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Quantum dynamics via a time propagator in Wigner’s phase space

Michael Grénager and Niels Engholm Henriksen
Technical University of Denmark, Chemistry Department B, DTU-207, DK-2800 Lyngby, Denmark

(Received 2 November 1994; accepted 27 December)1994

We derive an expression for a short-time phase space propagator. We use it in a new propagation
scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to
propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown
that the simple classical deterministic motion breaks down surprisingly fast in an anharmonic
potential. Finally, we discuss the possibility of using the scheme as a useful approach to quantum
dynamics in many dimensions. To that end we present a Monte Carlo integration scheme using the
norm of the propagator as a part of the sampling function19®5 American Institute of Physics.

I. INTRODUCTION function. Finally, the results are summarized and we consider

what needs to be done in order to make the present scheme a
The time evolution of quantum mechanical states is ofversatile tool for quantum dynamics in many dimensions.

central importance to many areas of chemistry and physics.

The frontal attack on the time-dependent Sdimger equa-

L L . . . Il. THEORY

tion is one possibility. The numerical work in this approach ) o )

scales, however, unfavorably with the dimensionality of the ~ First we should note that all derivations throughout this

system. The use of a short-time propagator in conjunctiof@Per are based on a one dimensional system, however gen-

with Monte Carlo integration is, at least in principle, the €ralization to many dimensions is straightforward.

optimal approach.The advantage of this method is that the LetA(t) dgnote a quantum mechanl_cal o.perator, the cor-

numerical work grows slowly with the dimensionality of the respondmg ngngr phase space function, is now obtained

system. In standard formulations the propagator is é)erformmg the Wigner transforh

complex-valued object and a major problem in existin 1 o n|-~ n

metrlljods is that it isjdifficult to find Ejl naft)ural and good samg— Ala.p =5 f dn e (Im)pn< a= §’A(t)‘Q+ §>'

pling function in the Monte Carlo integration schemes. In )

addition, the connection to classical pictures is not com-The wigner phase space density functiby(q,p,t) is ob-

pletely transparent. The propagator gives the amplitude fofained transforming the density operafgt) = | /(t) ){ y(t)|.
motion out of a given point in position space. A well-defined From which it follows that

position implies that all momenta have the same weight and
this situation never connects up with classical mechanics in f dqf dp f,(q,p.H)=1. )
an elementary fashion.
The purpose of the present paper is to suggest a newhe time evolution is governed by
twist on existing propagation schemes as well as to provide
some additional insight into the classical limit. 5t Fu(a.p,=[H(a,p),f,(AP. 1) Imoyal, 3
We take here as a starting point a propagator in the i i
Wigner phase space formulation of quantum mechantts. where the Moyal-bracket is defined by
This propagator gives the “pseudoprobability” for motion
out of a specified point in phase space. The phase space [A'B]Moya'E%
propagator has some nice properties. It is real-valued and for
systems which are at most harmonic the connection to clas- XA(q,p,1)B(q,p,1), (4)
sical mechanics is very transparent—the propagator is simwhere the subscriptd andB indicate that the operator acts
ply a delta distribution around the classical trajectory. Theonly on A(q,p,t) andB(q,p,t), respectively.
first prope_rty could make i_t a more convenient tool in CON-A The phase space propagator
junction with Monte Carlo integration and the second prop-
erty gives a nice connection to the classical mechanics, on Following McLafferty* we define a propagator in phase
which our physical intuition is based. space K(2,1)=K(0z,p2,t2;01,p1,t;) by the property:
This paper is organized in the following way: We begin Any phase space density function can be obtained as the
by introducing a time propagator in phase space. We derive gonvolution
general expression for a short-time propagator and develo
an analytical expression for the Morse potential. Using thisfw(%vpz,tz):f dchf dp; K(dz2,p2,t2:01,P1,t1)
propagator repeatedly on a grid we consider the phase space
quantum dynamics of a Morse oscillator. We present subse- Xfy(d1,p1,t1). 5
quently some work on a Monte Carlo integration schemewe can of course then writg,(q,,p;,t;) as a similar con-
using the norm of the propagator as a part of the samplingolution, and can hence identify that the propagator satisfies

dda dPg  90g IPa
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5388 M. Grédnager and N. E. Henriksen: Quantum dynamics in phase space

K(quertZ;qupOatO) K(2,1): (2 1ﬁ)2 f dq,f dpr{e(i/ﬁ)(qz,ql)pr
T

=f dchf dp; K(dz,P2,t2:01,P1,t1)  gli/m)(py=py)a’
X K(qy,P1,t1:00,Posto)- (6) +At[H(g,, py),eM G2 aP’
Inserting the definitior(5) into Eq. (3) we get that x eiMpz=poa’y 1. (13)
9 Evaluating the Moyal bracket and defining
EquIJdpl K(dz2,p2,t2:01,P1,t1) fy(d1,p1,t1) o , o’
H=T+V, T=T|p+ > —T(p2—7),
:[H(CIz:Pz),J d%f dp; B q' q' (14
V=V|q,— 7>—v At = |-
X K(0z,P2:t2;G1,P1, 1) Ty(q.P1. ) voyal (D We get for the short-time propagator,
. o 1 i~
And sincef ,P1.t;) can be chosen arbitrarily we get = ’ 1At —
o(d1,P1,t1) y we g K(2,1) Wqu fdp 1-At ¢ H)
(9 . ! . ’
E K(0s,P2,t2:01,P1,t1) x @ih)(dz2=a)p’ qli/h)(p2—p1)a" (15)

(8)  We now split up the integrals in a kinetic and a potential part
=[H(d2,P2),K(92,P2,t2:01,P1,t1) Imoyal -

1 i~
K(2,)==— [ dp’'|1-At =T (i/k)(aa—qy)p’
Finally we get, settind,=t, in Eq. (5), that (2,1 27h f P ( h )e

K(d2,P2,t1:01,P1,t1) = 8(d2—01) 8(P2—P1)- 9

i~
= " 1—At — (i/h)(p2—p1)q’
szﬁ dq(l Athv)e

Equation(8) can be solved analytically for systems which

are at most harmonic. In this case the Moyal-bracket reduces =1(02=01,P2)J(P2~ P1.02). (16
to the Poisson-bracket and we get that every point followsyhere we have used that to first orderAm is
the classical trajectory, hence we can write for the A iA iA
1At ~ 1At ~ 1AL ~
propagatct 1+— H=<1+ — T) 14— v). (17)

K ] |t 1 E] 5t :5 ] 1t _t - . nd .
(d2,P2,t2;01,P1,t1) = [ A2(d1, P15t —t1) — Q4] Since T(p)=p2/2m we get T=p'pym, using for

X 8[p2(ay,P1ito—t)—p1l, (10 1(g,—qy.p,) the first order approximation -1x=e"*, we
get
where the notationd;,p;;t,—t;) means propagated along
the classical trajectory fromy to t, starting in @;,p4). This |(Gp—01.p) = 1 J’ dp’ /)L~y — (AUm)p1p’
simple form for the propagator is the inspiration for the so 2 ALFY T onh
called “Wigner method” for time propagatiof.® Here it is At
assumed that this propagator is a good approximation for not — 5( Uo—G1— — P . (18)
too anharmonic systems. m
_ The short-ime propagator we get using E8) for the o,/ fina| expression for the propagator is then
first order time derivative. Retaining terms only up to first
order in a Taylor expansion, we get At
K(2,1)=o Q2= 01— 1y P2 J(pP2—P1.02)- (19

K(92,p2,At;01,p1,0)
Finally we can assure us thKt(2,1) is infact a real func-

=K(05,P2,0:91,p1,0) tion. 1(g,—qq,p,) is certainly real, and)(p,—p1,d,) IS
formed from a Fourier transform of a function which has an
+At[H(d2,p2).K(d2,P2,0:d1,P1,0) Imoyal- (1D even real and an odd imaginary part, meaning that the imagi-

L nary part cancels out due to symmetry.
We now use Eq(9), but for the delta distributions we use the yp y y

functional form

1 . it B. A short-time propagator for the Morse oscillator
8(0,—0qy) == | dp’ el/M(@-avp (12)
2~ 2k p : . o
™ For the Morse oscillator the potential is given by
which yields V(q)=Dg(1—e Pa)?, (20
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M. Grédnager and N. E. Henriksen: Quantum dynamics in phase space

We change to dimensionless variables=(At/%)Dg,
Q=pBg, andAP=P,—P;=(p,—p4)/B%, and get for the
J(P,—P¢,Q,) integral, using the first order approximation
1-x=1/(1+x),

1
ﬁ,BJ=ZfdQ
eiQ'AP
>< ’ ’ ’ !
1+ite” e e —e Q) —2(etR —e V)]
(21
using thate*—e *= —2i sin(ix) we get
hBI= ! f dQ’
BI=5— | dQ
eiQAP
X .
1+27e e sin(iQ’)—2 sin2iQ")]
(22)

Using the residue theorem and Jordan’s lemmaAfB>0,
we can write this integral agor simplicity we write f(Q")
for the integrangl

ABI=i X, Re$f(Q');Qil, (23
k

where we sum ove®y, in the upper complex plane only. The
values ofQy, are found solving the equation

5389

SubstitutingQ’'=i® we see that if® is a solution to Eq.
(24) so is®*,

0=1-27¢ e %sin®* -2 sini0*)=

0=[1-27¢ %e *sin®-2sini0)]*= (25)

0=1-27¢ %Ae ?sin®—-2 sin30)].

Meaning that the solutions are either real or complex conju-
gate pairs. Further we see that provideds a solution, then
due to the periodic nature of the sin-function, sdis 4.
Finally we use the quartic nature of the denominator of Eq.
(21) to order the solutions; in the substitutionx

= e1/2RQ" = (1/2)i® the denominator of Eq(21) can be
written

1+ire e e —e Q) —2(et/2Q — g~ (1/2Q")]
e’
=ire 29 2| x*—2e*x3—i Tx2+2eQx—1 . (26
There will hence be four fundamentally different solutions
Xj, ]=1,2,3,4 each resulting in an infinity of equally spaced
solutions ®;+47k, k=0, =1, £2,.... We choosed; to
have a real part ifi0;4=]. In terms ofQ" we now get

Q' =Q}=i(0;+4mk), IMQ;]e[0;4,

2
j=1,2,3,4, k=0,x1,*2,... . @0

Now the residues in the upper complex plane are those with
k=0,1,2,... and théntegral reduces to

(Q'-Qje?’?

1+27e e sin(iQ’)—2 sin(3iQ’)]=0. (24
|
4 o 4 ©
npI=i>, X Re§f(Q):Qul=i> X lim
j=1k=0 j=1k=0 Q,HQj’k

1+2re" e QsiniQ") -2 sin Q")

(28)

Expanding the denominator to first order arouj;)ﬁ, we get a zero for the zeroth-order term, sir@J’Q are all roots in the

denominator,

(Q'_Qj,k)eiQ,AP

R QAP

4 oo
ABI=i>, > lim

j=1 k=0 Q,*’Qj’k

We now inserti (©;+4k) for Qj’k and get

4 -0;AP

eQ € o —47APK
hBI=— > T > e 47
27 7, e %cos®;—cos30; 1,

(30

2ire9[e @ codiQ))— 0o HQj)I(Q'—Qj) 27

> X

“1k-0 €°© cos(in'k)—Coiéin’k).
(29

e OjAP

4

1
5 —4 APE _ .
2r1-e " 7 e ?cos®;—cos30;

(31)

Using the fact thaf is analytical ensures that it is also valid

sinceAP>0 we can sum the geometric series, and hence wéor AP<0. Further it ensures that sin@ are either real or

get

complex conjugate pairkBJ will indeed be real.
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5390 M. Grénager and N. E. Henriksen: Quantum dynamics in phase space

f¢<q2,p2,m>=f dpy I(Pa- P1.G2)

At
m

Tlllllll,l}m;ijlllrllll,,,,,, xf,

i

dz—

Dz-Pl,O) : (39

If we now placef , on a finite grid, choosing a second order
approximation for values outside the grid points

+(1-A%f,(q;,p;,0)
FIG. 1. A plot of the potential part of the short-time propagator for the .
Morse oscillatori 8J vs Q andP,— P, with 7=0.1. +3A(A+1)f (g4 1,p;,0) (36)

the propagation scheme is obvious.
We start out by testing the validity of this scheme, and
for this purpose we propagate a minimum uncertainty state

To compute the value of 8J we first solve the quartic (MUS),

equation

2Q 1 -2 2, 2 2
e . _ o2(P—
x4—2eQ%3—j — x24+2e%%%—1=0 (32) fuus(Q,P,0)= - e [0 (Q=Qp)*+0(P—Pg)°] (37

using a standard formul@ecartes—Euler or Ferrad Then  Q andP are in the same dimensionless units as we defined
we find the®; from earlier and o=v2AQ=(vV2AP)7!, ie., AQAP=1 We

_ choosec = 1/\\, Py=0 andQ, = 2/\ as in Ref. 7.

0j=—-2i Inx (33 Note that the Morse oscillator is fully described by the di-

(where the argument of In is in the intervifl,2xr]) £8J is  mensionless parametar = \2mDg/p%.' In the same di-
now computed by insertion in Eq31). In Fig. 148J is  mensionless units the propagation scheme becomes
plotted as a function o) and AP. It is certainly a much
more complicated function than the potential part of the f.//(Qz,Pz,T):J’ dP, % 8J(P,—P1,Q,)
propagator for the harmonic oscillator.

27
xf, QZ—FPZ,Pl,O . (38
IIl. RESULTS AND DISCUSSION Using this repeatedly we are able to propagate the minimum

uncertainty state a tour around in phase space. In Fig. 2 the

motion is plotted as snapshots. Corresponding values of
We shall now introduce a new propagation scheme basedorm, overlap to the Oth, 1st, and 2nd eigenstitasd the

on the phase space propagator. For a short time propagatiemergy are shown in Table I. We see that all these check

A. A finite grid propagation scheme

we get from Eqgs(5) and(19), values are indeed constant to within a percent. An arbitrary
precision can be obtained making the grid bigger and the
f¢(Q2:p2,At):f d%f dp, 5(q2—q1— E pz) time steps smaller, for this calculation the grid consisted of

m 80X 80 points and the time steps was0.1. From this cal-

culation we see that the scheme works. It is also clear from

X J(P2—P1,92)f ,P1,0 34 S . ) .
(P27P1,02)fy(01,P1,0) Y the plots that the propagation is not entirely classical, since

we can easily integrate ovep, and get areas of new amplitudes form and vanish, as pointed out in

TABLE I. Check values of the minimum uncertainty state propagation, plotted in Fig. 2.

T [ dQJ dP f(7) [ dQJ dP Hf(7) 27 dQf dP fuf(7) 27 dQJ dP ff(7) 27 dQf dP f,f(7)
0 1.000 0.107 0.475 0.438 0.085

10 1.000 0.108 0.471 0.438 0.090

20 0.999 0.108 0.470 0.436 0.091

30 0.999 0.109 0.472 0.431 0.088

40 0.999 0.110 0.471 0.429 0.089

50 0.999 0.110 0.469 0.431 0.090

60 0.999 0.110 0.472 0.429 0.086

70 0.999 0.110 0.471 0.428 0.086

Downloaded-05-Nov-2009-t0-192.38.67.112 LFRESHRGH - ¥0hi Q2 NS 2 31ideARELE RN pyright: ~see-http:/fjcp.aip.orglicp/copyright.jsp



M. Grénager and N. E. Henriksen: Quantum dynamics in phase space 5391

FIG. 2. (a),(b),...(h) corresponds to the minimum uncertainty state being propagated to, respeeativ@y,0,...,70 in a Morse potential witt=20. Contours
for the potential are taken as the first eight energy eigenvalues, contours for the Wigner functicdhré.2,...,0.26. We see that even though the center of
the distribution essentially follows a classical propagation, some of the distribution takes negative values during the propagation, and hence the classical

picture breaks down.

Ref. 11. Hence we cannot describe the motion as the classare in fact able to propagate any distribution, even though it
cal motion of phase space points. This is in accordance witdoes not satisfy the Heisenberg uncertainty principle. Take
the results of Ref. 7. that we know theexactposition and momentum of a particle

We shall now try to make a smooth connection to clasto a certain time, i.e., the distribution arising is the delta
sical mechanics. With the propagation scheme introduced weistribution

Downloaded-05-Nov-2009-t0-192.38.67.112 LFRESHR G -¥9hidQ2: NS 2 31ideAREL SRR pyright: ~see-http:/fjcp.aip.orglicp/copyright.jsp



5392 M. Grédnager and N. E. Henriksen: Quantum dynamics in phase space

JLeta nonclassical, however as we increaséo 120 the distribu-
tion only feels the harmonic part of the potential and hence
behaves more classical as we would expect from the form of
the time propagator for the harmonic oscillaf&qg. (10)].

The calculation illustrates that the concept of classical
deterministic motion breaks down surprisingly fast in an an-
harmonic potential. A comparison between Figs. 2 and 4
shows, however, that the overall motion of the quantum me-
chanical phase space distribution is much more classical than
suggested by the motion of individual phase space points

) o (narrow distributions
FIG. 3. This plot shows the form of a delta distribution propagated up to
7=0.2 in a Morse potential with=20. The delta distribution was initially
centered aQy=v2/\, Py=0. We see that the classical picture breaks down
immediately after the propagation is started.

500
400
300
200 |
100 (-

-100 -
-200

B. Monte Carlo integration

It is natural to mention Monte Carlo integration when
f5(Q1,P1,0)=6(Q1—Qq) 6(P1—Py). (39 discussing propagation via a propagator. The problem in us-
ing Monte Carlo techniques in ordinary Feynman path inte-
This we can plug into Eq38), integrating twice, and hence gration lies in the lack of a good sampling function, this is
obtain the analytical form of the delta function after two because the propagators are complex with a norm indepen-

small time steps, dent of the integration variables. Usually this is dealt with by
introducing some other sampling function based on some
f§(Qs,P3,27) physical knowledge of the system, e.g., a Gaussian distribu-

tion around the classical patfihis however, will not always
assure us fast convergence; what if the system does not be-
have classical at all? If we instead use the phase space propa-
gator, we are assured the fastest convergence we could pos-
sible hope for? the phase space propagator has no complex

(40) oscillations and the norm dependents strongly on the integra-
tion variables. It is hence obvious to use the norm of the
propagator as a part of the sampling function in a Monte

This function is plotted in Fig. 3 from which it is seen that Carlo calculation.

even though the distribution is narrow it is certainly no e considered especially the calculation of the quantity

longer a delta distribution. This in fact enables us to put it on

a grid and propagate it further using our propagation scheme.

However since it is still quite narrow the grid would have to s

be very fine-meshed, and since the superposition of the delta Py(t)=(¢l(1))|

distribution on the eigenstates of the Morse oscillator con-

tains considerable contributions from high energy states the =27rﬁf dqf dp fu(q,p)f,(a,p,b). (42)

grid would also have to be quite large in order to represent

the time evolution properly. All in all this would require a

grid containing many points, making the calculation almost

impossible. With the biggest grids we were working@00  This we can compute using E¢p) followed by repeated use

%300 point$ we only succeeded to propagate the delta disof Eq. (6),

tribution up to =~3. In order to show what is happening,

when we propagate a delta distribution, we instead propa-

gated another narrow—non-Heisenberg—distribution; a

A2 A2
=5 ﬁBJ[Qa,ZPa— 27 (Q3—Qo), 7
)\2

2
XﬁﬁJ[Qs_)\_;Z_ Q3— Qo) —P3—Py,7|.

- (

squeezed Gaussian, P¢(t)=27rﬁf quJ def quilf dpy_1-+
Y e 2(0—0m)24 2P — P2
fUQ.P.0)= e ole Qe (41) deqef dpo fy(an.pr) X K(N,N=1)--
X K(1,0)f,(do,pot). (43

with y=10 ando, Q, and P, as before. The uncertainty of
this state can easily be calculated toA@AP=1/(2y), and
hence is Heisenberg’s uncertainty principle violated by a fac-
tor of 10. The propagation is shown far=20 in Fig. 4 and We now use Egs(16) and (18) to do all but one of the
for A=120 in Fig. 5. Forn=20 the propagation is highly position integrals, leaving the expression

Downloaded-05-Nov-2009-t0-192.38.67.112 LFREOHR N -¥9hi Q2 NS 2 31ideARELE RN pyright: ~see-http:/fjcp.aip.orglicp/copyright.jsp
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FIG. 4. (a),(b),...(h) corresponds to the squeezed Gaussian being propagated in a Morse potentiat 2dthup to, respectively;=0, 10,...,70. Contours for
the potential are taken as the first eight energy eigenvalues, contours for the Wigner functieh4re0.1,...,1.7.

with the additional condition

At _
9i=Gi+1~ oy Pi+2, 1=0,1,...N—1. (45)

P(p(t)ZZWﬁJ' quf def dpn-1°

Xf dpo fu(dn,Prn) X I(PN—PNn-1,0n) "
This integral we can solve using Monte Carlo integration,
X J(P1—Po.d1)f 4(do,Po,0) (44)  sampling after the Metropolis scherhi&®? First we define

Downloaded-05-Nov-2009-t0-192.38.67.112 LFREEHRGH - ¥0hi Q2 NS 2 31ideARELE R pyright: ~see-http:/fjcp.aip.orglicp/copyright.jsp



5394 M. Grénager and N. E. Henriksen: Quantum dynamics in phase space

03 o2

041

)
02
Q 03 g
04 45 30

FIG. 5. (a),(b),...(h) corresponds to the squeezed Gaussian being propagated in a Morse potentiat ¥@th up to, respectively;=0, 60,...,420. Contours
for the potential are taken as the first four energy eigenvalues, contours for the Wigner functie®.4re-0.1,...,1.7.

p(X)=J(Pn—Pn-1,an) - I(P1—Po,01) f (G0, Po,0). (46) However, sincep(X) is not positive definite, we cannot use it
directly as sampling function. The trick needed, we get from

the Metropolis sampling scheme; in this sampling scheme

only a function proportional to the sampling function needs
f dx P(X):f quf dpy fy(au,pn, D=1 (47 to be known, i.e., we can write E¢42) as

Hence,

Downloaded-05-Nov-2009-t0-192.38.67.112 LFREEHR G - ¥9hidQ2: NS 2 31ideAREL SRR pyright; ~see-http:/fjcp.aip.org/icp/copyright.jsp



M. Grénager and N. E. Henriksen: Quantum dynamics in phase space 5395

it in a new scheme to propagate a Gaussian distribution. The
P¢(t)=277ﬁf dx f4(dn,Pn)p(X) result of this calculation showed that this scheme is indeed
an appropriate way to propagate directly in Wigner’s phase
P J dx f4(an,Pn)p(X) space. We then used this new scheme to propagate classical
J dxp(x) distributions, and we saw that the classical behavior breaks

i down immediately as we start the propagation. However, as
ok J dx fy(an ipN)Slgf[P(X)]|P(X)| (48  expected, if we make the potential almost harmonic the clas-
J dxsigri p(x)1[p(X)] sical behavior is recovered.
and sample aftep(x)| as if its norm was unity. An inter_esting perspective is the.use of the phase space
This choice of sampling function is indeed a very goodPropagator in a Monte Carlo calculation. In th|s'way we can
choice; it differs from the best, the norm of the integrand, by@V0id the introduction of some external sampling function,
only |f¢(qN ,pN)|_12 Hence almost every variable is sampled by smply using the norm of the propagator as a part of the
the optimal, and that is without introducing any externalS@mpling function. This should guarantee fast convergence,
knowledge of the system what so ever. since this sampling function is the almost optimal choice.

To test the scheme we propagated the ground state of a 11uS, this work might have interesting perspectives for
Morse oscillator and measured the overlap back on th&€ computational approach to quantum dynamics in systems
ground state, i.e., we made a calculation of the quantity ~ ©f high dimensionality. To that end we have, however, at this

early stage of the development one major unsolved

_ lem—the evaluation of the short-time phase space
1_2ﬁfd fd fd Ly prob the nas

4 v P Pn-1 propagator for general potentials in a form which is much

simpler to evaluate then the short-time propagator considered

X f dpo foldn,Pn)I(PN—PN=1.GN) """ in this paper. To be more specific, the remaining issue is how
to evaluate the potential part of E(1L6) for general poten-
X J(P1—Po.91)fo(d0,P0), (49  tials and how to do this in a way which leads to an expres-

wheref, is the Wigner function for the ground state of the sion which can be evaluated numerically in an inexpensive
Morse oscillator° We used for the calculation the same di- way.
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