarity reversal; E,,, < E,,, . 

Within the protrusion, the axial field strength is uni- 
form, viz. 

This expression indicates an initial doubling of Eh follow- 
ing polarity reversal; Ehez = 2EhOz. Similarly the inter- 
face tangential field can be shown to be given by 

and like Eh, Et undergoes an initial doubling upon polari- 
ty reversal owing to  the existence of the interface charges; 
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E t ,  = 2Et,. For the present interface geometry, these in- 
creases are only of significance for & l b  < 4. 

g = o  

Figure 9. 
Relation between the electric field components 
following polarity reversal. (a )  void situation, (b) 
protrusion situation. 

@ = V  I 

cp =O I 

@ =O I 
Figure 10. 

Geometry of spacer with inserts and the associat- 
ed field distributions. (a )  single insert, (b) double 
insert. 

5. DISCUSSION 

5.1 T H E  PRESENT ANALYSIS 

5.1.1 GENERAL APPROACH 

H E  solution of lossy dielectric field problems is achiev- T ed through the continuity equation. For homoge- 

Figure 11. 
Orientation of the normal field in the gas a t  the 
spacer surface for negative dc. (a) single insert, 
(b) double insert. 

10  

0 

-1 0 

-2 0 

I 1  I 

11 

Figure 12. 
Influence of the conductivity ratio (yg/ya) on the 
steady-state interface charge with respect to  the 
protrusion situation. 

10 

neous media, this equation reduces in effect to an associ- 
ated interface continuity equation. This latter equation 
then serves as the boundary condition to be fulfilled a t  
the interfaces in question by the potentials in the bound- 
ing media. The use of this boundary condition is illus- 
trated with reference to a particular class of boundary 
value problems involving an inclusion embedded in the 
bulk medium. 

To develop a transient potential solution, it is advan- 
tageous to consider firstly the geometry and properties 
of the media, and the nature of the field source. Such 
an assessment enables the form of the complete potential 
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Figure 13. 
Influence of 7s > 0: Temporal variation of the 
field enhancement factor m for a lossy dielectric 
protrusion, r. = 6,/yI.  
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Figure 14. 
Influence of yp > 0: Temporal variation of the 
charge accumulation at the protrusion interface, 
7. = E , / 7 , .  

solution to be envisaged. As shown in Sections 3.1 and 
4.1, it is possible, on the basis of such an  assessment, to 
make viable assumptions concerning the general poten- 
tial solutions. Thereafter, by using the interface bound- 

ary condition, the temporal variation of these potentials 
may be deduced. 

With the general analysis, expressions for the space 
charge which inherently accumulates at the interface be- 
tween two media have been derived. From these expres- 
sions, it  is evident that  the polarity of this interface charge 
is not determined solely by the polarity of the applied 
voltage, but is also influenced by the conductivities and 
permittivities of the bounding media. 

5.1.2 LIMITING SITUATIONS 

The theory has been applied to the case of a spherical 
inclusion, and, through a detailed examination of the field 
characteristics associated with the two limiting situations 
ya = 0 or ' y b  = 0, a broad coverage of lossy-dielectric field 
behavior has been elucidated. 

In each situation, it has been shown that,  with respect 
to the relevant time constant T ,  the system takes a con- 
siderable time to attain a steady state. As we define 
r = ~ ~ / y ,  a knowledge of the appropriate y value is neces- 
sary to enable the timescale under discussion to be quan- 
tified. However, as the cautionary comment in Kaye and 
Laby [8] indicates, y values for insulating materials are 
very uncertain: e.g., in the literature, y for epoxies lie in 
the range to 1 O - l '  S m- l .  The significance of such 
a y range on T can be readily appreciated from Figure 8. 
On the basis of Figures 3 and 8, it may be concluded that 
for insulating materials (y < S m-l ,  E~ - 4) the 
initial charge accumulation is liable to  be on a time scale 
of < 5 h, while the steady-state condition could take up to 
several days (> 100 h) to be established. Such charging 
behavior is reported in [lo]. 

In the process of attaining this condition, the gaseous 
medium (defined by y = 0) is found to  be subjected to 
an  E' field which increases with time, see Figures 1, 2 and 
5 ,  such that,  in the steady state, the stress level reached 
is significantly greater than the initial level, which was 
controlled solely by the system permittivities. 

The accumulation of charge a t  an interface is brought 
about by the presence of an electric field. On reversal of 
the applied-voltage polarity, a completely new field con- 
figuration will be established. Depending on the polarity 
configuration of CT, the effective field magnitude may ei- 
ther be the sum or difference of the two component fields; 
viz. the one associated with U and the other due to the 
applied voltage. The former condition represents an en- 
hancement of the applied field, while the latter brings 
about a reduction. 
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With respect to  the two limiting situations studied, an 
appreciation of the above features can be gained from 
Figure 9. As may be readily deduced, the applied field 
in the gaseous medium is seen effectively to  undergo a 
reduction following polarity reversal. However, should 
the accumulated charge distribution oppose in effect the 
original applied-field, see Figure 9b, then upon polari- 
ty reversal, the transient tangential field a t  the spherical 
interface initially doubles. Depending on the overall ge- 
ometry in question, the occurrence of such a n  increase in 
the tangential field could promote surface flashover; for 
example breakdown along a spacer surface in a DC GIs.  

Although the present study was undertaken with re- 
spect t o  a spherical inclusion in a bulk medium, the same 
general field characteristics will be exhibited by other in- 
clusion geometries. In addition, numerical da t a  are not 
anticipated to  differ significantly from the values obtained 
in the spherical case, and thus conclusions will remain un- 
altered. 

present study to  such investigations, we will confine our 
comments to  right circular-cylindrical spacers with in- 
serts. sufficient information exists in the literature de- 
scribing the electric fields associated with such spacers 
to  allow specific comments to  be made on their charac- 
teristics. In the following discussion, we will adopt the 
subscripts s and g in relation to  the solid spacer and the 
gas, respectively. 

The relevant spacer geometries are shown in Figure 10, 
along with the field lines of the vE distribution. From 
the field plots, it is evident that ,  with a single insert, a 
field line which intersects the spacer surface does so only 
once. For the double-insert spacer, the field-line intersec- 
tion occurs twice. The actual electric field distributions 
along such spacer surfaces are illustrated in [lo], and these 
indicate that  the maximum normal field in the gas a t  the 
interface is located approximately coincident with the end 
of the insert. 

5.2.2 CHARGE POLARITY 
5.1.3 MAGNITUDE OF (T, 

On attaining the the steady-state condition, we find 
that (U,[ - E ~ E A ,  see (42) and (43). For SFG at 0.2 MPa, 
a typical E value would be 5 kV/mm, from which we 
obtain IC, I - 45 pC/m2. This value is of the same order 
of magnitude as the U values reported in the literature, 
e.g. see [9,10]. Hence we cannot disregard the fact that  
the accumulation of such charge levels a t  spacer surfaces 
could arise as a direct consequence of the spacer behaving 
as a lossy dielectric: i.e. the conductivity of the spacer 
material should not be treated unreservedly as zero. 

5.2 DC GIS SPACERS 

5.2.1 GENERAL ASPECTS 

Invariably the geometry of practical spacers is such that  
the surfaces of these do not conform t o  any of the surfaces 
generated by the separable coordinate systems [4]. Con- 
sequently the separation of variables method employed 
in the present analysis cannot be used t o  determine the 
fields associated with practical spacer designs. Neverthe- 
less some of the field characteristics of such spacers can 
be inferred from the present study. 

Throughout the 1980’s many experimental investiga- 
tions have been concerned with the accumulation of charge 
on dc spacers following the application of the system volt- 
age (we are not referring t o  studies in which charge is 
artificially deposited). In discussing the relevance of the 

Fujinami et al. [ lo] reported on measurements in SFG 
a t  -200 kV, and with this voltage polarity E,, will be 
oriented as shown in Figure 11. Consequently, on the ba- 
sis of the discussion in Section 3.3.3, we would anticipate 
charge maxima of negative polarity t o  accrue a t  A and B, 
see Figure 11, while a t  C the maximum accumulation of 
positive charge would occur. In fact Fujinami et al. [lo] 
recorded positive charge a t  A and B, and negative charge 
a t  C, i.e. the directly opposite polarity to  that predicted 
by the initial analysis. In [lo], the explanation provided 
is that  charge in the gas accumulates a t  the spacer surface 
until E,, = 0. The maximum attainable level of charge is 
then obtained by setting U, = - E ,  E,,. This procedure, 
which gives reasonable agreement between calculated and 
measured (T values, is in contrast to  the lossy dielectric 
approach which leads naturally to  the steady-state con- 
dition of E,, = 0, such that U, = coEgn, and thus a 
change in (T polarity will arise. 

A possible explanation for this behavior lies in the fact 
that ,  with respect to  lossy dielectrics, the polarity of (T is 
not controlled uniquely by the applied voltage, but also 
by the permittivities and conductivities of the media, see 
Section 3.2. Until now we have treated y, = 0. If, howev- 
er, y, < S m - l ,  see [ll], then the fact that  all gases 
exhibit a very low inherent conductivity, can no longer be 
ignored. Such a background conductivity was invoked by 
Gaertner et al. in a study of the decay of surface charge 
[12]. To establish the influence of a non-zero y, on the 
spacer charging process, it is necessary to  examine the 
values of the ratio (y,/y,) which provide a change in the 
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polarity of D opposite to that which would be established 
solely by the action of the applied voltage. We proceed 
to this examination. 

5.2.3 INFLUENCE OF ys > 0 

An appreciation of the influence of ys can be obtained 
by referring to the protrusion situation. For the steady 
state, we can deduce from (28) and (43) that,  for ya ys, 
' yb  z ys, and &rb E , , ,  we have 

When necessary the extra subscript 1 is used to  denote 
the limiting case of yg = 0. For (̂s = 0, the RHS of 
(92) reduces to unity, while for (yg/y,) >> 1, ( U / O ~ Z ) ~  -+ 

- ( 1 / 2 ) ~ ~ # .  The variation of ( c r / c ~ ~ p l ) ~  with (yg/y8) is 
shown in Figure 12 for different values of 6,". This di- 
agram indicates tha t ,  as expected, ( u / u ~ ~ ) ~  = 0 for 
(ys/y , , )  = 1 / ~ ~ ,  and thus, as E ~ ,  for the majority of sol- 
id insulating materials is < 10, it only requires 0.1 < 
(yg/yd) < 1 to obtain a change in the D polarity from 
that which would be expected due to  the polarity of the 
applied voltage. Consequently, if the values of yg and y, 
are comparable, a change in the polarity of c~ will occur. 

To illustrate the effect of this polarity change on the 
field behavior, we will consider a specific situation, viz. 
E,# = 4 and (ys/y , , )  = 1. The temporal variation of the 
field enhancement factor m is shown in Figure 13, while 
Figure 14 illustrates the variation of ( u / u ~ ) ~ .  From Fig- 
ure 13 it is clear tha t ,  for (ys/y,) = 1 and thus ( u / u ~ ~ ) ~  = 
-1, m decreases with t ,  whereas m increases for (ys/yb) = 
0 and ( U / ~ T ~ I ) ~  = 1. Such a reduction in m implies that  
the force on the protrusion will also decrease. With re- 
spect to (c/cm),,, Figure 14 indicates that with yg > 0 
the rate of charge accumulation a t  the interface is greater. 

From the above analysis it is evident that  a non-zero ys 
value can completely alter the field characteristics from 
those associated with ys = 0. 

The remaining features of the protrusion situation for 
(ys/y,) = 1, and also the field Characteristics for the cor- 
responding void situation can be derived from the general 
potential solutions, i.e. (26), (27), (80) and (81). However 
an impression of the field behavior for an  interface charge 
of opposite polarity can be gained immediately from Fig- 
ure 9 by simply interchanging the two situations depicted 
graphically. 

Finally, if either ys/y8 < 0.01 or ys/ys > 100, the 
behavior of the system will tend to one of the limiting 
situations analyzed previously. 

5.2.4 INHOMOGENEOUS MEDIA 

So far in the Discussion, we have dealt only with ho- 
mogeneous media. In practice however, the influence of 
inhomogeneities in the spacer material may be of compa- 
rable significance. In unfilled epoxies, inhomogeneities in 
the conductivity result from the dependence of the con- 
ductivity on both the field strength and the temperature 
[ll], whereas in filled epoxies, an uneven distribution of 
filler material can lead to  inhomogeneity in both the con- 
ductivity and the permittivity. As y can vary over sev- 
eral orders of magnitude, such behavior is liable to be 
of greater importance than that due to the more limited 
variations in E .  

With reference to these parameters, !heif. influe_nce_can 
be deduced [13] if we simply expand V . J and V . D in 
terms of y, E and E ,  i.e. 

+ 

e .  f= ye .z+ 2.37 (93) 

(94) 
4 4  

Upon eliminating V . E and re-arranging terms, we have 

(95) 

For the steady state, the expression iniicetes the exis- 
tence of a volume charge of density y E  . V ( E / ~ )  in the 
spacer material. Moreover, it  is clear that  the polarity of 
p is dependent not only upon the polarity of the applied 
voltage, but also upon the permittivity and conductivi- 
t,y of the medium. With reference to potential solutions, 
V . f and p in (1) are replaced using (93) and (94). 

The inhomogeneous properties of insulating media lead 
to an accumulation of charge within the spacer itself. 
Such charge could modify significantly the normal and 
tangential fields a t  the spacer surface [14], and thus indi- 
rectly influence the insulation strength of the spacer/gas 
system. 

5.2.5 SURFACE CONDUCTIVITY 

In the aforegoing analysis, the influence of surface con- 
ductivity upon lossy-dielectric fields was not considered, 
i.e. it  was inherently assumed that r = 0. However, 
experimental investigations have demonstrated that the 
condition of the actual spacer surface is of importance in 
relation to surface charge accumulation [15,16,10]. This 
fact together with the comments in [17] suggests that  sur- 
face conductivity should be taken into account with re- 
spect to an overall evaluation of spacer fields. 
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If I’ > 0, then it becomes necessary to modify (2) such REFERENCES 
that  the existence of a surface current density l? is ac- 
counted for in the continuity equation. This aspect is 
discussed in [17], and the resulting field behavior with 
I? > 0 is under investigation. 

[l] 3. C. Maxwell, A Treatise on Electricity and Mag- 
netism, Vol. I, Clarendon Press Oxford 1873. 

[2] P. Moon and D. E. Spencer, Field Theory for Engi- 
Measurements made of surface conductivity indicate neers, van Nostrand Princeton 1961. 

that  this parameter is, like y, also dependent on field 
strength and temperature [16,11]. Consequently, as dis- 
cussed in 1171, inhomogeneities in J? will also lead to sur- 

[3] E. Weber, Electromagnetic Fields-Theory and Ap- 
plications, J. Wiley New York 1950. 

. - .  - 
face charge accumulation, and variations in U could be 
generated under apparently identical applied-field condi- 
tions. This aspect is in evidence in the circumferential- 
scan results reported in [lo]. In this work it was observed 
that,  when scanning around the spacer circumference at a 

[4] p. Moon and D. E. Spencer, Field Theory Handbook, 
Springer-Verlag Berlin 1961. 

[SI J. A. Stratton, Electromagnetic Theory, McGraw- 
Hill New York 1941. 

constant height, U varied not only in magnitude but also 
in polarity. The variation in magnitude is shown by Fuji- 
nami et al. [ lo] t o  be due to  the roughness of the spacer 

[6] W.  R. Smythe, Static and Dynamic Electricity, 2nd 
edition, McGraw-Hill New York 1950. 

surface. Such roughness can only produce a microscop- 
ic perturbation of the applied macroscopic field, which 
is rotationally symmetric. Thus the roughness cannot 
account for the change in the polarity of U and hence 
inhomogeneities in I? are a possible explanation. 

[7] V. C. A. Ferraro, Electromagnetic Theory, The 
Athlone Press, London 1954. 

[81 G. w. c .  KaYe and T* H-  Laby, Tables Of Ph.J’si- 
cal and Chemical Constants, 15th edition, Longman 
London 1986. 

[9] H. Ootera, K. Nakanishi, Y. Shibuya, Y. Arahata 
and T .  Nitta, “Measurement of Charge Accumula- 
tion on Conical Spacer for 500 kV DC GIS”, in L. 
G. Christophorou and M. 0. Pace (eds.), Gaseous 
Dielectrics IV, Pergamon Press New York, pp. 443- 
450, 1984. 

6. CONCLUSIONS 

ROM a detailed exposition of two limiting sit,uations, 
the principal features of the electric fields associated F 

with lossy dielectric media have been elucidated. 

[lo] H. Fujinami, T .  Takuma, M. Yashima and T .  
Kawamoto, “Mechanism and Effect of dc Charge 
Accumulation on SF6 Gas Insulated Spacers”, IEEE 
Trans. Power Delivery, Vol. 4, pp. 1765-1772, 1989. 

With respect t o  DC GIS spacers, it  is shown tha t ,  by 
taking account of the volume conductivity of both the 
spacer material and the gas, the basic charge accumula- 
tion phenomena can be understood. In contrast, purely 
qualitative explanations based solely on such processes as 
micro discharges and field emission have no quantitative 
merit. Moreover, these processes are incompatible with 
the changes in surface charge polarity recorded a t  adjoin- 
ing locations in a monotonic applied field. We propose 
that these fine details in charge accumulation phenomena 
a t  spacer surfaces could be accounted for if the inhomo- 
geneity aspects of both volume and surface conductivities 
were incorporated in the theoretical analysis. 
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