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A Tunable Closed-Form Model for the Structure
Function of Tropospheric Delay

J. P. Merryman Boncori and J. J. Mohr

Abstract—Several interferometric synthetic aperture radar ap-
plications could benefit from the availability of a closed-form
model for the second-order statistics of atmospheric delay. Due to
the variability of the latter, it would also be desirable for the model
to be tunable to some acquisition-specific information, describing
the atmospheric state. In this letter, a closed-form expression for
the zenith delay structure function of tropospheric propagation
delay is derived from a two-regime power spectral density function
reported in the literature. The power at a specific spatial frequency
is used as a free model parameter, which may be tuned to available
measurements or, in the absence of these, to atmospheric statistics.
The latter approach is used to compare the derived model with
previously published results.

Index Terms—Atmospheric propagation delay, statistical mod-
eling, synthetic aperture radar (SAR) interferometry.

I. INTRODUCTION

ONE OF the most relevant error sources in repeat-pass
synthetic aperture radar (SAR) interferometry is space-

time fluctuation of the atmospheric refractive index. Given
the current state of the art, several applications elicit interest
for a closed-form model of the second-order statistics of this
disturbance.

First, as far as height and displacement measurements are
concerned, atmospheric error prediction is currently only fea-
sible within multiinterferogram frameworks. However, applica-
tions exist, such as ice-surface velocity measurement, in which
only a minimum number of interferograms may be exploited
due to limitations in data availability, temporal decorrelation
constraints, and dynamics of the observed process itself. An
error estimate may be provided also for these reduced data
sets, exploiting models for the second-order statistics of error
sources. A mathematical framework to do so is presented in
[1, p. 61], whereas a different method based on a similar
concept is detailed in [2].

Second, within multiinterferogram frameworks, second-
order error statistics may be used in the data-selection process
in order to ensure achievement of a desired sensitivity to the
geophysical parameter of interest [3].

Finally, some recent studies have addressed the problem
of atmospheric error correction, using systems other than
SAR, namely, Global Positioning System [4] and satellite-
imaging spectrometers [5], [6]. These studies elicit interest
for statistical error modeling, since external measurements are
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typically available on a sparse grid as compared to interfero-
metric SAR measurements so that some form of interpolation
is required. Preliminary results indicate statistical interpola-
tors to be the most effective for this task, and these typi-
cally exploit models of the second-order statistics of the error
source [7].

In this letter, the statistical characterization of tropospheric
delay through the structure function and power spectral density
(PSD) modeling approaches is recalled in Section II. The
underlying assumptions are discussed, and the linking equa-
tions are reported. A closed-form expression for the zenith
atmospheric delay structure function is derived in Section III
from a two-regime PSD function reported in literature. In
Section IV, the derived model is compared to previously
published results, tuning its free parameters to globally rep-
resentative atmospheric statistics. The conclusions are drawn
in Section V.

II. STATISTICAL-MODELLING APPROACHES

In the following, modeling of the propagation delay due to
variations in the spatial distribution of tropospheric water vapor
shall be considered. The effects of ionosphere and of changes
in the vertical stratification of tropospheric refractive index may
not be neglected in general, although they shall be addressed in
future studies.

A. Refractivity and Delay Structure Functions

In several researches, statistical modeling of water-vapor
fluctuations has been based upon the structure function of
atmospheric refractivity (1). The latter is defined as N = 106 ·
(n − 1), where n is the atmospheric refractive index

DN (�r, �R) = E
[(

N(�r + �R) − N(�r)
)2

]
. (1)

In (1), �r and �R represent the 3-D position and displacement
vector, respectively, and the expected value is taken over all
possible atmospheric states.

Considering the wave propagation between the radar and a
point on the Earth’s surface, the quantity of interest is wavefront
delay, which results from integration of the refractivity field
along the line of sight (geometrical-optics approximation) and
is, therefore, a 2-D quantity. In the following, the one-way
zenith delay (or zenith excess path length) shall be indicated
with τ , and its units shall be in meters. In several independent
studies [1], [10], [11], the following two regime power law for
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Dτ (R) has been observed, and a third “saturation” regime is
conjectured based on physical constraints

Dτ (R) =




C2
l R5/3, L0 � R � L1

C2
LR2/3, L1 � R � L2

C2
LL

2/3
2 , R � L2.

(2)

In (2), R represents horizontal distance, L0 is the inner scale
of dissipation, L1 is the outer scale of injection, and L2 is the
saturation scale length. Finally, Cl and CL are the structure
constants of the turbulence. Functional dependence on R re-
quires the hypothesis of homogeneity (wide-sense stationarity)
and isotropy (circular symmetry).

It is agreed among the aforementioned studies that the first
regime corresponds to a 3-D Kolmogorov turbulence [8], and
L1 should be on the order of a few kilometers. L0 is instead
on the order of millimeters [10] and is, therefore, not relevant
for current SAR interferometers. For the second regime, it has
been observed in [10] that everything goes as if Kolmogorov’s
“2/3 law,” describing isotropic turbulence, could be extended
also to scales larger than the tropospheric thickness, provided
that turbulent motion is considered as 2-D in character. This
interpretation is also currently accepted by other authors [12]
and implies proportionality between the delay and the refrac-
tivity structure functions through the square of the effective tro-
pospheric height. This fact is relevant for the present discussion
and shall be referred to in Section III-B. Finally, for even larger
scales, on the order of several hundred kilometers, the structure
function is bound to “saturate”; otherwise, it would represent an
infinite variance of the long-term atmospheric disturbance [11].
What happens physically at the transitions between regimes in
(2) is not clear [9]. Furthermore, as far as modeling is con-
cerned, very different values have been proposed for L1 and L2.

B. PSD of Phase Artifacts

A more recently proposed approach to the modeling of
atmospheric artifacts in SAR interferometry is through the PSD
of the phase variation associated to the excess path length. Con-
sidering two-way propagation along the zenith direction, the
radar-wave’s phase ϕ is related to the one-way zenith delay τ by

ϕ =
4π

λ
· τ. (3)

It is convenient to define the PSD of ϕ through its auto-
covariance function

Cϕ(�r, �R) = E
[
(ϕ(�r) − µϕ)

(
ϕ(�r + �R) − µϕ

)]
. (4)

In (4), �r and �R represent the 2-D position and displacement
vector, respectively, whereas µϕ represents the mean of ϕ and
will be assumed zero in the following. The PSD of ϕ is found
as the Fourier transform of Cϕ(�r, �R), which, assuming wide-
sense stationarity and circular symmetry, reduces to Cϕ(R),
where R = |�R|. The one-sided PSD of ϕ may therefore be
computed through

Pϕ(f) =




0, f < 0

4
+∞∫
0

Cϕ(R) cos(2πfR)dR, f ≥ 0 (5)

where f represents spatial frequency.

In order to link PSD and structure function models, it is,
first of all, noted that (5) holds also between the zenith delay
PSD and its autocovariance, respectively, due to (3). Second,
stationarity implies that the variance of the atmospheric delay
Var{τ} is assumed constant at every point in its 2-D space.
Furthermore, under the hypotheses of stationarity and zero-
mean, the one-way zenith delay autocovariance function may
be related to the corresponding structure function through

Cτ (R) = Var{τ} − Dτ (R)
2

. (6)

In [11], a notation convention is introduced, by which the
symbol Dτ (∞) is used to represent the delay structure function
value at a distance at which delay observations are uncorrelated.
From (6), it follows that Dτ (∞) = 2Var{τ} and thus

Cτ (R) =
1
2

(D∞(R) − Dτ (R)) . (7)

The autocovariance Cϕ(R) is found by taking the inverse
Fourier transform of the two-sided PSD, which, by using (6)
and (3), leads to

Dτ (R) =
(

λ

4π

)2
∞∫

0

4 sin2(πfR)Pϕ(f)df (8)

(see also [1, p. 274]). Equations (5), (7), and (8) analytically
relate the PSD and the second-order statistic modeling.

The convenience of PSD modeling lies in the fact that the
disturbances on SAR phase caused by a variety of weather
conditions, from thunderstorms to clear sky, were found to
comply to a similar two-regime model [1], [14]. Based on [13],
[1, p. 146], the following closed form may be written:

Pϕ(f) =




(hf0)P0

(
f
f0

)−5/3

, 1
Rmax

< f ≤ 1
h

P0

(
f
f0

)−8/3

, 1
h < f ≤ fs

2

(9)

where h represents the effective tropospheric height, f0 is
an arbitrary spatial frequency greater than 1/h, P0 = Pϕ(f0),
Rmax is the maximum distance between a pair of SAR image
pixels, and fs the data sampling rate used in the derivation of
(9). The validity of the former at low and high frequencies has
been limited, since compliance outside these scales has actually
not been observed in SAR data. Namely, (9) was verified for
Rmax = 50 km and fs = (1/160) m−1. It is expected that, as
spatial frequency decreases (below one cycle in several hundred
kilometers), the delays become uncorrelated, and the PSD will
tend to flatten. In [15], measurements of tropospheric wind-
speed PSD were found to follow a −5/3 exponent power law
up to scales of about 400 km. The behavior at high frequencies
(above one cycle in tens of meters) is not of great concern due
to the small amplitude of atmospheric disturbances as compared
to other noise sources.

The power-law model (9) was observed in interferometric
phase originally rather than in radar wave phase ϕ directly.
However, a two-regime model is expected to hold for the phase
of each SAR acquisition, ϕ1 and ϕ2, since these regimes corre-
spond to the first two in (2), for which a physical interpretation
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was given. Assuming the atmospheric state to be uncorrelated
at the two acquisition times, it is expected for interferometric
phase ∆ϕ = ϕ1 − ϕ2 to comply to the same power-law model,
since in this case, P∆ϕ(f) = Pϕ1(f) + Pϕ2(f).

III. PROPOSED MODEL

A. Derivation

The statistics of interest for the interferometric SAR ap-
plications aforementioned in Section I are the covariance
Cov{δi, δj} and the variance Var{δi − δj}, where δi =
(λ/4π)∆ϕi represents the slant range atmospheric delay of the
ith interferogram pixel. Assuming the atmospheric states at the
interferometric pair acquisition times to be uncorrelated and a
cosine mapping function [4], the sought quantities are related to
the zenith delay structure functions at the two acquisition times,
Dτ1(R) and Dτ2(R), by the following relations:

Cov{δi, δj} =
m2(θ)

2
(
Dτ1(∞) − Dτ1(R)

+ Dτ2(∞) − Dτ2(R)
)

Var{δi − δj} =m2(θ) (Dτ1(R) + Dτ2(R))
m(θ) = 1/ cos θ. (10)

In (10), subscripts 1 and 2 denote the acquisition time, θ is the
mean radar angle of incidence between the two acquisitions,
and R is the horizontal distance.

A closed form for Dτ (R), representing the one-way zenith
delay structure function at a generic acquisition time, may be
derived from the one-sided phase PSD in (9), using (8). For
convenience in the mathematical derivation, the maximum dis-
tance between two image pixels Rmax as well as the sampling
frequency fs, which appear in (9), will be set to infinity. The
former assumption implies that the spectrum will not flatten for
low spatial frequencies, which in turn implies an infinite vari-
ance for the atmospheric phase disturbance. This unphysical
assumption however will be corrected for in the spatial domain,
following an approach proposed in [11]. The latter assumption
instead is expected to have little impact on the derivations,
due to the low power levels associated with increasing spatial
frequencies in comparison with thermal noise.

Inserting (9) into (8) yields the following, after a change of
variables and reordering:

Dτ (R) =P0C0

[
C1I1

(
R

h

)
R2/3 + C2I2

(
R

h

)
R5/3

]

C0 =
(

λ

4π

)2

[m2]

C1 = 4f
8/3
0 π2/3h [m−5/3]

C2 = 4f
8/3
0 π5/3 [m−8/3]

I1

(
R

h

)
=

πR/h∫
0

u−5/3 sin2(u)du

I2

(
R

h

)
=

∞∫
πR/h

u−8/3 sin2(u)du. (11)

TABLE I
STRUCTURE-FUNCTION MODEL PARAMETERS

The computation of the earlier integrals may be done numer-
ically; however, a closed form is of practical interest, and an
accurate approximation is reported in

I1

(
R

h

)
=

{
3
4u4/3 − 1

10u10/3, R
h ≤ A1

C3 − 3
4u−2/3, R

h > A1

I2

(
R

h

)
=

{
C4 − 3u1/3 + 1

7u7/3, R
h ≤ A2

3
10u−5/3, R

h > A2.
(12)

In (12), u = πR/h, and the values of the constants are shown
in Table I. The accuracy of the closed-form approximation is
further discussed in Section IV.

B. Convergence at Infinity

It has been pointed out in [11] that a power-law structure
function leads to an unphysical feature at infinity, since tro-
pospheric delay should be uncorrelated for two infinitely distant
points. Following the approach of [11], a multiplying factor
dependent on a saturation scale L is introduced to provide con-
vergence of the structure function at infinity. The same factor
used in [11] for the refractivity structure function is used here
for the delay structure function, based on the proportionality of
the two for R � h discussed in Section II-A. Therefore, the
model can be modified, leading to

Dτ (R) = P0C0


C1I1

(
R
h

)
R2/3[

1 +
(

R
L

)2/3
] + C2I2

(
R

h

)
R5/3


 .

(13)

For SAR applications, the scales of interest are typically R <
400 km. For these distances, (13) is based on the InSAR
observations which lead to (9) and on the assumption that the
first regime in (9) still holds for R � L, which is in agreement
with [15]. At greater distances, (13) is not supported by obser-
vations and, actually, contradictions arise with those in [15]. In
order to extend (9) and, thus, (13), tropospheric delay signal
should be isolated in InSAR data at these scales. This is not a
trivial task, due to SAR processing issues (handling of Doppler
centroid and baseline variations), ionospheric effects, and the
large data volumes involved and would be useful only for a
limited amount of SAR applications. Therefore, it is considered
outside the scope of this letter.
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Fig. 1. (Left) Closed-form and numeric delay structure functions derived in
this letter (continuous and dotted line, respectively) as compared to that of [11]
(dashed line). (Right) Corresponding interferogram path-length covariances
(10) assuming similar atmospheric state at the two acquisitions.

C. Tuning of Model Parameters

In order to use the delay structure function model (13),
parameters P0 and L must be computed. In the absence of
any scene-specific information concerning the power of the
atmospheric disturbance, published atmospheric delay statistics
may be used. Assuming ergodicity and that the spatial structure
of the turbulence is “frozen” and moves with a constant wind
speed s, spatial and temporal statistics may be interchanged
so that distance R corresponds to st, where t is the time
variable. Measured delay variances over a time T and the
model expressions (13) and (12) can then be used to setup two
equations in the two unknowns P0 and L as follows [11]:

lim
R→∞

Dτ (R) = 2 · Var{τ} � 2 · σ2
τ (T )|T=1 year (14)

1
T 2

T∫
0

(T − t)Dτ (R)|R=stdt = σ2
τ (T )|T=24 h. (15)

A finite long-term (long-distance) variance is enforced by (14),
and its left-hand side may be represented in closed form using
(13) and solved for L (for a given P0), leading to

L=

(
1

C1C3

[
2 · Var{τ}

P0C0
− 0.3 · C2

(
h

π

)5/3
])3/2

. (16)

A measured long-term variance (annual for example) may be
used for Var{τ}. Equation (16) enforces agreement with a
second (short-term) variance measurement, and since a closed
form is quite lengthy, its left-hand side is more conveniently
computed numerically and solved for P0 (for a given L).
Equations (15) and (16) can be solved iteratively, initializing
L to the 3000-km value reported in [11] and using globally
representative values for the long- and short-term variances,
although, strictly speaking, these are latitude- and season-
dependent quantities [15]. Physically reasonable values for
P0 are expected to range from 1 to 40 m, according to the
observations of [1], whereas L should be between 2000 and
3000 km according to [10].

Fig. 2. Exponents from local power-law fits to the structure function curves
in Fig. 1 versus distance R.

Should a PSD measurement at a certain spatial frequency be
available at an acquisition time, this would provide a value for
P0 in (13), and L could be computed from (16). Therefore, in
(10), Dτ1(R) and Dτ2(R) may, in general, have a P01 �= P02

and an L1 �= L2, whereas Dτ1(∞) = Dτ2(∞) = 2Var{τ}.
External sources, which should be investigated to tune P0,

are high-resolution numerical weather models as well as satel-
lite spectrometer and radiometer data.

IV. COMPARISON WITH PREVIOUSLY

PUBLISHED RESULTS

A closed-form model was obtained, tuning the free param-
eters (P0, L) in (13), to globally representative atmospheric
statistics, using (14) and (15). The expressions reported in
(12) were used. For comparison, a model was also derived,
with integrals I1 and I2 evaluated numerically. The model
parameters h and s were, in both cases, set to 3 km [13] and
8 m/s [11], respectively. The procedure outlined in the previous
section was used to compute P0 and L, using 1 and 2.4 cm as
the measured daily and annual rms of atmospheric delay [11]. A
list of all model parameters is shown in Table I. The reported P0

and L values are those of the closed-form model, which differ
only slightly from those computed for the numerical one.

A first comparison between the numerical and the closed-
form structure functions derived in this letter is shown in Fig. 1.
The relative error, due to the approximations used in deriving
(12), amounts to less than 5% and causes an error of less than
0.1% in the interferometric path length covariance. The former
was computed through (10), assuming similar atmospheric state
at the two acquisitions. These error figures are negligible for
applications, and in the following, only the closed-form model
shall be considered.

Second, the closed-form structure function of this letter was
compared that of the work of Treuhaft and Lanyi [11], plotted
as a dashed line in Fig. 1 (left). The greatest relative difference
is observed around R = h and amounts to about 30%, whereas
the corresponding difference in interferometric path-length co-
variance grows to 1.5% over a 100-km distance. The observed
differences are imputable to the piecewise approximation of the
PSD in (9), used to derive the model of this letter, as well as to
the different values of h chosen (3 km in this letter as opposed
to 1 km in [11]). These factors influence the exponent of the
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Fig. 3. PSD of radar phase computed from the closed-form structure function
(continuous line) of this letter and (dotted line) from (9).

local power-law fit to the structure function models, as shown
in Fig. 2. It may also be noted from Fig. 2 that over a 100-km
range, the power-law exponent in (13) varies continuously from
5/3 to 2/3, in agreement with (2).

A third comparison was carried out in the spatial frequency
domain. The phase PSD corresponding to (13) was computed
using the values in Table I and is shown in Fig. 3 together
with (9). These spectrums are expected to differ due to the
denominator in (13), which is introduced to flatten the PSD at
low frequencies. However, over typical SAR image scales, the
relative differences were found to be below 15%. Considering
the uncertainties in the scene-dependent model parameters h,
s, and P0, it may be assumed for all practical purposes that
parameter P0 in (13) still represents the corresponding PSD
at f = f0.

Finally, the P0 value derived in this letter (Table I) was
compared to the values reported in [1], representative of a
variety of weather conditions. The following equation may be
used to compare these values:

P0H = 2fs

(
λ

4π cos θ0

)2

P0 (17)

where P0H represents the PSD at frequency f0 of the interfero-
metric path-length delay, reported in [1, p. 143], whereas P0

represents the single-acquisition-phase PSD at frequency f0,
which appears in (13). The other parameters are the data-
sampling frequency fs and the nominal ERS incidence angle θ0

and wavelength λ. The formula is based on the discrete equiv-
alent of (5), since the PSDs in [1] were computed from in-
terferograms and assumes the same power of the atmospheric
disturbance in the two acquisitions. Substituting fs =
(1/160) m−1 [13, p. 28], λ = 5.6 cm, θ0 = 23◦, and P0 =
9 m from Table I, we obtain P0H = 2.7 mm2. This represents
a median value for the observations reported in [1], which,
overall, ranged from 0.3 to 11.2 mm2.

V. CONCLUSION

A model for the second-order statistics of the propagation
delay associated with spatiotemporal refractivity fluctuations in
the troposphere was derived. A closed-form expression for the
zenith delay structure function was obtained from a two-regime

PSD function reported in the literature [1], [13], the validity
of which is limited to typical SAR scales (< 400 km). The
underlying assumptions are wide-sense stationarity and circular
symmetry of the considered process. The model contains four
independent parameters, namely, effective tropospheric height,
effective wind speed, correlation distance, and the PSD at a
given spatial frequency.

The first two parameters are considered fixed, whereas the
latter two may be computed exploiting acquisition-specific
information, as well as “off-the-shelf” tropospheric-delay sta-
tistics. For their estimation, in the absence of any scene-specific
information, globally representative measures of the daily and
annual variances of tropospheric delay are required to set up a
system of two equations in the two unknowns. However, should
a PSD measurement at a single spatial frequency be available at
each image acquisition time, this would provide scene-specific
equations the model could exploit.

Future improvements should address the modeling of
vertical-stratification variations and parameter tuning using
external data sources.
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