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ABSTRACT 
When assessing extremely low breakdown probabilities for self- 
restoring gaseous insulation by automatic equipment, it is often 
more important to keep the actual number of breakdowns low, 
rather than to control the total number of voltage applications. 
In order to achieve this, one might use an inverse sampling pro- 
cedure that commences the voltage application at a very low 
level, followed by applications at stepwise increased levels until 
a breakdown occurs. Following a breakdown, the procedure is 
restarted at the initial level. The procedure is repeated until a 
predetermined number of breakdowns have occurred, and the 
average and standard deviation of the observed first breakdown 
levels are recorded. In this paper we investigate the statistical 
properties of such a procedure when the underlying flashover 
probability function is a double exponential distribution. We 
describe the relation between the mean of the first breakdown 
level and the single-shot flashover probability at this mean lev- 
el, and we show how the sample mean and standard deviation 
of the first breakdown level may be used to assess this relation 
in an actual experiment. Finally, we indicate that the results 
for the double exponential flashover probability function may 
serve as a good approximation, also when other flashover prob- 
ability functions are assumed. 

1. INTRODUCTION but, also of some parameter Q, expressing the scale of the 
flashover probability function. The estimates of U50 and 

HE up-and-down test method [l] is widely used for es- T timation of the 50% probability flashover voltage U50 

in self-restoring insulation. When used for the assessment 
of U5,), the method is considered to  be rather insensitive 

U may be combined to  yield an estimate of any desired 
quantile p in the flashover probability function. Thus, 
assuming a normal dishibution, an estimate of the loop 
percentile is given by 

~. 

up = U750 + 6 z p  (1) to the underlying distributional assumptions. If the shape 
of the underlying flashover probability function is known, 
the statistical analysis of a series of up-and-down tests 
may be extended to  yield an estimate, not only of U50, 

with U50 and 3 denoting the estimates of Us,, and U ,  

respectively, and zp the 1OOp percentile in the standard 
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normal distribution. For a given estimation error on 7750 

and 6, the resulting confidence interval for U, tends to  
be larger, the smaller we choose the value for the desired 
quantile p .  It  may be shown that the width of the confi- 
dence interval is proportional with z,. Thus, the further 
the extrapolation is extended from U ~ O ,  the greater will 
be the estimation error. 

Moreover, the deviation between the estimated value 
U, and the true value U, may be influenced by an im- 
proper assumption of flashover probability function. If 
the standardized pquantile z, corresponding to  the nor- 
mal distribution is used in (1) instead of the pquantile 
for the relevant distribution, a systematic estimation er- 
ror is introduced in the estimate of U,,. Furthermore, as 
shown by the authors in [2], the estimates 77550 and 6 will 
tend to be biased if the breakdown distribution has been 
wrongly specified. 

To overcome these deficiencies, Carrera and Dellera [3] 
suggested an extended up-and-down method for direct 
assessment of the quantile corresponding to  an  arbitrary 
flashover probability p .  At each step of the procedure 
the voltage is applied m times, and the step is followed 
by an increase A U  in voltage if none of these applications 
resulted in a breakdown, and a decrease A U  if a t  least one 
breakdown resulted. Under this procedure, the voltage 
levels for successive steps will tend to fluctuate around a 
quantile U,, with p determined by 

(2) p = 1 - 2 -  l i m  

Thus, for m = 7, the voltage levels will tend to  fluctuate 
around the 10% flashover voltage. 

Since the extended up-and-down procedure is based up- 
on application of voltages around the desired design value 
U,, with p given by (2) above, the extended up-and-down 
method is rather insensitive to  the underlying distribu- 
tional assumptions, when used only for assessment of U,. 

In the testing of gaseous insulants, the insulation may 
often be considered to  be self restoring, unless a break- 
down has occurred. In practice, test procedures for such 
insulants will often be controlled by some automated equip- 
ment that  only requires manual action when a breakdown 
has occurred. In such cases considerations concerning the 
number of breakdowns will often be of greater importance 
than the tolal number of voltage applications. Hence, 
erriphasis is on keeping the number of breakdowns mod- 
erate, rather than on limiting the number of total voltage 
applications. 

Under the extended up-and-down procedure the total 
number of voltage applications is fixed, but the actual 

number of breakdowns cannot be controlled in advance. 
In the present paper we shall consider an  inverse sampling 
procedure, i.e. a procedure where the number of break- 
downs has been fixed in advance, but the actual number 
of voltage applications can not be specified in advance. 

The  idea of applying inverse sampling for the deter- 
mination of small quantiles dates back to Bartlett [4]. 
The application of the method under a double exponen- 
tial flashover probability function was described by the 
authors in [5]. McLeish and Tosh [6] have discussed the 
properties of the procedure under an exponential break- 
down probability function. 

In this paper we shall describe the analysis of first 
breakdown voltages obtained under the inverse sampling 
procedure assuming a double exponential flashover prob- 
ability function. We derive the relation between the flash- 
over probability function and the corresponding distribu- 
tion of first breakdown voltages under the inverse sam- 
pling procedure, and we show how this relation may be 
utilized to assess the single-shot flashover probability cor- 
responding to the observed average first breakdown volt- 
age. 

Since the procedure is based upon voltage applications 
in the neighborhood of the quantile under investigation, 
the procedure is found to  be insensitive to  the underlying 
distributional assumptions. 

2. THE INVERSE SAMPLING 
PROCEDURE 

HE procedure consists of n series of successive voltage T applications with voltage levels increased stepwise. A 
series stops when a breakdown has occurred. 

The starting voltage U,t and the step voltage A U  are 
chosen to  be the same for all series in the test. U,, should 
be chosen sufficiently small t o  ensure that no flashover 
will result from application of the voltage Ubt + A U .  

Each series consists of a number of steps. In step j 
( j  = 1,. . . , J) the voltage uj = U,t+jAU is applied once. 
(In Section 6 we consider the extended procedure with 
m voltage applications in each step). If no breakdown 
results, the procedure continues with step j + 1. When, 
at some step J, the first breakdown in this series occurs, 
the series stops, and the procedure restarts with a new 
series of voltage applications commencing with step 1, 
i.e., voltage u1 = U,t  + A U .  

The procedure stops when n series have been complet- 
ed, i.e., following the n-th breakdown. 
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The test result from each series i ( z  = 1,2,. . . , n) is 
the step number j ,  of the first breakdown, and the corre- 
sponding first breakdown voltage ut = Unt + j ; A U .  

The result of the inverse sampling procedure may be 
summarized by the average 

(3) 

of the breakdown voltages in the n series, and the esti- 
mated variance 

(4) 

of the breakdown voltages. 

The average 21’ represents some quantile U, in the 
flashover probability function. The corresponding flasho- 
ver probability p* in general will depend upon the starting 
value Unt, and. the step size. In Section 4 we shall inves- 
tigate this relation, and demonstrate how the flashover 
probability p* associated with the observed average break- 
down voltage may be determined from ii* and s*’. 

3. THE SAMPLING 
DISTRIBUTION 

ET F(u)  denote the flashover probability function, i.e. L F ( u j )  gives the probability that a flashover will occur 
when the voltage uj = U,t + jAU is applied in a single 
shot. I t  is well known that  F(u)  may be interpreted as 
the relative frequency of flashovers under repeated appli- 
cations of the voltage U .  

Consider a single series of the inverse sampling proce- 
dure. The probability that the first breakdown occurs a t  
the first step, i.e., when testing a t  the voltage level u1 is 

P l  = F ( w )  ( 5 )  

The probability p~ that the first breakdown occurs a t  the 
second step is found as the probability of no flashover i n  
the first step, followed by a flashover in the second step 

P2 = ( 1  - F(Ul ) )F(U’ )  (6) 

Proceeding in this manner one obtains the probability p j  
that the first flashover occurs a t  step j, i.e., when testing 
a t  level u j ( j  = 1 , 2 , .  . .), 

pi = n{l- F ( U , ) )  ~ ( u j )  j = 1,2,. . . (7) r I J = 1  -’ 1 

It  may be verified that  
W 

C P j = l  
j = 1  

369 

The probabilities given by (7) define a probability distri- 
bution on the lattice of voltage levels uj ( j  = 1 , 2 , .  . .). 
The probabilities give the relative frequencies of first break- 
down voltages that  would result from a large number of 
repeated series of the inverse sampling procedure. 

The probability distribution (7) has the character of a 
statistical waiting time distribution associated with the 
single-shot flashover probability function F ( u ) .  In the fol- 
lowing we shall use the term ‘flashover probability func- 
tion’ to denote the single-shot probability function F ( u ) ,  
and ‘first-breakdown distribution’ to  denote the corre- 
sponding waiting time distribution (7) on the lattice of 
voltage levels uj ( j  = I, 2, . . .). 

The n breakdown voltages U ; ,  U ; ,  . . .U:  constitute a 
sample of size n from the first-breakdown distribution. 
The mean and variance of U ; ,  U ; ,  . . . U; are given by 

W W 

and 
W 

V[u*]  = u;pj - E[U*]’ 
j = 1  

L J 

The breakdown voltages U ; ,  U ; ,  . . . obtained in repeat- 
ed series of the inverse sampling procedure will fluctuate 
around a quantile U; in the flashover probability function 
where p* is determined by 

p* = F ( E [ u * ] )  (11) 

4. A DOUBLE EXPONENTIAL 
FLASHOVER PROBABILITY 

4.1 T H E  SAMPLE MEAN AND 
VA RIA N C E 

N this Section we shall consider the distribution (7) I in the case where the flashover probability function is 
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given by the double exponential distribution with param- 
eters (Y and P,  i.e. 

U-CX 
F ( u )  = 1 - exp{-exp(-)} 

P 

It is shown in the Appendix that  p j  may be determined 
as the probability associated with the interval [uj- 1, uj] 

in the approximating first-breakdown distribution F* 

p j  1 F * ( u ~ )  - F * ( u ~ - ~ )  (13) 

where the distribution F' is obtained from the flashover 
probability function F as 

with the displacement parameter 77 determined by 

The approximating first-breakdown distribution F* is a 
continuous distribution that  is obtained from the flashover 
probability function F by displacing the variate origin by 
+vP voltage units. Thus with respect to  a graphical il- 
lustration, F is displaced to  the left. The resulting dis- 
tribution is then truncated a t  the voltage USt. 

The lattice distribution (13) of the first breakdown 
voltage is obtained by discretization of the approximating 
continuous distribution. If the step size is not too large, 
this discretization will be of minor importance, and we 
may approximate E[u*]  and V[u*] by the mean and vari- 
ance of the approximating distribution (14). 

Thus, disregarding the truncation and the discretiza- 
tion, we find that the distribution of the first breakdown 
voltage under inverse sampling is approximately a double 
exponential distribution obtained by displacing the origi- 
nal flashover probability function 770 units to  the left. We 
therefore have the following approximation to  the mean 
and variance of U* 

T' 

6 
V[u*] M - p2 

with y M 0.5772 denoting Eulers constant. 

4.2 THE ESTIMATED SINGLE-SHOT 
FLASH OVER PRO BABl  L lTY 

The breakdown voltages U ; ,  us,.  . . obtained in the re- 
peated series of the inverse sampling procedure will fluc- 
tuate around the mean value E [ u * ] .  This mean value 

is the p*-quantile in the underlying flashover probability 
function p' = F ( E [ u * ] ) .  

In applications of the inverse sampling procedure it is 
of interest to  design the procedure (i.e. the starting value 
U,t and the step size A U )  in such a way that p" will 
be in the neighborhood of some specified low value, e.g. 
p* N 0.01. 

Using the approximation (16) we find 

p* = F ( E [ u * ] )  x 1 - exp{-exp(-y - 7)) (18) 

Thus if the starting value has been chosen sufficiently 
small, then the estimated flashover probability under the 
inverse sampling procedure, p * ,  depends only on the dis- 
placement parameter 7, i.e. on the normalized step size 
AUlP. 

Figure 1 shows the relation between the normalized 
step size AU/p and the estimated flashover probability 
p" for different starting values of the inverse sampling 
procedure. On this occasion, U,t is referred to  different 
quantiles Pnt in the flashover probability function, i.e. 
P,t = F(Uat) .  I t  is seen that  the relation (18) yields 
a satisfactory approximation to  the estimated flashover 
probability. The only exceptions are for obvious reasons 
the situations when the starting value is very close to (or 
larger than) the approximate value (16) of the expected 
first breakdown voltage. 

Table 1 shows the relation between the normalized step 
size A U / p ,  the displacement 7, and the approximate val- 
ue (18) of the estimated flashover probability. 

When the step size, AU/p,  is sufficiently small we may 
expand 7 to  yield 

AU AU 7 = - - log{exp( -) - 1) 

AU P P AU (19) AU 
log(-) =-log(-) E--  

P P P 

7 = - AU - log{exp( -) AU - 1) 

P P [ I O )  
AU AU 

log(-) = -log(-) 
AU 

E--  

P P P 
such that we obtain 

Hence, the estimated flashover probability is approx- 
imately proportional to  the step size, a t  least for small 
step sizes. It is seen from Figure 1 and Table 1 that 
the approximation is fairly good, even for moderate step 
sizes, i.e. A U l P  < 0.1 
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AU/p 
7 

100Op* 
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0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 
9.21 8.52 8.11 7.82 7.60 7.42 7.26 7.13 7.01 
0.06 0.11 0.17 0.22 0.28 0.34 0.39 0.45 0.51 

3 71 

AU/p 
7 

100 
A 
U .- 
7 .r 

n 
n 
P 10 
CT 

L 
> 
0 x 
VI 
5 7 

' c l  
a 
.w 5 

+ 
VI aJ 
.r 

0)  0.1 
7 
c .r 

E 

L a 

. . .~ . _ _  . ~ -  _ _ -  

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
6.91 6.22 5.81 5.52 5.30 5.12 4.97 4.83 4.72 

Table 1. 
Values of the normalized step size A U l p ,  and the corresponding displacement parameter 7 for inverse 
sampling from a double exponential flashover probability function (exact values). The table also shows 
the approximate value (18)  of the estimated flashover probability 

1 , I 

n U / p  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
7 4.61 3.92 3.52 3.24 ' 3.02 2.84 2.69 2.57 2.45 

1OOOp* 5.57 11.06 16.46 21.77 27.01 32.17 37.25 42.25 47.18 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

7 I] 2.35 
100Op" 1 1  52.03 

1.71 1.35 1.11 0.93 0.80 0.69 0.60 0.52 
96.77 135.43 168.98 198.22 223.79 246.22 265.95 283.37 

I l O O O p *  11 0.56 I 1.12 I 1.68 I 2.24 I 2.80 I 3.35 I 3.91 I 4.46 I 5.02 1 

. 
I 

i 

i 

' I  

Ps t 

+ @  - 0.5 
+ 0.1 B 
* 0.05 
0 0.01 
x 0.w1 
0 o.ooo1 

d 

J 0.01 
0.m1 0.001 0.01 0.1 

normalised stepsize 

Figure 1. 
The estimated flashover probability 
p' = F ( E [ u ' ] )  as function of the normal- 
ized step size A U l p  for different starting values 
U,t = Upe ,  of the inverse sampling proce- 
dure. Double exponential flashover probability 
function. Exact values. 

In applications of the inverse sampling procedure the 
experimenter might insert his prior assessment of the scale 
parameter p into (18) or (20) and choose the step size AU 
to ensure that the procedure will operate in the neighbor- 
hood of the flashover probability of interest. 

4.3 THE FLASHOVER PROBABILITY 
AND T H E  SAMPLE VARIANCE 

The scale parameter p that  enters into (20) is not di- 
rectly observable. For estimation purposes i t  is therefore 
of interest to  express the estimated flashover probability 
p* in terms of an observable quantity. 

From (17) we have 

1 - T' - (1.28)' - 
p' - 6V[U*] V[u*]  

which inserted into (20)  leads to  

Thus, we may express the estimated flashover probabil- 
ity p* as a function of the normalized standard deviation, 
d m ] / A l J ,  of the first breakdown voltage measured in 
voltage steps. 

Figure 2 shows the relation between the estimated flash- 
over probability and the standard deviation of the first-- 
breakdown voltage for the same combinations of step sizes 
and starting values as in Figure 1. It is seen that the ap- 
proximation by (20) is fairly good. 

Clearly, when the starting value is close to, or even 
greater than the approximate value (16) of the expected 
first breakdown voltage, then the exact variance of the 
first breakdown voltage will be smaller than the approx- 
imate value (17). It is, however, of interest to note that 
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the reduction in the variance just suffices to make the 
approximation (22) valid, even in those cases where the 
approximation by (18) was found to  be inadequate. 

100 r 

7 .C 

E 
L n 

.* 

Pst 

. 0.5 
+ 0.1 
, 0.05 
0 0.01 
x 0.001 
0 o.Ooo1 

k 

t 

0.01 I . , , ' , . . . I  ' ' " ' . " '  ' ' " " " J  

10 100 1000 loo00 

normalised standard deviation 

Figure 2. 
The estimated flashover probability 
p' = F(E[u*] )  as function of the normal- 
ized standard deviation m / A U  of the first 
breakdown voltage under the inverse sampling 
procedure for different starting values U,* = Up,, 
of the inverse sampling procedure. Exact values. 

5. THE ESTIMATION 
PROCEDURE 

N the statistical analysis of test results obtained by the I inverse sampling procedure one might use the maxi- 
mum-likelihood approach to estimate the parameters a 
and p. In this presentation we shall, however, present a 
more accessible approach to the analysis. Our approach 
will be based upon the method of moments, i.e., w: shall 
utilize the properties of the sample values ii* and s* given 
by (3) and (4) to estimate a and p, or directly to estimate 
the flashover probability p' corresponding to ii'. 

5.1 ESTIMATION OF A SPECIFIED 
QUANTILE 

Let n series of the inverse sampling procedure result 
in the n first breakdown voltages U;, U;,.. . uf with the 
average 6' and the standard deviation S* = G. We 

may then utilize (16) and (17) to estimate the parame- 
ters a and p in the underlying double extreme flashover 
probability function by 

s*& p=- 
?r 

and 
ti = i* + b ( y  + 6) (24) 

with 

For a specified value of p ,  we may then estimate the 
pquantile U, in the flashover probability function by 

U, = & + 6 log( - log( 1 - p ) )  (26) 

5.2 T H E  ESTIMATED FLASHOVER 
PRO B A 6  I L lTY 

The estimation of a specific quantile U, in the flashover 
probability function by means of (26) utilizes the as- 
sumed form (12) of the flashover probability function 
to  extrapolate U, from the observed breakdown voltages 
U;, U;, . . .U:. Consequently, this estimate will be sensi- 
tive to  wrong specifications in the form of the flashover 
probability function. However, when the specified flasho- 
ver probability p is close to the estimated probability p " ,  
the effect of such a wrong specification will be small. 

Therefore, it may be of interest to assess directly the 
single-shot flashover probability p* corresponding to the 
average first breakdown value 2 obtained from n series 
of the inverse sampling procedure. 

Inserting the sample standard deviation S* 
place of the theoretical standard deviation 
obtain the estimated flashover probability corresponding 
to the sample average first breakdown voltage ii* as 

n 73 

6. AN EXTENDED INVERSE 
SAMPLING PROCEDURE 

HE inverse sampling procedure described in Section 2 T may be extended to include m voltage applications in 
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each step, instead of just one application. All m voltage 
applications in step j will operate a t  the voltage level 

this extended procedure is determined by 

Therefore it follows from Section 4 that  

(33) 

(34) 

U] = U,t + j A U .  The first-breakdown distribution under E[U*] = a - P( logm+ q +-y)  

and 
x2 

p1 = 1 - (1 - F ( u l ) } m  V[u*] = f i  p2 " 
with the corresponding flashover probability 

(35) 
1 AmU 1 P* = , ( 7 ) e x P ( - 7 )  

j-1 . 
- F ( u " ) } ~  [I - ( 1  - F ( u ~ ) ) ' ~ ]  (28) 

j = 2 , 3 , .  . . 

The double exponential flashover probability function 
(12) has the property that the probability of no flashover 
among m voltage application a t  level uj equals the prob- 
ability of no flashover in a single voltage application a t  
the displaced level uj + plog m: 

(1 - F ( u ~ ) } ~  = 1 - F ( u ~  + P l o g m )  (29) 

Thus, in this case, the first-breakdown distribution under 
the extended procedure may be determined from the first- 
breakdown distribution (13) corresponding to the simple 
procedure, by substituting the adjusted starting voltage 
level U,t + p l o g m  for the starting voltage level U,t in 
(14). Therefore, assuming a double exponential flashover 
probability function, the exact first-breakdown distribu- 
tion under the extended procedure is obtained as 

pj = F A ( u j )  - F $ ( ~ j - 1 )  (30) 

where the approximating first-breakdown distribution F& 
is given by 

We remark that the first-breakdown distribution corre- 
sponding to  the extended procedure with step size AmU 
and m voltage applications a t  each step is identical to the 
first-breakdown distribution corresponding to the simple 
procedure with one voltage application a t  each step and 
displacement parameter r]m = 7 + logm, i.e. with a step 
size AU satisfying 

The estimates under the extended procedure are 

.. s * &  p=- 
x 

and 
(37) ii = ii* + &-y + log m + 7j) 

with 

and 
(39) 

It should be noted that only the position of the first- 
breakdown distribution is affected by the introduction of 
multiple voltage applications in each step. The scale pa- 
rameter in the first-breakdown distribution is the same 
as in the original flashover probability function. 

Figure 3 shows the relation between the estimated flash- 
over probability p" = F ( E [ u * ] )  and the normalized stan- 
dard deviation of the first breakdown voltage 
J m / A , , , U  (in voltage steps) for different choices of 
m. The Figure has been based upon the exact distribu- 
tion (30). It is seen that the approximative relation (35) 
yields a good description of the exact relation. 

Thus, there is room for some flexibility in the design of 
the inverse sampling procedure. Given a design value p* 
of the flashover probability, the designer is free to choose 
the number m of voltage applications a t  each step and 
the step size A,U, as long as the ratio AmU/m satisfies 
(35). 

7. AN EXAMPLE 

s an illustration of the estimation procedure we con- 
Thus, the properties of the extended procedure are A sider da ta  from an experimental study previously re- 

ported by the authors [5]. The da ta  relate to a study 
that aimed to estimate the 0.3% percentile for a specif- 
ic SF6 system. Thus, according to Table 1, a step size 

found directly from the properties of the simple proce- 
dure by substituting the adjusted displacement parame- 
ter r]  + log m for the displacement parameter r ] .  
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First breakdown 
voltage U, kV 

Step number j ,  31 34 34 36 
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424.34 430.76 430.76 435.04 

* 

. ~ .  

437.18 
37 
35 

-0 

+ J 1  s 
.r 

0.01 

Figure 3. 
The estimated flashover probability 
p' = F ( E [ u * ] )  and the normalized stan- 
dard deviation m / A m U  for the inverse 
sampling procedure with m = 1,10,20,50 
and 100 under a double exponential flashover 
probability function. Normalized step sizes 
A,U/P = 1.0; 0.5; 0.2; 0.1; 0.05; 0.02; 0.01; 
0.005; 0.002; 0.0002. 

AU = 0.005p would be appropriate in a simple inverse 
sampling procedure. Previous investigations had indicat- 
ed that a scale parameter ,f3 = 5 kV might be relevant. 
Therefore a step size AU = 0.025 kV would be appropri- 
ate in a simple inverse sampling procedure. Since it was 
decided to  use an  extended inverse sampling procedure 
with m = 100 voltage applications per step, the corre- 
sponding step size for the extended procedure was found 
to  be AU = 2.5 kV. For practical reasons the actual step 
size was chosen slightly on the safe side, viz. AU = 2.14 
kV 

The starting value was chosen to  be U,t = 358 kV 
which was considered to be sufficiently low to  ensure that 
no flashover would result from voltage applications a t  the 
first level u1 = 360.14 kV. 

The experimental results are shown in Table 2. As a 
check of the experimental procedure, the shot number, 
a t  each step level, corresponding to the first breakdown 
was also recorded. The shot numbers were distributed 
between 8 and 97 with no systematic pattern. 

The average of the first breakdown voltages is found 
to be 21. = 432.04 kV. The sample variance is = 

(6.40kV)' and the sample standard deviation is s* = 6.40 
kV. The sample standard deviation in terms of voltage 
steps is s * l A U  = 2.99 steps. 

The estimated scale parameter p, is found as 

and hence the estimated normalized step size is AUlp = 
0.4289 with the corresponding value of the displacement 
parameter ij = 1.05. Thus, we obtain the estimate of the 
location parameter & = 463.16 kV. Inserting these values 
into (26) we finally find the estimated 0.3% quantile in 
the flashover probability function as 

U0.003 = 463.16kV-4.99kV log(- log(0.997)) 434.18kV 
(41) 

It was, however, of greater concern to  assess directly 
the single-shot flashover probability p,* , associated with 
the observed average first breakdown voltage 21* = 432.04 
kV. Inserting the sample standard deviation in voltage 
steps, s * / A U  = 2.99, into (39) we obtain 

p,. = - 0'0072 = 0.0024 
2.99 

which implies tha t  the average first breakdown voltage 
21* = 432.04 kV is an estimate of the 0.24% quantile in 
the flashover probability function. As a rough check of the 
calculations we might enter Table 1 with the normalized 
step size AlU/p  = 0.43/m _N 0.004. The corresponding 
value p,. is found to be pus = 0.2%, which is satisfactory. 

Table 2. 
Voltage levels of first breakdown in n = 10 series 
of an  extended inverse sampling procedure with 
.Vat = 358 kV, AmU = 2.14 kV, and m = 100 
voltage applications per step. 
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8. ROBUSTNESS OF THE 
INVERSE SAMPLING 

PROCEDURE 

N the previous Sections we have assumed that the flash- I over probability function could be described by a dou- 
ble exponential distribution. This assumption is, howev- 
er, not as restrictive as it might appear. It may be ar- 
gued tha t  the first-breakdown distribution given by (13) 
is the natural limiting distribution for results obtained 
under the inverse sampling procedure when the under- 
lying flashover probability function has an exponentially 
decreasing lower tail. 

To illustrate the robustness of the procedure we have 
determined the exact first-breakdown distribution (7) un- 
der various assumptions of the underlying flashover prob- 
ability function. We have investigated a normal distribu- 
tion and Weibull distributions with shape parameters 1, 
2 and 5, respectively. Since the properties of the inverse 
sampling procedure essentially depend on the flashover 
probability function in the neighborhood of the estimat- 
ed quantile, the distributions have been selected to have 
the same 0.1% quantile and the same slope of the proba- 
bility function a t  this quantile. Figure 4 shows the single 
shot flashover probability in the neighborhood of the 0.1% 
quantile for these distributions, and Figure 5 illustrates 
the more global properties. 

For each of these probability functions we determined 
the exact first-breakdown distribution (7) under the in- 
verse sampling procedure, and under the extended inverse 
sampling procedure with m = 10, 20, 50 and 100, using 
normalized step sizes A,U/p = 1.0, 0.5, 0.2, 0.1, 0.05, 
0.02, 0.01, 0.005, 0.002, and 0.0002, respectively. We de- 
termined the expected first breakdown voltage E[u*] giv- 
en by (9), the corresponding single-shot flashover proba- 
bility p’ = F ( E [ u * ] ) ,  and the normalized standard devi- 
ation m / A , U  (in voltage steps) in the first-break- 
down distribution. 

The result is illustrated in Figure 6. The Figure shows 
the relation between the estimated flashover probability 
p* = F(E[u*] ) ,  and the standard deviation , / W / A , U  
in the first-breakdown distribution. It is seen that the 
approximative relation (41) yields a good approximation 
also for these probability functions. 

9. CONCLUSION 

HE inverse sampling procedure is well suited for deter- T mination of low auantiles in situations with a limited 

0’18 t 
0.16 . 

h - . doubleexp 
.- 0.14 . + normal 

n 
2: o*12 

iJ - .r 

’ weibull-5 
’ weibull-2 
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.U 
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The probability that the first breakdown voltage ex- 
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2 0.08 
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0.00 
4.5 -4.0 -3 5 -3.0 -2.5 

normalised stepsize  

Figure 4. 
Lower tail of flashover probability functions with 
matching 0.1 per cent quantile. The probability 
functions have the same slope at the 0.1 per cent 
quantile. The step size is normalized to the stan- 
dard deviation of the normal distribution, with 
the normal distribution 50 per cent quantile tak- 
en as the origin. 

number of test objects when the test object is damaged 
by a breakdown, but not affected by individual tests that 
do not result ih breakdown. 

10. APPENDIX 

10.1 T H E  APPROXIMATING 
FIRST- B REAKDOWN DlST RI B UTlON 

FOR A DOUBLE EXPONENTIAL 
F L AS H OV E R P RO BA B I L ITY 

FUNCTION 

E consider the first-breakdown distribution (7) in W the case where the flashover probability function is 
given by a double exponential distribution with parame- 
ters a and 0 

(43)  
U-CY F ( U )  = 1 - exp{- exp(----)) 

B 
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Figure 5 .  
Flashover probability functions with matching 
the 0.1% quantile. The probability functions 
have the same slope a t  the 0.1% quantile. The 
step size is normalized to the standard deviation 
of the normal distribution, with the normal 
distribution 50% quantile taken as the origin. 

ceeds u j ( j  = 1 , 2 , .  . .) is 

j = 1 , 2 , .  
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Figure 6.  
The estimated flashover probability 
p *  = F ( E [ u * ] )  and the normalized stan- 
dard deviation m / A , U  of the first 
breakdown voltage under the inverse sampling 
procedure with m = 1,10,20,50 and 100, 
assuming a normal, a Weibull-1, Weibull-2 and 
a Weibull-5 flashover probability function. The 
flashover probability functions are illustrated in 
Figures 4 and 5. Normalized step sizes A,U/p  = 
1.0; 0.5; 0.2; 0.1; 0.05; 0.02; 0.01; 0.005; 0.002; 
and 0.0002. 

we obtain 

Introducing the continuous distribution F* as 
(46) 

(50) 
{ o F ( T t + T ~ ’ )  if u > U,t 

if U < U,,t F*(U)  F(V”,+rlP) 

’I = log 
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we find that  pJ may be expressed as [3] G.  Carrera and L. Dellera, “Accuracy of an Extend- 
ed Up and Down Method in Statistical Testing of 
Insulation”, Electra, No. 23, pp. 159-175, 1972. 

[4] M. s. ~ ~ ~ t l ~ t t ,  L‘ A Modified probit Technique for 
Small Probabilities”, Suppl. J. Roy. Statist. Soc., 

p j  = F * ( u j )  - F * ( u j - l )  j = 1 , 2 , .  . . (51) 

which shows that the discrete distribution p j  is deter- 
mined as the probability associated with the interval 

F’ will be termed ‘the approximating first-breakdown 
distribution’. 

[uj-l, uJ] in the continuous distribution F’. Therefore, Vol. 8, pp. 113-117, 1946. 

[5] S. Vibholm, A. Pedersen, J .  M. Christensen and P. 
Thyregod, “The Effect of Surface Roughness on Low 
Probability First Breakdown in Compressed SFG”, 
paper 32.06, Third International Symposium on HV 
Engineering, Milan 1979. 
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