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Present numerical simulations of the transition scenario of a rotating fluid flow in a closed cylinder 
are presented, where the motion is created by a rotating lid. The numerical algorithm, which is based 
on a fume-difference discretization of the axisymmetric Navier-Stokes ‘equations, is validated 
against experimental visualizations of both transient and stable periodic flows. The complexity of 
the flow problem is illuminated numerically by injecting flow tracers into the flow domain and 
following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing 
of flow structures which wave along the contour of a central vortex core. The main purpose of the 
study is to clarify the mechanisms of the transition scenario and relate these to experiences known 
from other dynamical systems and bifurcation theory. The dynamical system was observed to 
exhibit up to three multiple solutions for the same Reynolds number, and to contain four discernible 
branches. The transition to strange attractor behavior was identified as a nontrivial Ruelle-Takens 
transition through a transient torus. The various solution branches of the rotating flow problem are 
illustrated by phase portraits and summarized on a frequency diagram. 0 1995 American Institute 
of Physics. 

I. INTRODUCTION 

In the last two decades a great number of investigations 
has been carried out to clarify the fundamental mechanisms 
of transitions in-fluid dynamical systems. In general, these 
have focused on classical configurations of fluid flows, such 
as the Rayleigh-Benard convection problem and the Taylor- 
Couette flow. Studies of these examples have revealed that 
the onset process is connected with a rich variety of flow 
phenomena. A breakthrough in understanding this was intro- 
duced by Ruelle and Takens,! who, under certain assump- 
tions, proposed that if a dynamical system goes through a 
fourth Hopf-bifurcation at some critical number, then, the 
system most probably becomes strange. Consequently, only 
three basic frequencies may appear in the power spectra si- 
multaneously. When a fourth frequency is about to occur, the 
spectrum immediately becomes broadbanded with an over- 
laying spectral component, say R-T’frequency. By a theorem 
of Plykin, Newhouse et al2 later proved that under further 
restrictions strange attractors may be obtained through only a 
third Hopf-bifurcation. Other important scenaria are due to 
Feigenbaum,3 who connected the transition process to period 
doubling bifurcations, and to Pomeau and MannevilIe,4 who 
identified four types of intermittency phenomena to be re- 
sponsible for such transitions. Finally, Ostlund et aL5 ob- 
served a phase-locking phenomenon connected with clump- 
ing and wrinkling of a torus, and Lorenz,6 among others, 
observed an abrupt transition from steady to chaotic behavior 
as a subcritical Hopf-bifurcation. These different scenaria 
must be thought of as complementary, although multiple sce- 
naria may coexist, as observed by e.g. Gollub and Benson.7 
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To analyze the transition scenario of rotating flows, we 
here consider a closed flow in a cylindrical container, where 
the rotation is initiated by a rotating lid. Letting dimensions 
be given by height, H, and radius, R, and assuming that one 
endwall rotates with angular velocity, a, see Fig. 1, the flow 
conditions are uniquely defined by the Reynolds number, 
lXe=12R2/ v, where v denotes the kinematic viscosity, the 
aspect ratio, X = H/R, and some initial state. The physics of 
the tlow may be summarized as follows: 

With motion created by letting the one end cover rotate 
with a constant angular velocity, fi, an Ekman layer of the 
thickness O(ReF1j2) is spontaneously:built up through the 
action of viscous stresses.’ Due to the no-slip condition, the 
flow, which adheres to the rotating endwall, is set into mo- 
tion and centrifuged away towards the cylinder wall. The 
continuity of the incompressible fluid flow deflects the 
boundary layer downwards, forming a Stewartson layer at 
the side wall9 At the lower endwall, the boundary layer is 
bent, as a continuous layer, toward the center forming a 
lower Ekman layer. The no-slip condition now decelerates 
the fluid adjacent to the fixed endwall, which thus is exposed 
to a radial pressure gradient. The radial pressure gradient 
compensates for the centrifugal force acting on the rotating 
fluid in the inner part.” Consequently, the fluid inside the 
boundary layer converges towards the center axis, where it is 
sucked into the rotating center core, thus completing its path 
like a centrifugal pump. 

The first study of this flow was carried out by Vogel,” 
who showed that for certain combinations of X and Re, axi- 
symmetric recircuiation structures, interpreted as vortex 
breakdown, appeared near the center axis. Later, these visu- 
alizations were supplemented by laser-Doppler measure- 
ments for a flow with X= 1.59 and Re= 1850 by 
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FIG. 1. Cylinder with rotating lid. 

Romrenberg.12 To date, the most detailed experimental study 
has been carried out by Escudier,13 see Fig. 2. Employing 
laser-induced fluorescence technique, Escudier showed that 
up to three distinct breakdown bubbles may occur, and by 
systematically changing the model parameters (X,Rej he lo- 
calized the domain of bubble regions and the limits of steady 
flow area. Later, LDA measurements has been performed by 
Michelsen,14 and the PIV technique has been utilized by 
Westergaard et al. l5 in order to analyze unsteady flow struc- 
tures. Recent experiments are due to SBrensen,16 who per- 
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FIG. 2. Axisymmetric vortex breakdown by E!.scudier.13 In present work, 
where X=2, validation points are indicated by (Cl). 
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formed a series of visualizations for the case of h = 2, and 
Spohn,17 who studied also the case of a cylinder with a free 
surface. 

Owing to its simple geometry and the ease in establish- 
ing boundary conditions, the rotating cylinder flow has been 
the subject of a large number of numerical studies. Based 
upon solutions of the axisymmetric Navier-Stokes equations, 
results outside the parameter range where separation bubbles 
occur have been performed by e.g. Paor and Bertela and 
G0ri.r’ The first solutions showing the existence of separa- 
tion bubbles are due to Lugt and Haussling.20 These were 
later supplemented by Lugt and Abboud,21 who systemati- 
cally studied the influence of the model parameters by com- 
paring their results to the visualizations of Escudier.13 A 
similar investigation has recently been published by Lopez.” 
In general, the abovementioned calculations have focussed 
on investigation of the vortex breakdown up to the point 
where the flow becomes oscillatory. Solutions showing peri- 
odic oscillations have been found by Lopez,23 Lopez and 
Perry,a4 and Daube and SdrensenZ5 revealing that the early 
transition is associated with several bifurcations, including 
period doubling phenomena. Recently, Christensen et al.” 
studied the early transition by applying a version of the 
Proper Orthogonal Decomposition technique. 

The purpose of the present work is to analyze the nu- 
merical transition scenario of the flow from where it be- 
comes oscillatory to where it breaks down to an aperiodic 
motion. The calculations are carried out employing a high- 
order, finite-difference approximation of the axisymmetric 
Navier-Stokes equations (Sdrensen and Ta Phuoc”). We 
have limited ourselves only to treat the case of X =2, and 
focussed on analyzing the influence of systematically chang- 
ing the Reynolds number in the range from Re=500 to 
Re= 8000. 

II. FORMULATION OF PROBLEM 

Assuming the fluid in the cylinder to have constant vis- 
cosity and density, up to symmetry breakdown the flow is 
governed by the axisymmetric and incompressible Navier- 
Stokes equations. These are here formulated in terms of vor- 
ticity, circulation and streamfunction (o,F, (cI>, with vorticity 
and circulation governed by transport equations and the 
streamfunction determined from a Poisson equation. The ad- 
vantage of this formulation, as compared to the one of primi- 
tive variables, is that the pressure is eliminated and that con- 
tinuity is automatically satisfied. Boundary conditions are 
established from the no-slip assumption of the velocity. 

The solution of the resulting set of equations is accom- 
plished by employing finite difference approximations in 
combination with AD1 technique. The Poisson equation is 
solved with fourth order accuracy for the streamfunction uti- 
lizing a compact formulation based upon 3-point Hermitian 
formulas. To enhance the convergence rate the AD1 algo- 
rithm is optimized by the relaxation procedure of 
Wachspress.‘8 The transport equations are discretized by 
standard second-order differencing and solved by the AD1 
technique of Peaceman and Rachford.2’ The boundary con- 
ditions are implemented by either prescribing their values or 
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by making Taylor expansions from the boundary considered 
into the flow domain. 

The solution is advanced in time as follows. First, the 
transport equations are solved for o” and I’” at time, t = P, 
with the streamfunction fixed at its value from the previous 
time, $= v-l. Next, the stream function, I/J= lyt, is deter- 
mined from the Poisson equation with the vorticity, un, 
given as a source term. Thus, in each time step the equations 
are solved decoupled. The time-discretization is related to 
the axial spacing, AZ, by At=aAz, where the constant LY is 
limited by the CFL condition. It shall be noted that (Y is 
determined by the velocities of the secondary flow field, 
which are significantly smaller than the primary azimuthal 
velocity. Therefore, (Y may be given a greater value than the 
usual one of 0.5. By trying different values it was found that 
setting cu=S in all cases resulted in stable solutions. Further 
details about the formulation and the numerical technique 
can be found in SQrensen and Ta Phuoc.” 

III. VALIDATION OF THE NUMERICAL ALGORITHM 

In earlier studies the employed numerical algorithm has 
been compared to steady measurements of the rotating 
driven cavity problem.a7 Here it was found that a grid of 71 
radial nodes and 91 axial nodes was sufficient to resolve the 
flow field for the case of Re= 1854 and X=2. Furthermore, 
computed velocity distributions were in excellent agreement 
with the LDA measurements of Michelsen r4 for Re= 1800 
and X= 1. As the boundary layer at the rotating lid can be 
described as an Ekman layer with a thickness of the order 
U(Re-l3, it is estimated that approximately twice as many 
mesh points are needed in each space direction when going 
from Re= 1800 to Re=8000. 

To test the inihrence of the grid resolution at higher Rey- 
nolds numbers three different grids consisting of respectively 
80X 160, 100X 200, and 140X 280 mesh cells were com- 
pared. The outcome of this study was that, except for a dis- 
placement of the values.of the Reynolds number, the general 
behavior of the transition scenario did not depend critically 
on the grid resolution. Thus, they all exhibited both periodic, 
quasiperiodic and chaotic behavior, although a finer grid re- 
sults in the transition to chaos being shifted to a higher Rey- 
nolds number. The test was carried out by comparing phase 
portraits and power spectra of time series of vorticity func- 
tions at points located centrally in the calculation domain. 
Here the chaotic behavior that was found to appear at 
Re=6900 on the coarse grid was similar to the chaotic be- 
havior at Re= 7500 on the next-coarse grid, and to about 
Re= 8OOD on the fine grid. These results evidence that the 
basic physical process determining the transition scenario is 
present over a wide range in mesh fineness. To find a com- 
promise between accuracy and computing expenses it was 
decided to employ the next-coarse grid. Therefore, the results 
that will be presented in the next sections are all based on a 
resolution of 100X 200 mesh cells. 

To further validate the algorithm in the unsteady regime, 
results are compared to the visualizations of Sdrensen.16 
These were performed by illuminating pine pollen suspended 
in a glycerin/water mixture by an oscillating laser beam. In 
contrast to the visualizations of Escudier,13 where fluorescent 
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FIG. 3. (a)-(d) Visualizations of transient behavior due to a sudden increase 
from Re=2200 to Re= 2800. 

dye was dissolved in the fluid, this technique does not con- 
taminate the fluid and therefore makes it possible to study 
also the time-behavior of the l-low. After a short time in the 
fluid the particles are nearly neutrally buoyant. However, due 
to the rotation of the fluid the particles do tend to migrate 
sideways. This results in a concentration difference between 
different regions of the flows, making structures such as vor- 
tical regions and secondary flow bubbles clearly visible. Nu- 
merically, the visualizations are performed by injecting par- 
ticles around the axis near the fixed endwall and advecting 
them as passive flow tracers according to the particle equa- 
tions, 

drP _ dZP _ --* --pv 
dt p’ dt P’ (1) 

where [rp(t),zp(t)] denotes the position of the particle con- 
sidered and [up(t), wp( t)] is the corresponding velocity vec- 
tor. The equations are discretized by a simple explicit 
Adams-Bashforth approximation and solved along with the 
momentum equations. 

The first part of the comparison was carried out by 
studying the transient behavior of the flow during the process 
of a sudden increase of the Reynolds number from 2200 to 
2800. In Figs. 3(a)-3(d) we depict snapshots from video 
pictures at different times. At time t = 0, Fig. 3(a), the flow is 
steady and two recirculating bubbles are observed to appear 
near the axis. After the Reynolds number has been changed 
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FIG. 4. (a)-(d) Numerical visualizations of transient behavior. Compare to Fig. 3. 

to Re=2800, by increasing the frequency of the lid, we ob- 
serve the development of a complex transient process. From 
the initial steady state the lower bubble expands and be- 
comes more edge-formed. At about t= 50 the breakdown 
bubble takes a deep breath downwards, with the edge being 
stretched upwards following the secondary meridional flow. 
Consequently, two fingers on the cross section are developed, 
see Fig. 3(b). Next, the lower bubble shrinks at the same 
time as the fingers are prolonged further towards the rotating 
lid. Then the lower section almost instantaneously pumps 
down, and decouples from the upper breakdown bubble. On 
their return, Fig. 3(c), the fingers finally fold. This process 
continues very regularly from hereon, where each pump 
movement results in the generation of new fingers. The eyes 
of the upper bubble are stretched and sucked towards the 
rotating lid, to finally disappear at about t = 200. After sev- 
eral time periods the core attains a typical shape for 
Re=2800, as displayed in Fig. 3(d). It is noticed that the 
fingers produced by the periodic oscillations move along the 
contour as wave-trains, to be attached by the rotating lid. The 
corresponding numerical visualizations are shown in Figs. 
4(a)-4(d). Although the structures in the experiment are due 
to particle depletion and the calculated structures are formed 
by injection of particles, the calculations are generally in 
good agreement with the experimental visualizations. It 
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should also be noted that the structures in the experiment are 
stretched radially because of refraction. The second part of 
the validation was carried out for a stable periodic flow situ- 
ation with Re = 2600, where experimental visualizations are 
presented in Figs. 5(a)-5(d). The periodic flow pattern is 
similar to the one just described, thus fingers are produced by 
stretching and folding mechanisms, implied by the periodic 
pumping process. This pattern is well reproduced by the nu- 
merical simulations, as seen in Figs. 6(a)-6(d). Particularly, 
the dynamic deformation of the edge and the occurrence of 
the wave-train along the core show that the calculations are 
in excellent agreement with the experiments. In accordance 
with the experiments of Escudierr3 we also find that the flow 
contains two breakdown bubbles at Re=2200 and that it is 
unsteady with one bubble at Re=2600 and Re= 2800, as 
indicated in Fig. 2. In the experimentsI it was found that the 
oscillating bubble structures disappear at Re=3000 and in- 
stead a slender vortex subject to moving wave-trains is 
formed. Therefore, it is difficult to compare calculations to 
visualizations at higher Reynolds numbers. Furthermore, the 
vortex is found to perform a spiraling motion at about 
Re=3500, thus suggesting that the hypothesis of axial sym- 
metry breaks down for Reynolds numbers greater than this 
value. 
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FIG. 5. (a)-(d) Visualizations of vortex formation for Re=2600. The peri- 
odic mechanism is most easily observed by following the formation of the 
outer edge in time. 

IV. RESULTS 

Although the visualizations indicate that axial symmetry, 
for Reynolds numbers higher than about 3500, breaks down 
to three-dimensional flow, the axisymmetric Navier-Stokes 
code may still unveil basic features of the transition process. 
In all cases, the axisymmetric solutions determine a unique 
scenario which in fact is equivalent to the three-dimensional 
scenario up to a certain critical Reynolds number. 

X= 2.5. Here a similar technique is employed by injecting 
particles around the center axis near the fixed endwall. These 
are subsequently advected as passive flow tracers according 
to the particle equations introduced in the previous section. 
Referring again to Figs. 6(a)-6(d), it is shown how streak- 
lines from the injected particles at Re=2600 form the con- 
tour of an oscillating bubble structure. At this Reynolds num- 
ber the flow is periodic with a basic frequency f =0.24, 
corresponding to a time period, T= 2df -26. In the figures, 
snapshots are depicted almost equidistantly during one time- 
period. At the same time as it oscillates up and down, the 
bubble structure is seen to be dominated by axial fingers, 
generated by folding, stretching and squeezing of the outer 
edge of the bubble. Similar patterns were observed in the 
visualizations of Lopez and Perry.24 From Fig. 2 it is shown 
that no vortex breakdown bubbles are present for Reynolds 
numbers greater than 3000. A similar behavior is found from 
the numerical visualizations. In Figs. 7(aj-7(C) snapshots 
from computed streaklines are depicted at Re=3000, 5000, 
and 7000, respectively. It is here seen that the oscillating 
bubble structure disappears and instead a slender vortex sub- 
ject to moving wave-trains is formed. At Re=3000 the con- 
tour of a small bubble is still visible, whereas the structure at 
Re=SOOO is dominated by small drop-shaped waves. In- 
creasing further the Reynolds number, the drop-shaped StIIIG 

tures become more thorny as shown in Fig. 7(c). For com- 
parison, snapshots of isolines of the instantaneous 
streamfunction are shown in Figs. 8(a)-8(c). Here there is no 
evidence of the former observed vortex structures, instead 
the streamlines form recirculating bubbles of much larger 
length scales. By following the bubbles in time (not shown 
here) it was observed that they sometimes disappeared to be 
born again, and at other times up to three bubbles were vis- 
ible. At Re=7000 recirculating bubbles furthermore ap- 
peared in the boundary layer of the sidewalls. The main ef- 
fect of increasing the Reynolds number is that the topology 
of the streamlines becomes more complicated, thus at 
Re=7000 small bubbles are formed in the interior of the 
large structures. 

B. Transition scenario 

A. Spatial flow structures 

In the diagram of Escudier, Fig. 2, it is seen that up to 
two breakdown bubbles may be present in the X = 2 case. In 
agreement with the diagram, we find the first bubble to ap- 
pear at about Re= 1450 and two distinct bubbles in the range 
from Re= 1800 to Re=2300. These bubbles are most easily 
recognized by plotting isolines of the streamfunction. When 
the flow becomes unsteady, however, a streamline plot gives 
an instantaneous picture of the flow pattern that is different 
from what is observed from releasing dye or particles into 
the fluid. Consequently, to analyze flow structures as they 
would be seen from experiments, one must resort to a La- 
grangian description by injecting flow tracers into the fluid. 
In a recent study,‘4 such a technique was utilized in combi- 
nation with the KAM (Kolmogorov-Arnol’d-Moser) theory3’ 
to study the filling and emptying process of the vortex break- 
down bubbles in a flow configuration with aspect ratio 

A detailed numerical analysis of the rotating flow prob- 
lem has been performed by considering stable time series, 
where stability was assured by studying if trajectories of the 
transients were attracted or expelled from a given solution. 
By that, all final states, which do not diverge, may subse- 
quently be taken as stable solutions. Now, parametrizing the 
meridional plane by coordinates, C&j), where 
Z= (i- l)Az, and r= (i- l)Ar, time series of the vorticity 
function were taken at the following calculation points: 

~={(50,25),(50,75),(100,50),(150,25),(150,75)}. !a 
Since the geometry of the cylinder constitutes a closed flow 
system, it is absolutely unstable in the sense that the global 
dynamics is accessible from any point in the flow domain 
(see e.g. Huerre and Monkewitz3*j. Therefore, the vorticity 
functions selected are representative to the dynamics ob- 
served. The characteristics of the stable solutions considered 
were carefully identified by applying Fourier transforms, 
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FIG. 6. (a)-(d) Numerical simulations of vortex formation for Re= 2600, depicted almost equidistantly during one time-period. Compare to Fig. 5. 

phase portraits, and Poincard sections. Furthermore, to dis- 
tinguish between deterministic chaos and random noise, cor- 
relation dimensions were calculated in the chaotic regime 
(see e. 

i? 
Grassberger and Procaccia3’ or Eckrnann and 

Ruelle3 ). Denoting the time series in Eq. (2) by vortl to 
vort5, the Fourier transforms were based on the sum over 
S, i.e. vortl+...+vort$ and phase portraits by vort2(t) ver- 
sus vortl(r), with time, t, as an internal parameter. In fact, 
any combination is possible, but this choice was found to 

(a) 
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represent the most clear picture of the transition process. 
The Poincare sections are represented as the intersection be- 
tween the hypersurface vort2(fJ = constant, with constant 
chosen appropriately, and the phase portraits of 
[vortl(t),vort2(t),vort3(t)]. Mostly, however, fundamental 
changes in the transition process were unveiled from shifts in 
basic frequencies of the Fourier transforms and compared to 
corresponding phase portraits. This leads to the transition 
scenario presented in Fig. 9, where basic frequencies are 

FIG. 7. (a)-(c) Vortex cores for Re=3000,5000, 7000. 

J. N. S&men and E. A. Christensen 769 

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



(4 ( W (c) 
FIG. 8. (a)-(c) Breakdown bubbles for Re=3000, 5000, 7000. 

shown as functions of the Reynolds number. Note that the 
harmonics of the Fourier components only state the degen- 
eracy, and thus give no qualitative information about the 
transition process. Certainly, an inverse period doubling 
transfers energy from odd to the even spectral components, 
but this just appears as a change in the basic frequency. As 
no external forced frequency is present, the system is un- 
locked, and frequencies are allowed to change continuously 
between transitions. 

The Reynolds numbers for the numerical simulations 
have been changed sequentially. Assuming that a stable so- 
lution exists at some Rea, we wish to analyze how this de- 
velops as function of Re by finding the branch that generates 
from Rea. As a first step we select a value, Re, , some dis- 
tance away from Rea , and identify the corresponding stable 
solution. If the phase portrait at Rea looks similar to the one 
at Rei, they are said to be connected by a branch on the 
(f,Re)-diagram, and the analysis is further proceeded from 
hereon. Otherwise, a new Re; is chosen by bisection and the 
corresponding stable solution found. The process continues 
until a one-way path between two consecutive stable solu- 
tions may be explained by either a continuous deformation or 

FIG. 9. Scenario of the rotating driven cavity problem. Stable solution 
(0); branch (-); hysteresis (---); stable R-T frequency (0); unstable R-T 
frequency (0); torus (...); chaos (-j. 
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by a bifurcation, justified by considering the corresponding 
phase portraits. A branch is defined as a continuum of such 
similar solutions, starting and ending by a jump of hysteresis. 
Stable solutions apart from the branch analyzed thus indicate 
the existence of multiple solutions. When necessary, continu- 
ous variations of the branches were considered in both direc- 
tions. 

In Fig. 9 the branches are represented by (horizontal) 
solid curves connecting corresponding stable points. The 
branches are terminated by jumps of hysteresis, marked at 
both endpoints by vertical dash-dotted lines. An unstable 
R-T frequency means that a transient spectral component 
(R-T frequency), which originates from a Ruelle-Takens 
transition, has been observed to go through an unstable torus. 
A stable R-T frequency, on the other hand, means that a 
spectral component remains after the appearance of a broad- 
band structure. A torus needs two basic frequencies, and is 
thus marked by a vertical dotted line connecting these, 
whereas a chaotic solution is defined by a continuous (non- 
discrete) spectrum and therefore is illustrated by a vertical 
solid line. 

The consumption in CPU-time on the vector processor 
AmdahI VP1200 amounts typically to about 15 CPU-minutes 
for a stationary solution, 2-6 CPU-hours for a periodic so- 
lution close to a critical point, and lo-20 CPU-hours near 
the onset point where the solutions become strange. This 
consumption is reduced if an initial solution is close to a 
target solution, and increased when critical points are ap- 
proached. 

In Table I the observed behavior of the basic frequencies 
has been related to concepts known from bifurcation theory. 
In the table superscripts, +, -, denote the limits of a basic 
frequency, f, decreasing from above, respectively increasing 
from below some given Reynolds number, Re. Typically, a 
continuity point, f (Re+) = f (Re-), reflects a continuous de- 
formation and therefore no transition is expected here, 
whereas a discontinuity point, f(Re+) # f(Re-), indicates 
that some kind of transition has taken place. No rules from 
the theory of torus bifurcations have been introduced, except 
that both frequencies may vary continuously as function of 
Re. It therefore may appear that the two frequencies inciden- 
tally become rational dependent, thus suggesting a periodic 
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TABLE I. Transitions related to basic frequencies. 

Change of f(Re) with Re Fundamental transition 

Continuous change 
f(Re+) # 0, f(Re-)=0 

f(Re’)=l/n.f(Re-) 

f(Re+)=n.f(Re--): 
fdRe’)=fdRe-1, 
fs(Re+) # 0, fs(Re- )=0 
f(Re’) # pf(Re-) and 
f l/q.f(Re-) for Vp,q E X 
fdW/fdW E f2 

No transition. 
Stationary to periodic solutions, 

Hopf-bifurcation. 
An n-period doubling bifurcation, 
(n=2 is simply a period doubling). 
An inverse n-period doubling bifurcation. 
Periodic to quasiperiodic transition. 
Hopf-bifurcation. 
Hysteresis. 

Asymptotic quasiperiodic solution 
on a torus. 

solution, which in fact is an asymptotic quasiperiodic solu- 
tion on a toruss . 

Table I was applied to identify all the bifurcations of the 
transition scenario. A full description is summarized in Table 
II. Subscripts ’ 1’ and ‘2’ have been introduced in order to 
distinguish between the two frequencies that define a torus. 
Furthermore, we have introduced the fundamental frequen- 
cies, p, f”, and f”‘, which are maintained through the bi- 
furcations. They are assumed to be fundamental to the sys- 
tem, because they are almost constant as Re is varied, In the 
following, the calculated solution branches will be presented 
and their properties discussed. 
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FIG. 10. Branch of early transition. Stationary solutions (.); 
Re=500, 1000, 1500, 2000, 2500 ( 0); periodic orbits (-). 

The branch of early transition, OGZeS4000: This 
branch determines the early part of the transition scenario, 
that goes from the steady to the periodic regime. In Fig. 10 
phase portraits are presented at equidistantly distributed Rey- 
nolds numbers in the range from Re= 500 to Re= 4000, with 
an increment ARe= 100. The enlarged dots denote stationary 
solutions at respectively Re=500, 1000, 1500, 2000, and 
2500. As can be seen by the continuation of the path formed 

TABLE II. Branches of the transition scenario. 

Re Fundamental transition 

Branch of early transition, O<Re<4000. 
1500,1750 

2544 
- 4000-4050 

Branch tdrough hysteresis, 33OOSReS5750. 
3200-3300 

- 5700-5750 
- 5750-5800 

Branch of hysteresis, 365OSReSSlOO. 
- 3625-3650 
- 3750-3800 
- 4150-4200 
- 5050-5100 
- 5100-5125 

Branch of onset, 475O~Re~SOOO. 
4700-4750 

- 5750-6000 
- 6000-6250 

6250-6300 

6500-6551 
6.551-6580 

- 6939 

7250-7500 
7500-7520 

- 7600-7750 

Stationary bifurcations, 1st and 2nd vortex breakdown.r3 
Supercritical Hopf-bifurcation. 
Hysteresis. 

Hysteresis. 
Hopf-bifurcation to a torus. 
Hysteresis. 

Hysteresis. 
Period doubling. 
Inverse period doubling. 
Period doubling. 
Hysteresis to equal frequency. 

Hysteresis. 
3-period doubling. 
Inverse 3-period doubling. 
Hopf-bifurcation to a torus. 
Continuous decay of secondary frequency. 
No identified transition to a periodic solution. 
Inverse period doubling. 
R-T transition to strange attractor through an unstable torus. 
The appeared frequency maintained. 
Inverse period doubling of underlying attractor. 
R-T transition from strange attractor to periodic solution. 
Inverse period doubling. 
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FIG. 11. Ret, estimated by extrapolation from time series. Vortl (-); Vort2 
c-j; v0rt3 c----j; v01t4 c---j; v0rts t---j. 

by the dots, the vortex breakdown occurring at Re= 1500 
apparently does not affect the position of the stationary part 
of this branch. The transition from steady to periodic flow is 
typically associated with a Hopf-bifurcation at some critical 
Reynolds number, ReCr , where the stationary solution turns 
unstable. In Fig. 10 the Hopf-bifurcation looks supercritical, 
which can be verified by considering the expansion of the 
circular orbits into the unsteady domain. Denoting by R the 
radii of these orbits, a supercritical Hopf-bifurcation is ap- 
proximated by 

RKdm+O(Re-Ret,). (3) 

In Fig. 11 the square of the radius of the five time series, 
vortl ,. ..,vort5, is plotted against Re. The fact that the curves 
go through the same point and become linear near this, veri- 
fies that the transition to.periodic flow is governed by a su- 
percritical Hopf-bifurcation. The intersection of the curves 
shows a critical Reynolds number of Rec,=2540. This may 
be compared to the (h,Re) diagram by Escudier, Fig. 2, 

0.06 ,“‘.‘.“‘I....r....*..m I. . . .  I  , . . . I . . . . , . , . .  I  .  I.-l....-j 

-0.08 L&-L-bd--- 
0 2 4 6 6 10 12 14 16 16 20 22 24 26 26 

Time 

FIG. 12. Increasing domination of harmonic components in time series. 
Re=2500 (-); Re=2550 (-); Re=2600 (*a.); Re=2700 (---); 
Re= 2800 (---); Re=2900 (---); Re= 3000 (e-e). 

where oscillations set in at about Re=255O for X=2. An- 
other property of the bifurcation is illustrated in Fig. 12, 
*here we have plotted time series at 
Re= 2500, 2550,. . . , 3000. In the figure these are denoted as 
radius of the sum and were constructed by taking the sum of 
vortl,..., vort5 and subtracing the mean value. The phase 
delays were eliminated simply by displacing the curves to a 
common origin. For Re=2550 the time series looks almost 
sinusoidal, in agreement with the assumption of a supercriti- 
cal Hopf-bifurcation. As the Reynolds number is increased 
further harmonics are seen to be formed. Considering again 
the transition scenario, Fig. 9, the basic frequency at 
Re= 2550 is f=0.238, corresponding to a period, T-26. 
This also defines the first fundamental frequency, f’. Note 
that the period of one revolution of the lid. is given as 
Tlidz2r (dimensionless) seconds. The basic frequency in- 
creases linearly up to Re=4000, where it attains a value 
f'=O.246. The linear dependence of the frequency on the 
distance to a critical number is a third well-known feature of 
the Hopf-bifurcation. At Re=4000 the rate of attraction was 
observed to be vanishing, which means that the time of con- 
vergency goes to inl?.nity. Denoting the most critical 
multiplier35 of the periodic solution by yl, the time of con- 
vergency goes approximately as 

1 
T==T ~n(l/llrlll) W-blRm). (4) 

T  denotes the period of the stable periodic solution, and T, 
the time of convergency to enter from a tube ‘with radius 
Ro, into a tube with radius R, . Specifically, approaching a 
critical Reynolds number, Recr , 

II yr(Re)ll-+l for Re-+Rec,*TT,--+a for Re-+Rec,. 
(5) 

Therefore the branch is assumed to approach a critical point 
at Re=4000, which most probably is a saddle-node bifurca- 
tion point. 

Tbe branch through hysteresis, 33OOGRe=G750: This 
branch proceeds through the domain of’hysteresis by a con: 
tinuous deformation of the solutions and ends, just before 
hysteresis, by a second Hopf-bifurcation to a torus. The fie- 
quency, which now is denoted as the second fundamental 
frequency, changes only slightly from fI’=O.167 it 
Re=3300 to f'I=O.174 at Ref5700. At Re=5750 a Hopf 
bifurcation introduces a secondary frequency fy = 0.0109. 
This is demonstrated in Figs. 13(a)-13(f), which shows a 
continuous deformation from Re=4000 to Re=5600, and, 
caused by the Hopf-bifurcation, a quasiperiodic solution at 
Re=5750. In Fig. 13(b) a cusp occurs on the phase portrait. 
This does not, however, give rise to a singularity point. In 
fact, the adding of a further phase dimension will smooth the 
curve. When decreasing the. Reynolds number from 3300 to 
3200 the rate of convergence became significantly slow, with 
the solution finally being attracted towards another stable 
branch. Therefore, a second saddle-node point might be as- 
sumed here. A saddle-node bifurcation is characterized by 
the collapsing of a stable and an unstable branch, which both 
exist at only one side of Re. Thus, a likely explanation for 
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FIG. 13. (a)-(f) Branch through hysteresis by phase portraits. 

the first hysteresis observed, is that the two branches are 
connected by an unstable branch of hysteresis through the 
saddle-node points. 

The branch of hysteresis, 365OGReG5100: This 
branch goes through three bifurcations, alternating between 
comparable parts of the branch. The branch introduces the 
third fundamental frequencv f”’ -3 ) see Fig. 9. At the begin- 
ning and the end of the branch the rate of attraction was 
observed to be relatively high, thus no pitchfork, transcriti- 
cal, or saddle-node bifurcations are expected here. In the 
range from Re=3650 to Re=3750, the frequency is ftxed at 
a value f”‘=O.303. This bifurcates by a period doubling to 
f = 1/2f”‘= 0.156 at Re= 3800. Note that 
f(Re’) = 1/2f”‘(Re-), as stressed in Table I. Following the 
branch, the solution bifurcates by an inverse period doubling 
from f = 0.152 at Re=4150‘ to f”‘= 0.304 at Re= 4200. A 
last period doubling is obtained from f”‘=O.307 at 
Re= 5050 to f = 1/2f”‘= 0.153 at Re= 5100, and a small fur- 
ther increase in the Reynolds number results in a momentary 
change of branches. The phase portraits are nonsimilar, 
whereas the frequencies are almost equal. In Figs. 14(a)- 
14(f), the route of hysteresis is shown by representing vari- 
ous parts of the branch by phase portraits. Note the similarity 
of, for example, Figs. 14(a) and 14(d). 

The branch of onset, 475OsReGSOOO: This last branch 
contains all the non-trivial bifurcations. Entering from the 
branch of hysteresis at Re=5100, the phase portraits 
changed momentarily, while the frequencies remained nearly 
constant. Following the branch of onset, small steps in the 
Reynolds number had to be taken in order to pass the branch 
of hysteresis at Re=5100, otherwise the solution would 
change branch. Consequently, we may conclude that the two 
basins of attraction come very close at certain points. Fol- 

lowing the branch of onset from the starting point, 
f = 1/2f”‘= 0.152 at Re= 4750, we pass the entering point at 
Re=5100 and meet a sequence consisting of a 3-periodic 
doubling from f”‘==O.155 at Re=5750, to 
f = 1/6f”‘=O.O537 at Re= 6000 and back again to 
f”‘=O.155 at Re=6250, see Fig. 15(a)-15(c). At 
Re= 6300, a second supercritical Hopf-bifurcation occurs 
with frequencies f r = 1/2f”‘= 0.155, and fi= 0.0154, thus 
introducing the domain of torii. This is seen in Figs. 15(d)- 
15(f). Coming from a periodic solution, Fig. 15(c), which 
turns 2-periodic by a second supercritical Hopf-bifurcation, 
we obtain the phase portrait shown in Fig. 15(d), or, after an 
expansion of the initial torus has taken place, to the one 
shown in Fig. 15(e). Note that the torii at Re=6300 and 
Re= 6360 are similar except for a continuous expansion. The 
second frequency, f 2, is observed to decay dramatically, al- 
beit continuously, through the quasiperiodic domain to be- 
come very small at Re= 6500, where fI =0.156 and 
f2=0.00258. In the domain of torii, no hysteresis and no 
bifurcations have been observed. The torus in Fig. 15(f) 
looks distorted, but caused by the high ratio between the 
frequencies, it was impossible to produce a covering surface 
graphically. A final bifurcation, completing the domain of 
quasi-periodic solutions, has not been recognized as pre- 
cisely as at the starting point, but it is assumed to be a sub- 
critical Hopf-bifurcation, since the solutions turn from being 
quasiperiodic to periodic. Before the onset to the chaotic 
region, we met an inverse period doubling from 
f = 1/2f”‘=O.156 at Re=6551 to f”‘=O.309 at Re=6580, 
and the onset scenario to chaotic solutions by a Ruelle- 
Takens scenario at Re=6939. Here, the power spectrum 
turns broad-banded with a single energetic spectral compo- 
nent, called a R-T frequency. The component is not identical 
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FIG. 14. (a)-(f) Branch of hysteresis by phase portraits. 

to the basic frequency observed in front of the onset point at 
Re=6939, but corresponds apparently to the frequency ap- 
pearing at Re= 6000, i.e. f= 1/6f"'. This phenomenon will 
be discussed later in the paper. The solutions turn periodic 
again by a second Ruelle-Takens scenario at Re=7500 to 
Re=7520, and a last inverse period doubling was observed 
from f = 2/6f”‘= 0.104 at Re= 7600 to f =4j6fKrr= 0.212 at 
Re= 7750. The simulation was limited by Re= 8000, thus no 
further transitions were observed. In Figs. 15(a)-15(i) suc- 
cessive domains of phase portraits from the branch of onset 
have been displayed. 

periodic solution jumps to the branch through hysteresis, 
1/2fn1= 0.168 at Re= 3600. Decreasing further, the branch is 
followed to the end where the solution jumps from 
1/2f"'= 0.167 at Re= 3300 to f’= 0.242 at Re= 3200, which 
is located on the branch of early transition. 

It may be noted that not all possible solutions are attain- 
able by a monotone variation of the Reynolds number, e.g. to 
enter the upper part of the branch through hysteresis it is 
necessary to change the Reynolds number in both directions. 

The routes of the transition scenario: To summarize 
the basic features of the calculated transition scenario, we 
here give a short description of how the various branches are 
attained by continuously increasing or decreasing the Rey- 
nolds number. The route of increasing Re, or the “branch” 
observed by increasing the Reynolds number, starts from a 
stationary solution at Re=500, and follows the branch of 
early transition through a Hopf-bifurcation at 
Re= 2500- 2550, where the first fundamental frequency, 
f’=O.238, sets in, to end at the periodic solution at 
Re=4000, where f’= 0.246. At Re= 4000- 4050 the branch 
is left by a jump of hysteresis to the branch of hysteresis with 
1/2f-= 0.152. Following this branch, to go to 
1/2f”‘=O.153 at Re=5100 three doublings are passed, and 
the branch of onset is entered by a final jump of hysteresis. 

The route of decreasing Re, or the “branch” observed by 
decreasing the Reynolds number, starts on the branch of on- 
set. Proceeding, this is followed to a frequency 
1/2f"'= 0.152 at Re= 4750. At about Re= 4725 the solution 
jumps by hysteresis to the branch of hysteresis, f”‘=O.307 
at Re=4500. This branch is followed through several bifur- 
cations to end up with f”‘= 0.303 at Re= 3650. Then the 

Onset to chaotic domain, Re=6939: By onset to cha- 
otic domain we refer to the transition from periodic to ape- 
riodic solutions. As expected from the Ruelle-Takens sce- 
nario a distinct spectral component appears in the broadband 
power spectrum when the behavior turns chaotic. This com- 
ponent, however, is not identical to the one observed just in 
front of the chaotic domain. To study in details this phenom- 
enon, the critical onset number was as a first task localized 
by bisection to Reonset =6939. Thus, at Re= 6935 and 
Re=6937 transients are attracted to a periodic solution, 
whereas they are expelled at Re=6939. The onset process 
was analyzed by simulating the transient behavior at the 
critical Reynolds number, Re,,,,,=6939, starting from an 
initial periodic solution at Re=6930, see Fig. 15(i). Assum- 
ing the onset to the chaotic domain to be a penetrating bifur- 
cation, the periodic branch may still exist, although it is un- 
stable in the chaotic domain. Under such an assumption the 
stable periodic solution at Re= 6930 may approximate the 
unstable periodic solution at Re=6939 very accurately. The 
destabilization process was then studied in time, applying 
phase portraits, Poincare sections, and the correlation dimen- 
sion based on 40,000 time steps. A first outcome is presented 
by the phase portraits in Figs. 16(a)-16(f), where N repre- 
sents a sample containing 10,000 time steps. With a time 
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FIG. 15.  (a)- ( i )  B r a n c h  of onset  by  phase  portraits. 

inc rement  A t= 0 .05, the Nth samp le  conta ins the tim e  his-  T o  clarify the destabi l izat ion process  m o r e  precisely,  the 
tory f rom t= 5 0 0 .N to t=  500 .  ( N +  1)  which,  wi th a  l id p h a s e  portrai ts w e r e  supp lemen ted  with Po inca re  sect ions 
pe r iod  TI Id=27r,  co r responds  to abou t  8 0  revolut ions of the conta in ing al l  the intersect ions points  f rom N =  1  to 
lid. S tart ing by  chang ing  R e  instantaneously  f rom 6 9 3 0  to N =  1 9 4  o n  s o m e  hypersur face,  see  Figs. 18(a) -18(d) .  In 
6939 ,  the t ransients vary on ly  sl ightly u p  to N =  100,  wh ich  Figs. 18(a) -18(c )  w e  h a v e  zoomed- in  o n  a  par t  of the Po in -  
co r responds  to lo6  tim e  steps. A t N-  1 4 0 -  1 4 2  [Fig. 16(c) ]  care  sect ions, wi th the f rame of zooming  m a r k e d  by  rectan-  
a  torus is obse rved  to appear .  This expands  cont inuously  u p  gu la r  boxes.  W e  h e r e  see  that, coming  f rom the per iod ic  
to N =  1 5 0 -  152 ,  Fig. 16(d) .  F r o m  h e r e o n  a  dramat ic  expan-  solut ion, the t ransients s e e m  to b e  in f luenced by  two fre- 
s ion sets in  a n d  the f inal destabi l izat ion process  occurs  quenc ies ,  resul t ing in  a  sur face modu la t ion  of the Po inca re  
wi thin fur ther 1 0  samp le  intervals, Fig. 16(e) .  Hereaf ter  the sect ions, Fig. 18(d) .  A fter a  cer ta in tim e , N = 4 0 , the t ran-  
sur face of the torus gets distor ted a n d  the solut ion turns cha-  sients reorgan ize  o n  a  c losed orbit,  that is a  torus in  p h a s e  
otic. T h e  onset  p rocess  is most  c lear ly demons t ra ted  by  tak- space,  a n d  f rom h e r e o n  the process  p roceeds  in  rad ia l  d i rec-  
ing  the s u m  of vortl,. . . , vor t5 a n d  represent ing  the d i f ference t ions, as  s e e n  in  Fig. 18(c) .  This cont inues u p  to N =  167,  
be tween  the m a x i m u m  a n d  m i n i m u m  va lue  of this, as  func-  w h e r e  the attractor destabi l izes a n d  b e c o m e s  st range.  M e a -  
t ion of the tim e  intervals. In Fig. 1 7  this is deno ted  as  a m -  su red  by  the corre lat ion d imens ion3’ v,,,~  , the attractor in-  
p l i tude of tim e  series. This f igure conf i rms the assumpt ion  of c reases f rom be ing  one-d imens iona l  at the init ial state at 
a  penet ra t ing  bi furcat ion, p roved  by  the long -w inded  growth  R e =  6930 ,  to b e c o m e  two-d imens iona l  u p  to N =  150,  to fi- 
of the ampl i tude.  It is not iceable  that the decis ive co l lapse nal ly  at tain a  fractal d imens ion  of v,,,,= 3 .2 for N > 1 6 7 , 
h a p p e n s  a lmost  exact ly at N =  167.  T h e  p e a k  at N =  1 7 8  in-  a n d  thus b e c o m i n g  a  n o n - r a n d o m  s t range attractor. Cor re -  
d icates the exis tence of a n  under ly ing  structure, wh ich  is spond ing  Four ie r  t ransforms of t ransient  tim e  ser ies s h o w  a n  
comparab le  to the p h a s e  portrai t  in  Fig. 1 6  for init ial f requency,  say f i, wi th a  second  f requency  2f 2  ap -  
N =  1 6 0 -  162 .  pea r ing  for N C  150.  In the Four ie r  spect ra this is mani fes ted 
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FIG. 16. la)-(f) Onset process to a chaotic attractor. 

by a strong component, 2f2, with accompanying harmonics 
nfl’2f2, which most significantly is observed for 
N= 51- 62, i.e. on the unstable torus. At N= lOl- 112 en- 
ew is transferred to the harmonics, whereas for 
N= El- 162 this pattern breaks, and fi is obtained. For 
N> 167 the Fourier spectrum becomes broadbanded, and f 1 
disappears whereas fi is preserved as the final spectral com- 
ponent. 

The onset might be understood as a periodic bifurcation 
consisting of two simultaneous “Hopf-bifurcations” leading 
to strange attractor motion. The bifurcations destabilize the 
periodic solution and the transients converge to an unstable 
and transient torus at about N=30. The second frequency 
further destabilizes the torus, and causes the attractor to be 
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FIG. 17. The expansion of onset in time. 
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(4 Vorticityl 

strange as observed in the Ruelle-Takens scenario. In Fig. 19 
the onset scenario is illustrated on diagram form. 

The spectral component is observed to bifurcate by an 
inverse period doubling from f = 1/6f"'= 0.0518 at 
Re=7250 to f =2/6f"'=O.104 at Re=7500, to end by a 
second Ruelle-Takens scenario. The “bifurcation” of the un- 
derlying structure in the strange attractor area has to our 
knowledge not been observed before, at least not as explic- 
itly. The R-T frequencies were identified by very carefully 
studying the most energetic components, and the estimates 
were controlled for several times. This most surprisingly 
manifests an inverse period doubling between 7250 and 
7500, and thus explains the appearance of a second compo- 
nent, and in fact completes the branch of onset by an under- 
lying structure in the chaotic region, connected through an 
unstable torus of onset. 

V. CONCLUSION 
In the paper we have presented the flow structures and 

the numerical transition scenario of a rotating fluid flow in a 
closed cylinder, where the motion is created by a rotating lid. 
The numerical algorithm applied is confined to axial symme- 
try and has been validated against experimental visualiza- 
tions of both transient and stable periodic tlow iu the early 
part of the transition process. The flow structures, con- 
structed by numerically inserting particles into the flow and 
following these in time, show an astonishing agreement with 
experimental visualizations obtained by illuminating pollen 
particles by a laser sheet. The vortex dynamics, observed as 
stretching, folding and squeezing of structures about a cen- 
tral vortex core, were reproduced with high accuracy. Thus it 
is believed that the numerical algorithm represents the full 
dynamical flow scenario well into the unsteady domain At 
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PIG. 18, (a)-(d) Poincare sections showing the onset process by successive expansions of scale. 

higher Reynolds numbers (Rea 3500) three-dimensional ef- 
fects have been observed in experiments and, as a conse- 
quence, the axisymmetric transition scenario becomes non- 
physical from a certah symmetry breakdown number. The 
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FIG. 19. Diagram of onset. 
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i0 

150 

numerical algorithm, however, still satisfies the axisymmet- 
ric Navier-Stokes equations and therefore is assumed to rep- 
resent basic features for a wider range of Re. 

The direct numerical simulations Were carried out witd 
the aspect ratio fixed at X = 2 and the Reynold number varied 
systematically in the range from 500 to 8000. A main out- 
come has been the resulting frequency diagram, shown in 
Fig. 9, which could be successfully related to bifurcation 
theory. Thus, by simple rules, outlined in Table I, it was 
possible to understand all fundamental transitions observed. 
The numerical simulations showed the existence of multiple 
solutions located on four discertible branches on the fre- 
qhency diagram. The definition of a branch as the continuum 
of continuous deformations or bifurctitions of stable solu- 
tions, gave constructive information of the transition sce- 
nario. Note that all branches were ended by jumps of hyster- 
esis of which six were observed. The branches were- 
illustrated by phase portraits fn order to explain their basic 
nature in the phase space. A useful ‘feature from the bifurca- 
tion theory is that the time of cor&eig&ncy is directly con- 
nected to the rate of attraction and thus to the stability of the 
solutions. Therefore, since two of the branches were left by 
very low-attractive Chdpoints we conclude them to be con- 
nected by an unstable branch of hysteresis through saddle- 
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node bifurcation points. The branches were found to possess 
three fundamental frequencies, f’,f” and f”‘. Assuming the 
onset to chaos to be a penetrating bifurcation the process was 
simulated and the transition identified as a non-trivial Ruelle- 
Takens scenario through an unstable torus. The R-T fre- 
quency obtained was observed to be connected to the final 
spectral component by an inverse period doubling in the cha- 
otic domain. Note that a lack in numerical resolution for the 
highest Reynolds numbers resulted in the chaotic domain 
being ended non-physically, but typically, by an area of pe- 
riodic solutions. The full transition scenario is summarized in 
Table II. 
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