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ABSTRACT

We investigate concurrent ‘Lifelog’ audio recordings to lo-
cate segments from the same environment. We compare
two techniques earlier proposed for pattern recognition in
extended audio recordings, namely cross-correlation and a
fingerprinting technique. If successful, such alignment can
be used as a preprocessing step to select and synchronize
recordings before further processing. The two methods per-
form similarly in classification, but fingerprinting scales bet-
ter with the number of recordings, while cross-correlation
can offer sample resolution synchronization. We propose
and investigate the benefits of combining the two. In partic-
ular we show that the combination allows sample resolution
synchronization and scalability.

1. INTRODUCTION

Lifelogs are extended digital recordings of a persons life.
This could for example include (e)mail correspondence, vis-
ited web sites, documents, chat logs, and video and audio
recordings. The typical and original aim [1] of such record-
ing is to boost recollection of events. Modern examples in-
clude MyLifeBits [2], LifeStreams [3] and Lifelogs [4]. Ex-
tensive digital recording could also be used for modelling
behaviour as in, e.g, [5].

The task of collecting and processing Lifelog data stores
is huge, and here we focus on audio aspects, as pioneered
by Ellis and coworkers, see e.g., [6]. While conventional
Lifelogs concern organization of personal archives we are
particularly interested in the group perspective, and thus
expand the scenario from including only the recordings of
a single individual to integrate the recordings of multiple
subjects. Multi-subjects audio analysis has been pursued
earlier, e.g., in the context of conversational patterns as in
[7]. We envision a setup in which employees wear micro-
phones recording continuously while at work. Because we
imagine microphones worn by individuals we can not only
say something about who said what, but also estimate who
actually received given information, i.e., who heard what!
Here we will not be concerned with the obvious ethical is-

sues involved in storing such audio but only investigate the
mounting technical challenges.

Signal processing of multi-microphone recordings has
a significant literature, see e.g., work on signal separation
[8], and also includes work on distributed microphone ar-
rays from specially equipped rooms [9]. Common to most
of these is that the recordings are well synchronized and that
they are recorded within the given locality thus in principle
contains the same acoustic enviroment, in addition it is of-
ten assumed that the actual microphone placement is fixed
and known. In our setting of ‘moving microphones’ some
of the parameters must be inferred from the data itself. In
this paper we will consider two aspects of concurrent Lifel-
ogs, namely 1) to classify recordings as being from within
the same area, meaning, that they have recorded the same
audio events, and 2) we will investigate synchronization of
recordings. Synchronization is necessary, because of the
distributed nature of the recordings and wanted for subse-
quent blind signal separation processing. Recording devices
that are not linked are likely to produce timing differences
of the order of seconds, which will make un-mixing filters
invoked by ‘convolutive’ blind signal separation algorithms
prohibitively long.

The paper is organized as follows, in section 2 we de-
scribe two different audio similarity measures, cross-correlation
and fingerprinting. In section 3 the classification problem is
described. Different approaches are investigated, including
one-on-one classification, a joint approach using both simi-
larity measures and a joint classification scheme that assures
a block diagonal mixing matrix. In section 4 experiments
are performed within a large public data set from the AMI
corpus [9] and own real-room experiments.

2. AUDIO SIMILARITY MEASURES

In this section the two measures of similarity will be pre-
sented. The normalized cross-correlation coefficient is a
well known statistical quantity. The fingerprinting proce-
dure is less so and was originally presented to identify pop
songs recorded with a cell phone and compared to a large
database.
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Fig. 1. The comparison of two recordings of the same meeting as
a function of the lag using the normalized cross-correlation. The
SNR is very good in this example, although multiple peaks exist
showed in the zoomed view (insert). Only the value and location
of the maximum is used as indicated.

The two methods return a measure of the similarity be-
tween two signals. A binary decision is necessary deciding
whether the two signals have been recorded from the same
environment. This will be achieved through the training of
a classification algorithm and will be presented in the next
section.

Cross-correlation. The sampled cross-correlation func-
tion is given as,

xc(m) =
1

Nσ1σ2

∑
n

x1(n)x2(n−m),

where the cross-correlation is normalized with the product
of the standard deviations (σ1, σ2) such that the range is
[−1; 1]. As the signals have different delays and possibly
have been filtered differently through different sound paths,
a negative cross-correlation is as significant as a positive
and thus the absolute magnitude is used. This produces a
measure in the range [0; 1], where the value 1 is for simi-
lar signals which surely come from the same environment
while the value 0 is no correlation at all, meaning that the
recordings are likely to come from different audio environ-
ments.

The cross-correlation is computed as a function of lags
in the range [−10s; 10s]. The cross-correlation coefficients
of two recordings from the same room as a function of the
lag is shown in fig. 1. The lag location and value of the max-
imum are found. The maximum value will be used to make
the binary decision, and the lag can be used to minimize the
delay between recordings.

Fingerprinting. This method was proposed in [10] and
used in [11]. It was originally intended for recognizing
songs from short cell phone musical recordings. The fin-
gerprint method preprocesses a recording in a way to dras-
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Fig. 2. The top plot is an example of the cross correlation re-
turning an ambigous result. A peak is present in the correct place
for the example (0 s lag), but another larger peak is also present
(marked by an x). In the bottom plot the two signals are shown, and
by investigation it was found that, by coincidence, the boxed parts
are better correlated than the actually synchronized parts, thus cre-
ating an incorrect inference of the lag.

tically reduce the dimensionality and ease the accessibility
for future comparisons.

For each recording a number of hashes are generated,
together with their associated time stamps. When two record-
ings are compared, all hashes are compared and when hits
are found, the time difference between their time stamps is
saved. A histogram is made of the time differences. If two
recordings are from the same environment a relative large
number of hits is expected to occur with the same time dif-
ference, and this will show up in the histogram as in fig.
3. The histogram is processed as the cross-correlation, i.e.,
the maximum is found and saved together with the value of
the lag. While the cross-correlation function produces a lag
with ‘sample resolution’ the resolution in the fingerprinting
procedure depends on histogram and hash settings and in
the current setup amounts to approximately 50 ms.

The hashes are generated from landmarks in the spec-
trogram. Each frequency bin is normalized (over time) to
zero mean, which reduce the effect of the in general higher
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Fig. 3. The same setup as in figure 1 but using the fingerprinting
method instead. Obviously the two methods return similar results,
but they differ greatly in the calculations. The same clear SNR is
present, but because of the lower resolution only a single peak is
present in the zoomed view.

energies in the lower frequency bands. To ensure a more
uniform distribution of landmarks over the spectrogram, it
is coarsely divided in both time and frequency in a number
of equally sized parts. In each of these parts local max-
ima are found. The k largest local maxima in each part is
recorded. We found that a small amount of smoothing, prior
to locating maxima improved results, thus a 3x3 moving av-
erage filter was applied.

Within the parts of the spectrogram each unique pair of
the k landmarks (k(k − 1)/2 pairs) is used to generate a
hash. Each hash consists of three b bit values; the (absolute)
time difference between the two landmarks, the frequency
value of the first landmark and the frequency value of the
second landmark. All three values are discretized to b bit,
and concatenated into a 3b bit hash. The time point of the
first landmark is saved together with the hash.

3. CLASSIFICATION OF AUDIO SIMILARITY

Previously, measures of similarity between two recordings
was described. The next step will be to decide when the
measured similarity is significant and the recordings are con-
sidered to be from the same environment, which is a clas-
sification problem. The measures are one dimensional for
both methods. Histograms of the similarities of the training
set of both methods are shown in figure 4. Clearly we are
looking for a threshold between the two classes. Because of
the one dimensionality of the measures this can be done by
simple line search minimizing the classification error rate
on a training set.

To estimate the classification error rate we test the sys-
tem on audio from the same and from different environ-
ments. In discriminative classification, if the individual classes
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Fig. 4. A histogram of the maximum values from figure 1 over
multiple windows. (A) is the cross-correlation method and (B) is
the fingerprinting method. Red is for recordings from different en-
vironments and blue is for recordings from the same environment.
For both methods the two classes are clearly distinguishable, and
a threshold could be found by inspection of the graph.

do not contain the same number of samples in the training
set, and this does not reflect a ‘prior’, it is important to nor-
malize the classification error during training. Otherwise
skewed results will be obtained. In this case it is straightfor-
ward, the number of false negatives and false positives are
simply divided by the appropriate sample sizes before being
added together to compute the classification error rate.

3.1. A combined approach

The two methods reviewed in the previous section differ in
the resolution of the delay and in scalability with increas-
ing number of sources. The experiments will show that the
two methods perform comparably in classification and this
would point to recommending cross correlation because of
the increased resolution. However, when comparing record-
ings one-on-one, the number of comparisons will always in-
crease quadratically with the number of recordings. This is
the situation for both methods, but the complexity of the
comparisons differ. The cross correlation has all the com-
plexity in the comparison stage and is therefore severely
hurt for many recordings. The fingerprinting method pre-
processes the data to make the comparisons relatively light.
The preprocessing is heavier than for the cross-correlation,
but the preprocessing only scales linearly with the num-
ber of recordings and therefore, for increasing number of
recordings the fingerprinting method will perform signifi-
cantly faster. This is illustrated in fig. 5.

To use this timing advantage a combination is proposed,
working in two stages. In the first stage the fingerprinting
method is used to make a coarse classification. In the second
stage the cross correlation is used only on the recordings
that were classified as coming from the same environment
in the first stage. The results from the cross correlation are
used both to check the classification and the increased delay
resolution is used to precision synchronize the recordings.
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Fig. 5. The time consumption of the different proposed algo-
rithms. Time ratio means the time it takes to process one unit
of time - 1 means that processing time equals the duration of the
recordings. A quadratic increase can be observed for cross cor-
relation and a linear increase for the fingerprinting method. The
proposed combination results in time consumption in between the
two.

3.2. Joint classification of multiple recordings

In the previous section, classification was done based on
pairwise comparison. This could result in source 1 and 2
being similar, source 2 and 3 being similar, but source 1 and
3 being dissimilar. How do we interpret this result? We need
to group the sources consistently and we will not allow over-
lapping clusters. First the similarity measures are set up in a
similarity matrix containing all the two by two comparisons.
In this matrix we need to cluster the recordings resulting in
a block diagonal similarity matrix (or a permutation of one).

A block diagonal form will be obtained by a greedy pro-
cedure similar to Ward’s agglomerative clustering [12]. Be-
cause the similarity matrix is symmetric only the upper tri-
angle of the matrix is considered. First, we locate the maxi-
mum similarity and the two involved recordings are grouped
together. This cluster will not be split again and therefore
the mean of similarities of the two recordings to the remain-
ing recordings are calculated and entered in the similarity
matrix. Then the next maximum is found, and connected ei-
ther to the existing group or to another single source thereby
creating a new cluster. This procedure is continued until a
threshold is reached. This threshold will be trained using
line search, and the same normalized classification error rate
measure from before. A simple example is shown in table
1.

Common time reference. Hitherto we have concen-
trated on quantifying the similarity of recordings. The fo-
cus of this part will be on the timing of already classified
recordings. When the recordings have been classified they
can be used in other algorithms such as ICA, but many of
these algorithms work better the smaller the delays between

[
0 7 2 4
7 0 6 4
2 6 0 8
4 4 8 0

]
→

[
0 7 3 3
7 0 5 5
3 5 0 0
3 5 0 0

]
→

[
0 0 4 4
0 0 4 4
4 4 0 0
4 4 0 0

]

Table 1. Block diagonal classification. 8 is the maximum and
recording three and four are clustered together, and the mean of
the similarities to other recordings are calculated. Next, 7 is the
maximum and recording one and two are clustered. For a threshold
larger than four the clustering ends here, otherwise a final step will
join the two clusters.

the recordings are. For each pairwise comparison the de-
lay is found, but these do not necessarily match each other.
Therefore the first recording will be selected as the basis
and the delays to the remaining recordings will be found.
If more than two recordings exist there will be more lags
than there are recordings. For example for four recordings
there is three delays to be found while six lags have been
measured. In the present experiments we use a simple least
squares fit to estimate the minimal delay mismatch configu-
ration.

4. EXPERIMENTS

The AMI corpus [9] is a large collection of multimodal
meeting recordings including multiple audio recordings with
different microphone configurations including microphones
attached to individuals (lapel microphones). Two meetings
have been used for training and two for testing. Each meet-
ing has four participants and the recordings are from the
lapel microphone, so four channels are available from each
meeting. Two meetings are used together to make eight
channels from two different settings.

The data is framed in 30 second frames, which are over-
lapping by 20 seconds. The training set was a little more
than two hours long, giving 786 frames. The test set was 87
minutes long giving 524 frames. The recordings are down-
sampled to 8 kHz, and the range of possible delays is set to
10s.

For the fingerprinting method the spectrogram is divided
into smaller parts as explained previously. The frequency
axis is divided in two and the time axis is divided into 1 s
long windows (30 windows). In each part k = 10 landmarks
are found, and a total of k(k−1)/2·2·30 = 2700 landmarks
are generated per frame. The spectrogram is computed with
256 samples and 195 samples overlap, so that each part used
for the landmarks becomes 64× 127, and the three parts of
the hash are discretized to b = 6 bit each.

To simulate less ideal situations, e.g., poor microphones
or recording devices, uncorrelated gaussian noise was added
in different signal-to-noise ratios (SNR). The SNR is calcu-
lated within each 30 s window.
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Fig. 6. (A) Line search for threshold for fingerprinting method.
(B) Grid search for threshold for the combined approach. In both
plots the minimum is marked with ‘+’. In the combined approach
the cross correlation threshold is moved from just below 0.01 when
only cross correlation is used to arout 0.05 in the combined case,
whereas the fingerprint threshold moved from a value of 7 to 6.

Training was done using line search and grid search for
the combined approach. In fig. 6 an example of such train-
ing can be seen. It can be seen that besides the computa-
tional advantage, an additional small reduction of the train-
ing error can be gained, since the minimum exploits the
combined model space. The cross correlation threshold is
driven closer to zero, whereas the fingerprint threshold only
moves slightly, compared to the case when only one of the
measures is used.

4.1. Results

Obviously the classification performance is important, but
because of the extensive data sets resulting from Lifelogs
execution time is also a concern.

Results are shown in fig. 7 (A). For low noise condi-
tions, the fingerprinting algorithm provides the best perfor-
mance of the two algorithms with a test error rate below
0.01. The method takes a significant hit in performance for
additive noise and ends up around 0.05 in test error rate.
Cross correlation works significantly worse with a test error
rate close to 0.02 which is around twice as much as the fin-
gerprint method. The algorithm is however quite insensitive
to noise due the robustness against addition of uncorrelated
gaussian noise.

If the method is used as a preprocessing step before ICA
or similar evaluations, we are interested in clustering the
recordings, and a block diagonal classification is relevant.
The results in this setting is shown in figure 7 (B). Similar
trends are found, but the fingerprinting is lot less sensitive
to noise in this case. In both figures the combined approach
is plotted as well. For training we expect that it performs
better than the other two basic methods. We see that the
performance also translates to an improved test error. This
means that the good performance in low noise conditions of
the fingerprinting procedure and the good performance of
cross correlation in relatively high noise settings both can

Inf 50 40 30 20 10 0
0

0.01

0.02

0.03

0.04

0.05

SNR

C
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

ra
te

 

 
FP train

FP test

XC train

XC test

CA train

CA test

(A)

Inf 50 40 30 20 10 0
0

0.01

0.02

0.03

0.04

0.05

SNR

C
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

ra
te

 

 
FP train

FP test

XC train

XC test

CA train

CA test

(B)

Fig. 7. Comparison of the two methods. SNR controlled by
adding gaussian white noise. (A) is one by one classification.
Fingerprinting takes a big hit for increasing noise, but is best in
low noise. The combined approach outperforms both. (B) Forced
block diagonal structure. Again the combined approach is best,
except for one point (20 db).

be achieved in the combined approach.
In figure 5 the time complexities of the algorithms are

shown. The cross correlation scheme shows a quadratic
growth in time, but the fingerprinting method shows close
to linear growth. The reason for this is, that most of the pro-
cessing time of the fingerprinting method lies in the com-
putation of the fingerprints, whereas the actual comparisons
are very fast because of the hashing structure and the severely
reduced data size. In the present case, the reduced size is
actually the only explanation, since a proper index structure
was not used to facilitate the efficient search. The number
of fingerprint computations only increases linearly with the
number of sources, hence the linear increase in computa-
tional time. The combined approach uses this fact, since the
fingerprinting is done full the combined approach uses more
time than fingerprinting alone, but is significantly faster than
cross correlation.

4.2. Real experiment

As a final experiment, recordings were done of routine of-
fice work, and the combined approach was used to synchro-
nize them. Two PDAs, one placed on the lapel of a student
and another placed in the office, recorded about 90 min-
utes of audio. Some of the elapsed time was spend working
in the office (same environment), and the rest of the time
consisted of a meeting outside of the office (different envi-
ronments). The results are shown in figure 8. The decision
thresholds from the training session were used. As is evi-
dent in the figure, the system is able to classify whether two
recordings are from the same environment. The error rate
is 0.017 which is very similar to the found test errors. All
errors are in the ‘same environment’ states.

Manual inspection of the found lags was performed as
well, but the ground truth is not available, so a performance
value is not available. The third plot shows the reported lags
and as can be seen they are quite constant indicating that the
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Fig. 8. The combined approach is used to synchronize two record-
ings. The top figure shows the manually tagged labels, and the sec-
ond shows the estimated labels. Accurate classification is achieved
with an error rate of 0.017. Four errors are found in the beginning
of the recording (A) because of handling noise in one recording
when attaching the microphone to the lapel. Remaining errors are
single points scattered randomly in parts from ‘different environ-
ments’ (B). The third plot shows the estimated delays. A peak is
seen in the lags (C) which could be a case of a side peak (cf. figure
2). A decreasing trend is observed indicating that the sample fre-
quencies do not exactly match for the two recording devices, viz.
2.7µs

s
is lost. The used pda’s had their clocks synchronized just

before starting the experiment and still a delay of 0.4s is found.
Such delays would have a severe impact on, e.g., a convolutive
ICA algorithm further substantiating the need for synchronization.

‘true lag’ is found. An interesting trend can be observed i.e.
the lag changes slightly over time. The reason for this is
probably that the clocks in the two devices are not accu-
rate and therefore the sampling rates are slightly different
between the two recordings causing a drift.

5. CONCLUSION

In this paper the first steps toward the analysis of multiple
Lifelog audio recordings were taken. The steps included
clustering recordings into joint environments followed by
a synchronization step of recordings within a given audio
event group. Two approaches were investigated, showing
similar classification performance, but having different ad-
vantages. Cross-correlation has sample precision in the found
delays and thus can give more accurate synchronization.
The fingerprinting method scales much better with the num-
ber of recordings. The time complexity is likely to be a
serious challenge for real world applications. A joint ap-
proach of the two methods was implemented and obtained
both the accurate sample resolution and an increased execu-

tion speed.
Using the method suggested here the subsequent ICA

blind separation problem could be limited to two four-source
recordings, instead of one eight-source recordings. For con-
volutive ICA the shorter the convolutive filters are, the faster
and better results are typically obtained. By synchronizing
the recordings prior to solving the problem, the filters are
limited to only capture the inherent delay from the different
distances between microphones and sources. This greatly
shortens the length of the filter, from potentially 5− 10 s to
below 1 s.

An experiment was performed in a real setting and showed
that it is indeed possible to detect audio environment simi-
larities and to synchronize the recordings.
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