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Illusory Paschen Curves Associated 
with Strongly Electronegative Gases 

I. W. McAlIister 
Physics Laboratory 11, 

The Technical University of Denmark, Lyngby, 
Denmark 

ABSTRACT 
For a strongly electronegative gas, breakdown voltage measure- 
ments made on a moderately non-uniform field test gap give 
rise to an apparently linear ( U d , p d )  curve. The curve can be 
designated a Paschen curve, but the erroneous nature of this 
designation becomes apparent from a linear regression analysis 
of the experimental breakdown data. An explanation for this 
anomaly is brought forth through the application of an ana- 
lytical linear-regression analysis to the theoretical breakdown- 
voltage relationship. This latter analysis indicates that, for 
moderately non-uniform field test gaps, the gradient of the 
theoretical breakdown-voltage curve is given approximately by 
q(E/p ) l im ,  where q is the field utilization factor of the test gap. 
( E / P ) ~ ; ~  is the pressure-reduced limiting electric field strength 
for the gas in question and the value of the Paschen-curve gra- 
dient. 

1. INTRODUCTION 

NE of the principal uses of a test gap is in the determi- 0 nation of the Paschen curve. Although Paschen's law 
refers to  breakdown in a uniform field, all practical test 
gaps produce, to  a greater or lesser degree, a non-uniform 
field. Despite this inherent limitation, Karlsson and Ped- 
ersen [l] have shown that valid Paschen curve data can 
still be obtained, provided the initial electron avalanche 
growth traverses the entire gap. If this condition is up- 
held, the Paschen curve for a strongly electronegative gas 
is found to  be linear over the pd range of interest to  prac- 
tical situations, see [2-51. p is the gas pressure and d is 
the test gap spacing. In such circumstances, the test gap 
has been classified as producing a weakly non-uniform 
field [6]. 

In many studies, the test gap adopted provides only 
a moderately non-uniform field such that, although di- 
rect breakdown still occurs, the initial electron avalanche 

growth does not traverse the entire gap [6]. Despite this 
discharge restriction, an  apparently linear breakdown volt- 
age curve can be obtained [7] which is then mistakenly 
identified as a Paschen curve. I t  is only by extracting 
the relevant parameter values from the experimental da- 
ta that  the anomalous nature of such a curve becomes 
apparent [8 ] .  In the present paper the underlying fea- 
tures of such illusory Paschen curves are sought. 

2. DISCHARGE ONSET 
VOLTAGE 

OR a non-uniform field gap, the discharge onset volt- F age U0 of a strongly electronegative gas may be ex- 
pressed as the product of the field utilization factor 7, the 
surface roughness factor (, the surface curvature factor C, 
the gas pressure p ,  the gap length d and the ( E / ~ ) l i , ~  [9]; 
viz. 

(1) 
E 
P 

U0 = qtC( -)lamPd 
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3 92 McAllister: Illusory Paschen Curves 

Depending on the degree of electric field non-uniformity, 
the gas in question and its pressure, U0 will represent 
either the corona onset voltage or the minimum break- 
down voltage. For a moderately nonuniform field, it is 
the latter, i.e. U ,  U". 

The field utilization factor [lo] is a function of the 
macroscopic gap geometry alone and is defined as 

with E, being the maximum field strength of the idealized 
macroscopic geometry associated with a potential differ- 
ence U .  The normalized parameters ( and are related 
to both the electrode geometry and the gas in question. 
However, as test gaps with carefully prepared electrode 
surfaces are under discussion, the effects of electrode sur- 
face roughness upon U, will not be considered further, 
and hence in this study the value of ( will be taken as 
unity. Thus it is only C which requires to be considered 
in detail. 

2.1 SURFACE CURVATURE FACTOR C 

This parameter expresses the fact that ,  for a non-uni- 
form field, the discharge onset field strength Eo for ideal 
electrodes is greater than the limiting value Elim of the 
gas in question [ll]. This behavior is accounted for by in- 
troducing a dimensionless parameter, namely the surface 
curvature factor (, which is defined by 

Eo - E 
- = C(-)fim 
P P (3)  

where RI and Rz are the principal radii of curvature a t  
the surface location of interest. The complete variation of 
E ( s )  is of course controlled by both the gap geometry and 
the applied potentials. However, for Hs < 0.1, the Green 
differential equation [13] relating the electric field and 
the differential geometry of equipotential surfaces ensures 
that E ( s )  is effectively dependent on H alone, and thus 
E ( s )  can be approximated by 

E ( s )  = E,(1 - 2 H s )  (6)  

This situation implies that  when the initial electron ava- 
lanche growth is confined to  the proximity of the highly 
stressed electrode, then Eo will be a function of H alone, 
all other aspects being equal. 

With reference to strongly electronegative gases, it is 
found that upon application of the streamer criterion to 
the above field distribution one obtains 

and - 

(7) 

see [ll, 141 for details. The parameter M represents the 
figure of merit for a strongly electronegative gas (121, 
while Hso is the normalized critical avalanche length. 
This latter parameter, which represents the integration 
path length associated with avalanche growth, satisfies 
the following relationship 

Cf(H.0) = 1 (9) 

with C 2 1. This factor is so named because, under condi- 
tions of practical interest, the fulfillment of the streamer 
criterion [E] is, with respect to the gap geometry, a func- 
tion of the mean curvature H of the electrode surface a t  

It should be noted that ,  because the derivation of (7) 
is based on the assumption that Hso < 0.1, (8) implies 
that  M / ( p / H )  < 0.01. 

the location of E,  alone. Thus Eo is rendered indepen- 
dent of both the remainder of this electrode geometry 
and the overall geometry of the gap. I t  should be noted 
that Eo is the value of E, a t  discharge onset. The above 
situation arises under the following circumstances. 

If E ( s )  represents the field strength along the field line 
associated with E, and s is a distance coordinate along 
this field line measured from the electrode surface (s = 0),  
then 

E ( s )  = E a f ( H s )  (4) 
where f ( H s )  represents the spatial variation of E ( s )  with 
reference to the normalized distance H s .  For a regular 
surface, the mean curvature H is defined as 

(5)  

3. ANALYTICAL REGRESSION 
AN A LY S I S 

OR moderately non-uniform fields, the variation of the F theoretical U, with pd is a shallow curve, see Figure 1. 
(Note that for clarity, the degree of curvature has been 
greatly exaggerated). In practice, owing to the unavoid- 
able scatter which normally occurs with experimental U, 
values, it will be very difficult to identify such a curved U, 
variation. The more natural reaction would be to under- 
take a linear regression analysis of the experimental U ,  
data;  i.e. to treat the data  as though these constituted a 
valid set of Paschen curve measurements. On the basis 
of the theoretical U, variation, the parameters of a linear 
regression fit will now be determined. 
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sion analysis, u b  is assumed to be a linear function of p d ,  
see Figure 1. In the present discussion, it is convenient 
to  replace pd with the variable z, and hence we have 

U,  = f(z) (10) 

I I 
I I -Pd 

( Pd ), ( P d ) ,  

Figure 1. Basis of regression analysis. 

By analogy with numerical analysis, the coefficient of de- 
termination T’ can be employed as a measure of how accu- 
rately the linear relationship fits the function f (z ) .  This 
parameter is defined by the ratio [15] 

To determine A and B we employ the method of least 
squares. 

If the deviation is defined as the difference between the 
true value and the predicted value, then, with respect to 
discrete numerical data,  the method is concerned with 
minimizing the sum of the squared deviations [15].  For a 
continuous function, we can express the equivalent sum 
as an integral and thus, for a finite range of z values, this 
can be expressed as 

F = 7 [f(z) - ( A  + B z ) ] ’ d z  ( 1 2 )  
2 1  

where z2 and z1 are the upper and lower values of the z 
range of interest. The function F can be minimized by 
deriving BFIBA and BFIBB,  and equating these partial 
derivatives to  zero. Thereafter the solution of the two 
simultaneous equations provides A and B, viz. 

r 2 2  

Figure 2. 
Variation of f i ,  fi and f3 with the ratio ~ 1 1 ~ 2  

We apply the analysis to the theoretical breakdown 
voltage relationship U,  which is a function of the indepen- 
dent variable p d ,  and an approximate breakdown voltage 
relationship u b .  As we are concerned with a linear regres- 

x1 

N 
T’ = - 

N + F  
where N ,  which is often called the explained variation, is 
given by 

N =  ( A + B z - G ) ’ d z  (16) Y 
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The parameter G is the mean value of f(x), i.e. 
2 2  

2 1  

and in relation to  N ,  F is sometimes referred to  as the 
unexplained variation. 

A general expression for r2 can be obtained by substi- 
tuting the relevant expressions for A ,  B and G into (15). 
This leads to  

For the gap geometries of interest we assume that ,  as 
a first approach, U, can be obtained from (1) with (7). 
Hence if we set S = q ( E / p ) l i m  and C = S d m ,  then, 
with respect to  the present analysis, we have 

f (z)  = sz + C& (19) 
It should be emphasized that  the selection of S and C as 
constants implies that  each of their constituent parame- 
ters, i.e. 7, H d ,  M and (E/p) l im is also constant. 

The non-fulfillment of this condition would imply that  
pd could not be used as the controlled variable in the re- 
gression analysis. The choice of another controlled vari- 
able can, however, lead to  a new dependent variable and 
thus a different f (x). 

Upon substitution of (19) into (13), (14) and (18) and 
evaluating the integrals, we obtain 

A = $fIC&i (20) 

B = S[1 + f2D] (21) 

where, for p = x1/22 and p < 1, 

1 + - 10p3/2 + lop2  - p5/2 - $ I 2  
fl = (23) (1 - PI3 

and 

(25) 
1 - 9p + 16p3l2 - 9p2 + p 3  

f3 = 
(1 - PI4 

and 

To gain an  appreciation of the behavior of f1, fi and f 3 ,  

the variation of each function with (z1/z2) is shown in 

Figure 2. In practice, the pd range studied is generally 
more than a decade and thus (xl/x2) < 0.1. From Fig- 
ure 2 this implies that the values of fl, f2  and f3 are 
M 1. 

Upon substitution for S and C we obtain the expres- 
sions relevant t o  the present discussion, viz. 

A = * f  15 1 Dv( E / P ) I ~ , P Z ~  (27) 

B = V ( E / p ) l i m [ l +  %fiD] (28) 

with D = d m .  This D is used in (22) to deter- 
mine ?. In deriving (27) and (28),  we assumed that, as 
frequently occurs in practice, d is held constant and thus 
X Z  = pzd .  

Table 1. 
Analytically and numerically derived values of A 
[kV], B [kV(mm MPa)-’1, and 7’ .  

69.3 65.6 

Table 2. 
Measured U, values [kV] of Berger and Senouci [7] 
and the calculated normalised critical avalanche 
lengths sold  [a] and so /R at pressure p [MPa]. 

- - 
P 

0.025 
0.050 
0.075 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 - - 

0.117 

0.073 

- - 
so/R 
0.152 
0.105 
0.085 
0.073 
0.059 
0.051 
0.046 
0.042 
0.039 
0.036 - - 

3.1 APPLICATION OF THE ANALYSIS 

To illustrate the present analysis, we will refer to  the 
experimental study undertaken by Berger and Senouci [7] , 
in which a point/plane gap was employed to  investigate 
Paschen’s law for SFG. The severe limitations associated 
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with this choice of test gap for Paschen curve measure- 
ments has been fully discussed by McAllister and Crich- 
ton [8]. Thus although the U, measurements of Berger 
and Senouci cannot be associated with Paschen’s law, the 
measurements are, with respect to  the present analysis, 
valid data.  

In [7], Berger and Senouci employed a hemispherically- 
ended rod of tip radius R = 8 m m  a t  a constant distance 
d = 5 mm from a plane electrode such that r]  = 3.56/5 = 
0.712. For such a point electrode, H = 1/R. The pressure 
range investigated was 0.025 to 0.4 MPa. For SF6, we 
have ( E / ~ ) z ; ~  = 88.6 kV (mm MPa)-l and M = 0.004 
mm MPa [16], and hence the condition M / p R  < 0.01 is 
only upheld for p 3 0.05 MPa. Thus for the pressure 
range 0.05 to 0.4 MPa, we obtain using (27), (28) and 
(22) the values for A ,  B and T’ listed in Table 1, column 
1. 

Berger and Senouci tabulate in their paper [7] the cor- 
responding measured U, values and these are listed in 
Table 2. On applying a numerical linear regression anal- 
ysis to these data  for the same pressure range, we obtain 
the values given in Table 1, column 2. 

From the first and second columns of Table 1, it is seen 
that the agreement between the B values is much bet- 
ter than between the A values. This situation is a direct 
consequence of the fact that  the experimental A.value is 
very dependent on the absolute accuracy of the voltage 
measurement, while the corresponding B value is only 
dependent on the relative accuracy of this measurement. 
Although no information about these measurement ac- 
curacies is given by Berger and Senouci [7], the relative 
accuracy is generally much better than the absolute ac- 
curacy. In relation to the A values of Table 1 it should 
be noted that A (Paschen) is only 0.35 kV [16]. 

Although SFs is a non-ideal gas, with respect to the 
breakdown analysis, this feature may be taken into ac- 
count by replacing p with the compressibility-corrected 
gas pressure p z  , where p z  , is given by 

Z ( p ,  T )  is the compressibility factor (< 1) for the gas a t  
pressure p and temperature T. Values for this factor can 
be derived from the expressions given by Vibholm and 
Mollerup [17]; see also the Appendix in [18]. In turn the 
pr substitution leads for SF6 to ( E / J I ~ ) ~ ; ~  = 87.9 kV(mm 
MPa)-l a t  20°C [18]. 

Upon re-evaluation of the ‘analytical’ coefficients to- 
gether with a re-analysis of the measured data,  the co- 
efficient values shown in Table l, columns 3 and 4 were 

obtained. By taking into account the nonideal behavior of 
SFc, the agreement between the new B values improves, 
while for the A value agreement deteriorates. With the 
analytical values the small change (-1%) in the B value 
reflects an equally small change (+1%) in the A values 
(columns 1 and 3). For the numerical data,  a reduction 
of 5% in B is associated with an  increase of 33% in the A 
values (columns 2 and 4). This behavior is a consequence 
of the fact that  the regression fits to the experimental 
data ( T ~  = 0.999) are not as good as those obtained with 
the analytical fit ( r 2  = 0.9999). The values of r2 ob- 
tained with the analytical regression analysis are such 
that, for practical purposes, the breakdown voltage curve 
for a moderately non-uniform field test gap is linear. 

4. DISCUSSION 

ROM the outset, it must be stated that the linear F breakdown voltage curves under discussion are not 
Paschen curves, although owing to their high degree of 
linearity they can be mistaken for such. On the basis of 
this linearity, an  analytical linear regression analysis was 
applied to the theoretical breakdown voltage relationship 
for moderately non-uniform fields. This enabled expres- 
sions for the linear regression coefficients to  be derived. 
These coefficients represent the slope and constant term 
of the equivalent linear relationship. Coefficients evalu- 
ated with these expressions are shown to provide values 
which are in agreement with the values derived from a 
numerical analysis of experimental data.  

The slope of the linear curve is given by (28). For 
(4/5)fzD << 1, it is evident that  this slope closely ap- 
proximates to v ( E / p ) ~ ; ~ .  This value can also be deduced 
directly via the ( expression. As M / ( p / H )  tends to 0 for 
increasing values of p ,  ( -+ 1 and thus from (7) and (1) 
we have U, --+ r ] (E /p )~; ,pd ,  i.e. the ( U d , p d )  curve tends 
asymptotically to a straight line for which the gradient is 
r](E/P)zam. 

From Table 2, it is evident that ,  for the Berger and 
Senouci gap, where electron avalanche growth occurs over 
a small fraction of the gap only, s o l d  < 0.25, the concept 
of ( can be successfully employed. 

If however, the avalanche growth occurs over a signifi- 
cant fraction of the gap, e.g. s o l d  > 0.5, (6) will no longer 
be a valid approximation for E ( s )  and hence Eo will not 
be a function of H alone. In such conditions, it is neces- 
sary to derive a new relationship for the ratio Eo/Eli,. 
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As with the C expression, (7), Eo/El;, will be expressible 
in the form 

where P represents a perturbation term. Consequently, 
with reference to the present analysis, (30) implies that  
only the second term of (19) requires alteration prior to  
the derivation of the corresponding expressions for A ,  B 
and r2. Nevertheless the gradient of the breakdown volt- 
age curve will remain approximately v( E / p ) l ; ,  . 

To assess any set of published data,  the preceding anal- 
ysis indicates that ,  apart from the general experimental 
data,  a knowledge of 9 for the test gap employed is also 
required. This value is seldom quoted directly. In the 
following, we will discuss an approach which allows a re- 
liable estimate of 77 to be obtained, without recourse to 
involved numerical computations. 

100 

11 

0 90 

0 80 

0 70 

0 60 

0 50 

I I I I I I I 1 1  

cs 

0 0 2  O L  0 6  0 8  10 
Hd 

Figure 3.  
Variation of field utilization factor 9 for mod- 
erately non-uniform field gaps. CS: concentric 
sphere gap, CC: concentric cylinder gap, SP: 
sphere/plane gap, CP: cylinder/plane gap, HP: 
hyperboloid point/plane gap. 

4.1 FIELD UTILIZATION FACTOR 
ASSOCIATED WITH MODERATELY 

N 0 N- U NI FO RM FIELDS 

Whether a particular gap can be classified as moder- 
ately non-uniform is dependent not only on its geometric 
features, but also upon the gas in question and the gas 
pressure. For the present discussion, the classification will 
be taken to apply to the range 0.1 < H d  < 1. A reliable 
estimate of the 77 value can be obtained from a study of 
the variation of 7 with H d  for several relevant gap ge- 
ometries, viz. the concentric sphere gap, the concentric 
circular-cylinder gap, the isolated sphere/plnne gap, and 
the isolated circular-cylinder/plane gap. 

Although the above gap geometries may appear rather 
impractical, these gaps encompass the range of geomet- 
ric features necessary for the provision of a monotonic 
field distribution. The associated 71 distributions for the 
aforementioned geometries are illustrated in Figure 3. 

To produce a non-uniform field, one of the electrodes 
should possess a finite (non-zero) H .  The simplest elec- 
trode geometries which exhibit the overall (RI ,  Rz) vari- 
ations of interest are the sphere: R1 finite, Rz finite and 
R1 = Rz; and the circular cylinder: R1 finite, Rz infinite. 

To ensure a monotonic field distribution, the other elec- 
trode musk either be of a finite H of the same sign, or have 
H = 0, i.e. a plane. From Figure 3, it is evident that  the 
concentric gap geometries provide the more non-uniform 
field distributions, and that cylindrical electrodes are as- 
sociated with less non-uniform fields than with those of 
spherical geometry. 

The majority of test gaps are of the sphere/plane type, 
e.g. see [19]. Hence owing to the existence of supporting 
shafts, the '7 values of interest will lie between the two 
HV electrode/plane curves shown in Figure 3, as does 
the 77 value from Berger and Senouci [7]. As an assess- 
ment of these 77 limits, the variation of 9 for a hyperboloid 
point/plane gap was investigated, i.e. an electrode with 
an infinitely long supporting shaft. From this study, it 
was discovered that ,  with respect to H d ,  the 77 variation 
for this gap was identical with that for a cylinder/plane 
gap. Hence the 77 variations depicted in Figure 3 must rep- 
resent the limits for all practical (monotonic) test gaps. 

Thus, from a knowledge of the electrode geometry and 
gap spacing alone, 77 can be estimated reliably without 
recourse to an actual field solution. Moreover, in the 
absence of sufficient field data,  this 71 approach allows 
a critical evaluation of published breakdown data to be 
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undertaken. The Berger and Senouci [7] pressure- and 
7-corrected experimental data  for SF6 yield an ( E / p z ) l i m  
value approximately 7% higher than the Paschen value of 
87.9 kV (mm MPa)-’. If the perturbation term in the 
theory were taken into account, this discrepancy would 
be reduced. 

5. CONCLUSION 

SING an  analytical regression analysis, it has been U shown that ,  for a strongly electronegative gas, the 
(direct) breakdown voltage curve obtained with a mod- 
erately non-uniform field is effectively linear. The slope 
of such curves however are shown to be < ( E / P ) ~ ; ~ .  For 
this reason, breakdown voltage curves which exhibit these 
features have been designated illusory Paschen curves. 

Based on the regression analysis presented, it is demon- 
strated that a reliable estimate of the Paschen curve gra- 
dient of ( E / P ) I ; ~  can be made from moderately non- 
uniform field breakdown voltage data,  through a knowl- 
edge of the 77 value limits associated with the H d  value 
of the relevant test gap. 
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