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Estimation of Pulses in Ultrasound B-Scan Images 
Jdrgen Arendt Jensen 

Abstract-It is shown, based on an expression for the received 
Pressure field in Pulsed medical ultrasound systems, that a 
common one-dimensional pulse can be estimated from individ- 
ual A-lines. An ARMA model is suggested for the pulse, and an 
estimator based on the prediction error method is derived. The 
estimator is used on a segment of an A-line assuming that the 
pulse does not change significantly inside the segment. Several 
examples of use of the estimator on synthetic data and data 
from a tissue phantom and in vitro data measured from a calf’s 
liver are given. They show that a pulse can be estimated, even 
at moderate signal-to-noise ratios. 

tation and E,(t) the impulse response when receiving. h 
is the spatial impulse response for the transducer geome- 

by the T’pholme-Stepanishen method f31- 
[SI. Equation (1) was derived under the assumption of 
weak scattering due to density and propagation velocity 
perturbations in the tissue, and absorption and multiple 
scattering were neglected. 

a homogeneous absorption and we are in 
the far field then the absorption A( t ,  - T5)) can be 
lumped into upe to yield an attenuated pulse 

If we 

I. INTRODUCTION 
ECENTLY it has been shown that the backscattered R pressure field in medical ultrasound B-scan images 

can be described by the equation [l], [ 2 ]  

p r ( F 5 ,  t )  = u p e ( t )  * f m ( i l )  h p e ( T , ,  75, t )  (1) 

where * denotes a temporal and * a spatial convolution. 

up“ is the pulse-echo wavelet that accounts for the trans- 
ducer excitation and the electromechanical impulse re- 
sponse during emission and reception of the pulse. f, ac- 
counts for inhomogeneities in the tissue due to density 
and propagation velocity perturbations, which give rise to 
the scattered signal. hpe is the modified pulse-echo spatial 
impulse response that relates the transducer geometry to 
the spatial extent of the scattered field. Explicitly written, 
these terms are 

f r 

(3) 

TI denotes the position of the scatterer and is the position 
of the transducer. co is the propagation velocity, po the 
mean density, and Aco, A p  the corresponding perturba- 
tions in the scattering region. u ( t )  is the transducer exci- 

Manuscript received April 2, 1990; revised November 23, 1990. This 
work was supported in part by the Danish Technical Research Council un- 
der Grant 16-4218.E, by the Briiel and K j m  AIS, Novo’s Foundation, the 
H.C. 0rsteds Foundation. and by Trane’s Foundation. 

The author is with the Electronics Institute. Technical University of 
Denmark, Lyngby, Denmark. 

IEEE Log Number 9143326. 

that is a function of time and distance. 
The attenuated pulse is convolved onto all reflections, 

and being the common pulse in all Alines, it can thus be 
estimated from just one A-line. The change in this pulse 
is also the reason for the different appearances of the 
B-scan images of different humans, as attenuation in up- 
per tissue layers changes the pulse that impinges on deeper 
tissue structures. 

A first step in making B-scan images with a uniform 
appearance, by compensating for attenuation, is to esti- 
mate the attenuated pulse in vivo. This paper describes 
how to estimate pulses to do this. 

Estimation of parameterized pulses from ultrasound 
A-lines has been investigated by a number of authors. 
Towfig et al. [6] used an AR-pulse to discriminate be- 
tween different tissue types and Kuc and Li [7] used a 
reduced order AR-model to estimate the center frequency 
of the pulse spectrum. A model for the attenuation can 
also be fitted by an AR-model as was done by Shih et al. 
[SI. They also gave a recursive estimator for finding the 
attenuation. Other parametric models for the attenuation 
can be given and its parameters estimated as, e.g., in [9]. 

In this work we will extend the estimation procedure to 
handle autoregressive moving average (ARMA) models, 
and we will concentrate on just the estimation of the basic 
pulse as described above. The parameters can then enter 
into different other algorithms, e.g., deconvolution [lo], 
[ 2 ] ,  attenuation estimation, or reconstruction of the whole 
pressure field via (1). 

The paper proceeds along the following lines. The next 
section introduces a model for the pulse and describes the 
general method for estimating the pulse. Section I11 de- 
rives the algorithm and explains how to initialize it. Sev- 
eral examples of its use on both synthetic, phantom, and 
in vitro data from a calf’s liver are given in Section IV. 
The paper is concluded in Section V. 
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11. PULSE ESTIMATION 
A model for the pulse must be chosen before the esti- 

mation algorithm can be derived. Several models exist, 
and can be used [l  I ] .  We choose here to use the ARMA 
model, as it offers considerable flexibility in describing 
the pulse and as parameter estimators are readily found. 
It is given by 

(6) A(q)  Y ( k )  = C(q)  44 
where 

A(q) = 1 + a1q-l + a2q-2 + * - * + an,,q-’“’ (7) 

C(q)  = 1 + c1q-l + c2qP2 + . * * + ~ , , q - ~ ‘  (8) 

y ( k )  is the measured output signal and e(k)  is the tissue 
“reflection” signal. A ( q )  is the autoregressive polyno- 
mial of order n, and C(q)  the moving average polynomial 
of order n,. We shall refer to this as an ARMA (na, n,) 
model. 

We will, for later use, write the model in a different 
form. The parameters to be estimated (al . ancz and cI 
* - - c,J, are collected in a column vector 0 of order n, 
+ n,. The different input and output values are organized 
in a vector p(k)  so that 

(9) 

(10) 

y ( k )  = P T W O  + 4 k )  

pT(k) = [ - y ( k  - l), - y ( k  - 2 ) ,  * * 

eT = [a, ,  a2, * * . > ano, C l ,  c2, * * * 9 Cn(1  

, 
- y ( k  - n,), e(k - l), . - , e(k - nc)].  

(1 1) 

0 is the unknown parameter vector to be estimated, and 
cp ( k )  is the regression vector at time k .  

This model assumes the parameters to be time indepen- 
dent corresponding to independence of the distance to the 
transducer. This is not correct according to ( 5 ) ,  as the 
pulse is slowly changing, and thus a new a set of param- 
eters should be estimated for each time instance. We, 
however, use only a small segment of an A-line in the 
estimation, where the pulse can be considered stationary. 

A .  Prediction Error Methods 
To find which model is the “best” in the set of models 

we must be able to assess the quality of the different 
models. 

Ultimately the model describes the observed signal 
y ( k ) ,  so one method is to evaluate the prediction capabil- 
ity of the model. That is to say: if all data up to time k - 
1 are known, what output will the model then predict at 
time k ,  g ( k l 0 ) ?  

For the ARMA-model we have 

A(q)  y ( k )  = C(q) 4 k )  

$ y ( k )  = [1 - A(q)ly(k) (12) 

+ [C(q)  - l l e ( k )  + e @ ) .  

Note that the output at time k is written here as a funktion 
of the previous input and output plus the current input 
e @ ) .  As we only have the observation y ( k )  and estimates 
of the previous input, the best prediction is 

9(k]e> = [ I  - A(q)ly(k) + [C(q)  - l ] & ( k ,  0) (13) 

if the mean value of e ( k )  is zero 
Note here that 

j ( k ( 8 )  = &k)e. (14) 

If our model and our estimates of @(k, 0) are correct, then 

(15) 
The purpose of the parameter estimation is then to mini- 
mize the prcdiction error. A measure of the magnitude of 
the prediction error is [ 1 I ]  

y ( k )  - j ( k p )  = ~ ( k ,  e). 

(16) 

where 6: (. ) is a scalar-valued positive function and N the 
number of samples in the segment used for the pulse es- 
timation. 2 ( N )  denotes the set of all observations, { y ( I ) ,  

For this parameter estimation we choose 6: ( . )  to be the 
quadratic norm, as this is convenient from a computa- 
tional point of view. Then (16) becomes 

1 ‘N v,(e, z ( N ) )  = - C b:(;(k, 0)) 
N I = 1  

y ( 2 ) ,  . * * 7 y ( N ) l .  

I N 1  
V N ( O ,  Z ( N ) )  = - C - &(k, 0) &(k, 0). 

N I = I  2 (17) 

The parameter estimate then is 

6, = Arg min V N ( O ,  Z ( N ) ) .  (18) 
8 E LAW 

This means that 0, is the minimizing argument of the 
function V , ( 0 ,  Z ( N ) )  under the constraint that the pa- 
rameters belong to the set of stable models DM (poles in- 
side the unit circle). 

This parameter estimation method is called the predic- 
tion error method (PEM) [ 1 11, [ 141. The prediction error 
estimation is a maximum likelihood estimator, if the re- 
flection sequence/prediction error is Gaussian [ 141. Max- 
imum likelihood estimators have the following properties. 

The estimates are consistent, so the estimated parame- 
ters tend to the true parameters with probability one, as N 
(the number of samples) tends to infinity [I  I ] .  

For the estimator to be consistent the system must be 
stable, the estimated model must belong to the set of true 
models, and the data should be informative enough. The 
last demand is essentially that the input e(k) is “persis- 
tently exciting” of order n ,  when we estimate a model of 
order n.  This means that the spectrum of e (k ) ,  @ € ( U )  must 
differ from zero at more than n points. If 

(19) @ € ( U )  > 0 VU 

then we call e(k)  persistently exciting. This is the case for 
white noise [ I  I]. 
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The ML-estimator is invariant. This means that 
A 
f ( e )  = f (6) (20) 

which is a consistent estimate of f ( Q ) .  Thus, the pulse 
parameters estimated by the algorithm can 'be used in or- 
der ML-algorithms, e.g., attenuation estimation, decon- 
volution, etc. 

These properties are fulfilled when the correct model is 
used, and the reflection sequence is white and Gaussian 
as is the case for a speckle signal [15]. 

Apart from these two properties it can be shown that 
the estimate is asymptoticlaly efficient. Thus, the variance 
of the estimate approaches the CramCr-Rao lower bound 
when N tends to infinity. This is the minimum possible 
value, so for N large the ML-estimator is the best possible 
estimator. 

Ill. OFF-LINE PARAMETER ESTIMATION 
Our task is to estimate the parameters for the ARMA 

model of the wavelet. This is a nonlinear optimization 
problem as e(k) is unknown and cannot be solved in one 
step. We therefore turn to an iterative search scheme, 
where the parameters are calculated by 

(21) ($+I) = 6:) + ( 

The parameters are updated for each iteration by adding 
a search gradient vector, g N .  The iteration number is in- 
dicated by i. 

A widely used algorithm is the Gauss-Newton algo- 
rithm. Here the search gradient is 

V $ ) ( e ,  2 ( N ) )  is the derivative of the criterion with re- 
spect to the parameters. V"(i)(O,  2 ( N ) )  is the second de- 
rivative w.r.t. the parameters, and is also called the Hes- 
sian matrix. 

If we have a model in which the output is linearly re- 
lated to the parameters and a quadratic criterion, then (22) 
will, in one step, lead to the minimum. This is not the 
case here, but the algorithm leads to the minimum in few 
steps, when 8 is close to the minimum 1111. 

The step size, a in (21), is chosen to 

V:+ "(0:+ ", 2 ( N ) )  c V;'(6:), 2 ( N ) ) .  ( 2 3 )  

Initially CY is chosen to be 1 and is reduced by a factor of 
2 until (23) is fulfilled or CY has been bisected ten times. 
The algorithm is also stopped when the norm of the gra- 
dient search vector falls below a prescribed lower limit. 

A .  Calculation of Gradients 

gradient of the criterion w.r.t. the parameters. 
To find the search gradient g N ,  we have to calculate the 

The gradient is [ l  I] 

IEEE TRANSACTlONS ON MEDICAL IMAGING, VOL. IO. NO. 2. JUNE 1991 

(29) 

Comparing to the entries of cp ( k )  in (1 1) we find that (28) 
and (29) can be written 

C(q) +(k  e) = cP(k) 

c (4) 

It 1 (30) 
+k e> = - cp(k). 

So the gradient is calculated by filtering the regression 
matrix ~ ( k )  through the filter l /C(q) .  

B. Calculation of the Pseudo-Hessian 
The Hessian matrix is 

We choose here to calculate an approximation to the Hes- 
sian, whereby the second term in (31) is neglected. If 8 
is close to the true value, then C(k, e) is nearly white 
noise and consequently the term is close to zero. Far away 
from the minimum, when the function values between the 
current value and the minimum cannot be well approxi- 
mated by a quadratic function, the effect of the Hessian 
is not so important [ 111. 
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So in the algorithm used, the pseudo-Hessian is defined 
by 

l N  we,  Z ( N N  = NkFl U ( k ,  e) $ ( k ,  e). (32) 

C .  Initialization 
The convergence rate of the algorithm depends on the 

initial parameter values and the choice of CY. When the 
algorithm is started, some initial values must be chosen. 
One method is to use a least-squares estimate of 8 and 
e (k ) .  This can be done by the following algorithm. 

Initially consider the ARMA-model 

A d d  Y ( k )  = C , ( d  (33) 

where e(k)  is white, and A I ,  CI are polynomials as defined 
in (7) and (8). The order of A I  is set to nu + n,, and the 
order of C I  is set to zero, so 

Y(k) = 11 - A , ( q ) l y ( k )  + 44. (34) 

The parameters of A I  are arranged in a column vector, 
eLSl, of order nu + nc, and the corresponding output val- 
ues in a vector pl, so (34) can be written 

~ ( k )  = c ~ T ( k ) e L ~ ~  + e@).  

@, Q L S J  = Y(k)  - P ( k I ~ L S 1 )  = Y ( 4  - cPTWLl. 

(35) 

The prediction error is 

(36) 

Our purpose is then to minimize the variance of the pre- 
diction error, which is 

~ N ( ~ L S I  z ( N ) )  

l N  
= - c - cPT(k)eLsl>T(.Y(k) - c P T W e L S I ) .  N k = l  

(37) 

As this is a quadratic function of the parameters, the so- 
lution is given by the least-squares estimate 

This can easily be found from (37) by differentiating w.r.t. 
€ILs1 and setting the result equal to zero. 

From this model we can estimate e(k)  by 

w, Q L S I )  = Y ( k )  - cPT(k)GLSI. (39) 

Then a new model is constructed in which 

Y(k) = 11 - A,(q)l.YW + IC2(q) - lIW, OLSI)  

+ W G  QLSI)  

= c P W e L S 2  + E(k, %SI). (40) 

This is an ARX model (autoregressive with external in- 
put), where E(k, eLSI) is the external input. 

The order of A2 and C2 are n, and n,. OLS2 is arranged 
in the same fashion as (10). The parameters can then be 

167 

calculated by using (38), which results in initial estimates 
for 0 and e(k)  for the iterative search scheme. 

D. The Complete Off-Line Algorithm 
For easy reference we now give the full algorithm. 

Fit an AR-model of order n, + n, to the data 
Model: A l ( q )  y ( k )  = e (k )  

N 

Pl(W Y ( 4 .  L =  I 

Calculate the initial estimate of the prediction error 

2% Q L S I )  = Y ( k )  - cPT(k)bLSI 

fork = 1 to N .  

Make a least-squares fit to an ARX-model of order 
n, and nc,, where the external input is P(k, eLSI) 
Model: Y (4 = CAq) 4) 

-I  
1 e,,, = [ N k = l  P2(@ cP2k)]  

N 

* C c P 2 W  Y ( 4 .  
k =  I 

This gives the initial parameter estimate for 8 and 
the prediction error. 
Initialize the iterative algorithm 

P(k, e) = P(k,  eLS,) for k = 1 to N 

e;' = eLs2 

Perform the iterative algorithm 
Calculate the gradient 

1 
$(k  e> = - cP(4 

C(q)  
I N  v:')(e, z ( N ) )  = $T(k ,  e) ~ ( k ,  e). 

Calculate the pseudo-Hessian 

l N  v;(')(e, z ( N ) )  = - N L = I  C ~ ~ ( k ,  e) + ( k ,  e) 
01 = 1. 

Update the parameter vector 

e;+1i = e;,) + a[y;'"(e, z ( N ) ) ] - l  

. v:')(e, z ( N ) ) .  

Check the stability of the model: 

Zeros and poles are mirrored into the unit circle. 
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(e) Calculate the new prediction error that is included in the set of possible models DM, when N 
(the number of samples) tends to infinity. The measure of 
goodness is the prediction error variance, so formally the 
convergence result is stated as 

t ( k ,  e) = y ( k )  - &t)e;+I) 
fork  = 1 to N 

6, = Arg min [ - P(k) P(k) 
Q E D M  N k = l  2 

w.p. 1 as N + 00. (43) If v;+ I )  < V k )  then go to (a) else a = a / 2  and 
go to (c) with the new a until tried ten times. If 
))[p-;(;)(e, z ( N I ) ] -  I p-i;)(e, z ( N ) ) ) )  < A then 
stop. A typical value of A is 0.01. 

For a derivation of this and a further explanation see [ 111 
and [13]. 

This is the complete off-line algorithm for estimating 
the wavelet U,,,,. 

E. Convergence Properties 
The convergence of maximum !ikelihood ARMA esti- 

mators has been investigated by Astrom and Soderstrom 
[ 121. They showed that a global minimum exits provided 
that 

f i ,  1 n, A fi, L n, (41) 

F. Variance of the Estimated Parameters 
We have now found that 6, converges to the best pos- 

sible parameters in the set DM. But we would also like to 
characterize how 6, approaches this model e*, and what 
the uncertainty of the parameters is. This can be assessed 
by the parameter variance. We will not derive the expres- 
sion for the covariance, but merely state the result. 

An estimate of the asymptotical covariance of the pa- 
rameters found by the prediction-error method is 

where nu and n, are the true orders of the polynomials and 
vi,, vi,. the actual ones used. This is under the assumption 
of no noise in the measured signal and infinitely many N k = l  

data samples. 
The influence of using a small number of samples and 

added noise n(k) has not, to our knowledge, been ana- 
lyzed analytically in the literature. We are therefore forced 
to resort to simulations. Ours has indicated that local min- 
ima do exist, but that they for signal-to-noise ratio’s above 
20 to 30 are close to the global minimum. Therefore, it is 
generally advisable, if possible, to start the iterative search 
algorithm [step 5 ) ]  as close to possible to the true param- 
eters. So the parameters found by steps 1) to 3) should 
preferably be substituted by good a priori knowledge. 
How to obtain such knowledge is also explained in Sec- 
tion IV-B. 

The disadvantage of using the ARMA model is that the 
noise in the measured signal is neglected. If noise is pre- 
sent, then the parameters estimated for this model are 
biased. But if we can write 

A(q)  Y (4 = C(q)  e(k) + A(q) n(k) (42) 

l N  
A, = kz, &(k, 6,) P(k, e,). (45) 

A derivation and further explanation of the result can be 
found in [ 113. 

Note here that the covariance estimate can easily be 
calculated from variables used in the algorithm; the sec- 
ond term in (44) is the inverse pseudo-Hessian matrix. 

For N tending to infinity, PeN will approach the Cra- 
mCr-Rao bound, so the estimate has the best possible 
asymptotic properties one can hope for [ 111. 

IV. ESTIMATION EXAMPLES 
The first step in assessing the performance of the al- 

gorithm is to choose a suitable model order. Several ex- 
periments made by Jensen [2] have revealed that an 
ARMA (6, 6) wavelet can adequately fit measured ultra- 
sound pulses for different transducers. Thus we choose to 
use this model. 

Before estimating wavelets from data sampled from a 
phantom or tissue we want to get an indication of the per- 

This is done by estimating the wavelet from simulated 

where n(k)  is white noise, then unbiased parameters will 
result. The bias depends on the signal-to-noise ratio 

clear from the examples, the SNR observed in medical 

estimation. 
The approximation of using the ARMA model rather 

than a more general model, that accounts for the noise, is 
fair, if the signal-to-noise ratio is sufficiently “large,” 

possible way” approximates the true model. It can be 

(SNR). A “large” SNR in a low bias. As be formance ofthe algorithm under various noise conditions. 

is high to a good parameter data where the pulse shape is known exactly together with 
the signal-to-noise ratio (SNR). 

A.  Wavelet Estimation from Simulated Data 

d-~own in Fig. 1 (-). The ARMA coefficients are 
and if our algorithm estimates a model that “ in  the best For this use we have the following sixth-order pulse 

shown under weak conditions (which are fulfilled here) 
that the estimate from the prediction-error method con- 

A(q) = l~oooo - 2.3249q-~ + 1.5900q-z + 1.0265q-3 

verges to the best possible approximation of the model - 2.2165q-4 + 1.3192q-5 - 0.2665q-6 
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Snln ple ,I l i  nrber Sample number  

Fig. 1. Estimated and true wavelet (-), for SNR = 20 (---),  and for 
SNR = 4 (. . .). 

Fig. 2 .  Wavelets estimated from 50 different realizations of the input and 
noise signals. SNR = 20. 

C(q)  = 1.0000 - 0.4505q-I - 0.7837q-2 + 0.0889f3 1 5  

- O.3531qp4 - 0.3869q-’ + 0.1731q?. (46) I 

This wavelet is convoluted with a zero mean, white, 
Gaussian signal and then white, Gaussian noise with zero 
mean is added. The signal-to-noise ratio is defined as 

0 

SNR = Jg (47) -05 

where y is the filtered signal and n the noise. E [ . 2 ]  is the 
covariance. 

- I  

The first example shows the estimated (- - - -) and true 0 I O  SO 30 40 50 60 7 0  80 

wavelet (-) in Fig. 1, when SNR = 20 and the line 
contains ’0° The ’‘lid line is the estimated wav- 

Sample number  

Fig. 3 Mean of the wavelets from Fig. 2 ,  with limits equal to three 
elet, the dashed line is the true wavelet. The estimated 
wavelet closely resembles the true wavelet. 

The estimated parameters and their standard deviations 
are 

standard deviations Solid line I S  the mean of the estimated wavelets 

The mean and variance were calculated by 

a(q)  = 1.OOO - 2.1022q-I + 1.1175f2 + 1.27O7qp3 

0 0.1564 0.3448 0.2069 

- 1.9286f4 + 0.9172f’ - 0.1137q-6 

0.2592 0.3094 0.1107 

e ( q )  = 1.000 - 0.7478q-I - 0.5027q-2 + 0.4022q-3 

0 0.1669 0.1563 0.1289 

- 0.5254qp4 + 0.3912qp’ + 0.0747qP6 

0.1024 0.0845 0.0931. 

(48) 

It is seen that the estimated parameters equal the true 
within two standard deviations. 

To give an indication of the variations due to different 
input and noise signals, 50 different wavelets have been 
estimated. The result is shown in Fig. 2, and the mean of 
the wavelets three standard deviations are shown in Fig. 
3. 

, N,. 
- 
V(k) = L- N ,  ! = I  c Vi@) (49) 

C ( V , ( k )  - V(k))*. (50) 
I 

d ( k )  = ~ 

Nu. - 1 I = I  

N ,  is the number of wavelets and Vi is the ith wavelet. 
Although variations exist, the algorithm always esti- 

mates the first two oscillations with a very low standard 
deviation. The tail of the pulse is more difficult to esti- 
mate, and the standard deviation increases. As seen from 
Fig. 3 ,  the mean of the estimated wavelets is a very close 
approximation to the true pulse, thus the bias is low even 
at a fairly moderate signal-to-noise ratio of 20. 

However, as mentioned in Section 111-E, biased esti- 
mates will result when SNR is “low.” This is demon- 
strated in Fig. 1, where the dotted line shows a pulse es- 
timated for SNR equal to 4. 

As seen in Fig. 1, the estimated wavelet still approxi- 
mates the true wavelet especially for the first significant 
oscillations. It should be noted that this signal-to-noise 

I , ’  , 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 09:05 from IEEE Xplore.  Restrictions apply. 



~ 

170 

ratio is so low that the resulting image would be of very 
limited clinical value. 

If we only consider data where the quantization noise 
will dominate and assume the input signal is a sinusoid, 
then for an 8 bit converter SNR is [16] 

2 7 ~  

which is quite adequate, even when the full dynamic range 
of the converter is not used. 

B. Wavelets Estimated from Data Measured from a 
Tissue Phantom 

I )  Measurement Setup: A Briiel Kjzer 8529 transducer 
with a nominal frequency of 3.5 MHz was used. The 
transducer is concave with a focal radius of 150 mm and 
is nonapodized. The radius of the element is 8.1 mm. 

The phantom scanned was fabricated by Nuclear As- 
sociates (multipurpose tissue/cyst phantom, model 
84-3 17) and contains a substrate which generates a typical 
backscattered speckle signal. The data were acquired from 
a region of the phantom by performing a linear scan on 
the surface. The transducer was moved by an automatic 
mechanical system, which has a resolution of 0.01 mm 
[17]. Data were acquired by a LeCroy 9400 sampling os- 
cilloscope. To enhance the signal-to-noise ratio, an av- 
eraging over 10 pulse-echo lines, measured at the same 
position, was performed. The distance between each 
pulse-echo line is 0.4 mm, and 50 lines were acquired. 
The distance to the first sample is approximately 9 cm and 
10.5 cm to the last sample. The sampling frequency was 
25 MHz and 500 samples were acquired. 

2) Estimated Wavelets: The mean of the wavelets 
found by the algorithm along with f three times the es- 
timated standard deviation is shown in Fig. 4. 

A nonattenuated pulse was measured from a plane re- 
flector placed 200 mm from the transducer. A comparison 
can then be carried out by attenuating this pulse and com- 
paring it to the estimated pulses. Unfortunately no data 
are given for the attenuation in the phantom. Using 0.5 
dB/[MHz cm] and a distance of 9.75 cm, we get the 
calculated wavelet also shown in Fig. 4. 

Fig. 4 shows that the mean estimated pulse closely ap- 
proximates the predicted pulse. The most difficult part to 
model is the tail of the pulse, which is also seen to deviate 
most from the predicted pulse. Also the standard devia- 
tion increases at the tail. 

When estimating these pulses no a priori information 
was used. It is quite reasonable to include knowledge 
measured or estimated previously and use it as a starting 
point for the wavelet estimation. This has been done in 
the next experiment. An estimated (shown in Fig. 5) 
wavelet from the preceding experiment, which approxi- 
mated the predicted pulse closely, was chosen as the start- 
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Fig. 4. Mean of estimated wavelets (solid line) from phantom three 
times the standard deviation and the calculated pulse (dashed line). 
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Fig. 5 .  Wavelet used to initialize the estimator 
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Fig. 6 .  Mean of the estimated wavelets and predicted wavelet for phantom 
when initialized with the wavelet in Fig. 5 .  

ing point. Steps 1) to 4) of the algorithm in Section I11 
were then bypassed. 

The mean of the estimated wavelets together with the 
predicted wavelet are shown in Fig. 6 .  Comparing Fig. 6 
to Fig. 4, we see a slight decrease in standard deviation 
and especially a better prediction of the tail of the pulse. 
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Fig. 7 .  Mean of estimated wavelets for calf liver in vitro f three standard 
deviations and predicted wavelet. Solid line is the mean wavelet. 

Fig. 8. Mean and predicted wavelet for in 13irro liver when initialized. 

the attenuation assumed is uncertain, making the compar- 
ison in Figs. 7 and 8 difficult. C.  Wavelets Estimated from Data Measured from a 

Calf’s Liver 
V. SUMMARY 

1)  Measurement Setup: The data used in this section 
were measured from a calf’s liver submerged in a water 
bath with a size of 850 x 430 x 500 mm (length x height 
X width). The liver had been frozen for 5 days and was 
thawed in a refrigerator for 24 h. After this it was kept in 
a plastic bag with water and massaged to remove air bub- 
bles. The distance between the liver and the transducer 
was approximately 6 cm when submerged in the water 
bath. 

Data were taken by performing a linear scan, moving 
the transducer by the automatic mechanical system. 500 
samples were acquired at a sampling frequency of 25 
MHz. The first sample was taken at 9 cm, the last at 10.5 
cm from the transducer. The LeCroy 9400 digital sam- 
pling oscilloscope was used for the acquisition, and each 
line is the average of 10 lines taken at the same position. 
50 pulse-echo lines were acquired. The distance between 
the lines is 0.2 mm. 

2)  Estimated Wavelets: The mean of the estimated 50 
wavelets k three standard deviations along with the pre- 
dicted wavelet is shown in Fig. 7. 

The predicted wavelet was calculated by using the 
wavelet measured from the planar reflector and correcting 
it by an attenuation of 0.5 dB/[MHz . cm] for a distance 
of 3.75 cm, as the distance to the start of the liver was 6 
cm. 

As in Section IV-B, the estimate can be slightly im- 
proved by using a priori information. The result is shown 
in Fig. 8. We note here that the estimates obey the same 
pattern as found in Sections IV-A and -B. The first main 
oscillations are well estimated, and the variance increases 

It was derived, from a description of the backscattered 
pressure field, that the scattered signal is convolved with 
a pulse common to all reflections. This pulse can include 
the dispersive attenuation in tissue and explain the vary- 
ing appearance of ultrasound images for different humans. 

A first step in compensating for this variability is to 
estimate the basic pulse. An ARMA model was suggested 
for the pulse and an estimator was derived based on the 
prediction error method. The pulse is estimated for a seg- 
ment of an A-line. 

Experiments performed on synthetic data show that the 
algorithm estimates the wavelet even at low signal-to- 
noise ratios accurately and consistently. A signal-to-noise 
ratio of 20 is sufficient to get a precise estimate and the 
wavelet can be found even at lower ratios, however, with 
less accuracy. 

Experiments performed on data from a tissue phantom 
and a calf’s liver have revealed that the wavelet can also 
be determined here. Especially the first main oscillations 
in the pulse are estimated with good accuracy. 

The estimator derived here assumes a fixed pulse in the 
segment used for the estimation. The dispersive attenua- 
tion, however, gradually changes the pulse. Therefore, it 
would be more appropriate to estimate a new pulse for 
each sampling instance. Algorithms to do this have been 
derived [ 1 11, [ 141, [2] and we are currently studying the 
performance of these. 

Further research is also underway to find the perfor- 
mance of the estimator for in vivo data. This will be re- 
ported in a later paper. 
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