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A High Conversion-Gain ()-Band InP DHBT
Subharmonic Mixer Using LO Frequency Doubler

Tom K. Johansen, Member, IEEE, Jens Vidkjer, Member, IEEE, Viktor Krozer, Senior Member, IEEE,
Agnieszka Konczykowska, Senior Member, IEEE, Muriel Riet, Filipe Jorge, and Torsten Djurhuus

Abstract—The paper presents analysis and design of a Q-band
subharmonic mixer (SHM) with high conversion gain. The SHM
consists of a local oscillator (LO) frequency doubler, RF pre-am-
plifier, and single-ended mixer. The SHM has been fabricated in a
high-speed InP double heterojunction bipolar transistor (DHBT)
technology using coplanar waveguide structures. To the best of our
knowledge, this is the first demonstration of an SHM using InP
DHBT technology at millimeter-wave frequencies. The measured
results demonstrate a conversion gain of 10.3 dB at 45 GHz with
an LO power of only 1 mW. The fundamental mixing product is
suppressed by more than 24 dB and the output P; 45 is around
—6 dBm. The mixer is broadband with a conversion gain above
7 dB from 40 to 50 GHz. The conversion gain for the fabricated
SHM is believed to be among the best ever reported for millimeter-
wave SHMs.

Index Terms—Coplanar waveguides (CPWs), heterojunction
bipolar transistors (HBTs), millimeter-wave circuit, mixer anal-
ysis, monolithic microwave integrated circuits (MMICs), nonlinear
circuit analysis, subharmonic mixer (SHM).

1. INTRODUCTION

UBHARMONIC mixers (SHMs) have long been rec-

ognized as an interesting alternative to fundamental
frequency mixers in millimeter-wave systems. The reason
being that SHMs require only half the local oscillator (LO)
frequency, resulting in an easier design of high spectral purity
LOs and relaxation of the power requirements. In addition to
this, SHMs offer inherent RF/LO isolation, which is important
in receiver applications where unwanted radiation of LO power
from the RF port must be minimized.

The most common SHM topology consists of a pair of
antiparallel Schottky barrier diodes [1], [2]. However, this
topology suffers from significant conversion loss and requires
additional amplification. Furthermore, high cutoff frequency
Schottky barrier diodes are generally not available in monolithic
microwave integrated circuit (MMIC) technologies. Another
widely used SHM topology extends the standard Gilbert cell
mixer with a stacked LO switching core [3]. At millimeter-wave
frequencies, the LO transistors do not operate well as switches,
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resulting in poor conversion gain and suppression of the fun-
damental mixing product. Furthermore, this topology requires
a rather large supply voltage (typically around 7 V). Recently,
a balanced SHM topology was reported [4], which provides
excellent isolation between the LO and RF ports. This topology,
however, provides no suppression of the fundamental mixing
product.

This paper reports on a high-gain InP double heterojunction
bipolar transistor (DHBT) SHM for Q-band applications. The
SHM topology consists of an LO frequency doubler, RF pre-
amplifier, and single-ended mixer, as previously proposed for
pHEMT-based SHMs [5]. The use of an LO frequency doubler
in front of a mixing stage in order to obtain the wanted subhar-
monic mixing functionality has also recently been demonstrated
in 0.18-pm CMOS technology [6].

The design of SHMs is complicated due to the consecutive
nonlinear processes of frequency doubling and frequency
mixing in one circuit. At (J-band frequencies and above, ac-
curate passive circuit design further complicates the design
procedure. Here we present a partly analytical approach for the
design of an SHM, which greatly facilitates the choice of the
LO power, transistor bias points, and embedding impedances.
The passive structures are designed using extensive electro-
magnetic (EM) simulations.

The measured results on the fabricated InP DHBT SHM
demonstrate high conversion gain at very low LO power and
good suppression of the fundamental mixing product.

II. DESIGN THEORY

To illustrate the mixing principle used in the SHM topology,
we consider the circuit shown in Fig. 1(a). The applied LO signal
is a large second harmonic signal vr,o(t) = Vio cos(2wrot)
generated by a preceding frequency doubler transistor device.
The large LO signal gives rise to a time-varying circuit. An
approximate analysis of the single-ended mixer is possible by
considering the simplified time-varying small-signal equivalent
circuit model shown in Fig. 1(b) [7]. In this model, only the
transconductance g,,, () is assumed to be time varying, while
the base—emitter capacitance C},, is represented by its time-av-
eraged value. The resistances I, and R, in the input loop of the
HBT are lumped into a single resistor. This representation pro-
vides a good tradeoff between analysis accuracy and interpreta-
tion of the final results for conversion gain and input impedance.
The exponential nonlinear I/V characteristic of an HBT device
leads to a transconductance waveform given as

Im (1) =Go+2G1 cos(2wrot+¢d1)+2G4 cos(dwpot+pa)+- - -
(D
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Combiner

Vi (1)

Vi(t)

Fig. 1. (a) Single-ended transconductance mixer principle. (b) Simplified time-
varying small-signal equivalent circuit.

where G, /¢, represent complex Fourier coefficients, depen-
dent on the LO drive level V1,0, and the base bias voltage Vj,.
As was discussed in [8], the drive voltage across the internal
base—emitter junction V;,.i(¢) in HBTs cannot, in general, be
assumed sinusoidal and, therefore, it is not valid to express the
Fourier coefficients in terms of modified Bessel functions, as
is commonly employed in mixer analysis [9]. The time-varying
transconductance give rise to mixing frequencies at

Wy = wif + n2wr,0, n=0,+£1,+2,43,... 2)
where wir = |2wr,o — wyt] is the IF angular frequency [1]. The
base—emitter capacitance consists of the sum of the time-varying
depletion Cy(t) and diffusion capacitances g, (¢)7f given as

deo
Coelt) = Zy0
€ [ Vhet

= Ca(t) + gm(t)7s 3)
Q)

where Q1. is the base—emitter junction charge and 7 is the for-
ward transit time of the HBT devices. Despite its time-varying
nature, it is assumed that the base—emitter capacitance con-
tribute little to the frequency conversion in the single-ended
mixer and a time-averaged value

2 TL0/2

Cbe = 7
Tro Jo

Cbe(t)dt =Cyo + Gon 4)

where 11,0 = 27 /wio is the period of the LO signal and Clyy,
the average value of the depletion capacitance, can be used in
the time-varying small-signal equivalent circuit.

The input impedance can be determined from traditional
linear time-invariant analysis and is given as

1

Zin =R + Re + -
’ Jjwit(Cao + Goy)

®)

TABLE 1
ELECTRICAL PARAMETERS FOR THE NONLINEAR
InP DHBT MODEL (4. = 10 x 2.0 pm?)

Parameter | Value | Parameter | Value
Is [fA] 45 Rc [Q] 9.9
Ny 1.13 T [pS] 0.53
B 28.1 Cje [fF] 24.6
Ry [ 23.0 Vie [fF] 0.709
Re [Q 3.0 M; 0.34

with a constant real part, but with a base bias and LO drive level
dependent imaginary part.

To analyze the conversion gain of a time-varying circuit, con-
version matrices are introduced. The conversion matrix form of
the time-varying transconductance can be written as

;%,_1 GO Glégﬁ){ GQZQSE Vl;kei,—l
Iiso | = |Gilpr  Go  Gilé] Vbeio | (6)
Lig 1 Galps Gilpr Gy Viei 1

where Iy ,, are the resulting currents at the mixing frequency
wy, for a voltage Vi,e; m at the relevant excitation frequency wiy,,
and the asterisks denote a complex conjugate. The wanted IF
frequency current component is I ¢ and the excitation voltage
component at the RF frequency is Vj;,1. For the simplified
time-varying equivalent circuit model in Fig. 1(b) feedback is
absent and, therefore, the relation between the output current at
the IF frequency and the internal base—emitter voltage at the RF
frequency reduces to

Lito = G147 - Viei,1- @)

Currents at all other mixing products are assumed to be short cir-
cuited to ground through the embedded impedance Z;¢. Relating
the intrinsic base—emitter voltage to the external RF excitation

vt = VR cos(wist) gives
G141 Vrr )
1+ jwet(Zeg + Ry + Re)(Cao + Gory) 2

Ligo =

where the factor of 2 comes from the fact that Ij¢ ¢ represents
a positive frequency phasor. The final expression for the trans-
ducer power conversion gain becomes

G, = G%
© 7 WE(Ry + R.)(Cao + Gorg)?

R(Zi) 9

where Zy¢ = Z7 have been assumed and R(Z;¢) represents the
real part of Zis.

III. SHM DESIGN

It will now be explained how the single-ended mixer theory
described in Section III can be used in the design of the SHM.
The electrical parameters of the nonlinear model for the InP
DHBTSs used for the initial design considerations are given in
Table I. This model neglects the internal feedback through the
base—collector capacitance and the strong bias dependence of
the forward transit time experienced in InP DHBTs. For the final
design verification, the more accurate Agilent HBT large-signal
model is used. As was previously reported by the authors in [10],
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Fig. 2. Calculated time-varying transconductance waveform for various base
bias voltages. The LO excitation is at 2 f,o = 52.5 GHz.

this large-signal model accurately predicts the performance of
InP DHBTS at millimeter-wave frequencies.

An important issue in the design of the SHM is to find the nec-
essary LO drive voltage for the single-ended mixer, as this will
have influence on the design of the frequency doubler preceding
the single-ended mixer. The LO drive voltage V1,0 determines
the peak current in the InP DHBT device together with the base
bias voltage V3. The maximum current rating I, of the InP
DHBT device, therefore, leads to a constraint on the LO drive
voltage and base bias voltage. To assure a maximum current of
Tnax = 30 mA at an LO excitation of 2 fr.o = 52.5 GHz even if
the conduction angle changes, the following empirical relation
is found from simulations:

Vio = —1.1Vyo + 1.1. (10)

To find the LO drive voltage for optimum conversion gain
from (9) under the constraint of (10), a single-tone harmonic
balance simulation at 2f;o = 52.5 GHz is first performed
to determine the voltage waveform V;.i(t) across the in-
trinsic base—emitter junction of the InP DHBT device in the
single-ended mixer. Once the voltage waveform is known, the
time-varying transconductance and time-varying base—emitter
depletion capacitance can be calculated.

The time-varying transconductance for different base bias
voltages is shown in Fig. 2. It is observed that due to the con-
straint given by (10), the peak height is constant and only the
conduction angle changes. The Fourier coefficients G1 Z¢1, Gy,
and Cyo are determined from the time-varying transconduc-
tance and time-varying base—emitter depletion capacitance and
are needed in the calculation of the conversion gain using (9). In
Fig. 3, the calculated conversion gain is shown versus LO drive
voltage for an RF excitation at frp = 50 GHz and LO excita-
tion at 2 fr,o = 52.5 GHz. To verify the assumptions employed
in the single-ended transconductance mixer analysis, the result
from a two-tone harmonic balance simulation performed with
Agilent ADS! is also shown in Fig. 3. Even at millimeter-wave
frequencies, the simple time-varying small-signal equivalent
circuit in Fig. 1(b) is observed to give an acceptable estimate of
the conversion gain with the InP DHBTs. Importantly,

LADS 2004A, Agilent Technol Inc., Palo Alto, CA

30

— HB Simulation
25+ —— Mixer Theory

20+
15+
10+ 1

Conversion Gain [dB]
wn

0 01 02 03 04 05 06 07 08
Vi oIV

Fig. 3. Calculated (symbols) and simulated (line) conversion gain versus LO
drive voltage. RF excitation at frr = 50 GHz and LO excitation at 2 fr,o =
52.5 GHz.

the required minimum LO drive level is similar for both simu-
lations and can, hence, be accurately determined from the ana-
lytical formula presented above. It should be mentioned that the
difference between the calculated and simulated conversion gain
comes from neglecting the internal feedback caused by R., the
assumption of operation far above the (3 cutoff frequency, and
the use of a time-average base—emitter capacitance Ch,e.

From Fig. 3, a saturation in conversion gain for LO drive
voltages > 0.2 V is observed. This saturation can be explained
from (9) considering that, for small conduction angles, the ratio
G1/Gy is limited to a factor of approximately 2. The conversion
gain of the single-ended mixer stage is thus optimized if the fre-
quency-doubler stage can deliver an LO drive voltage > 0.2 V
at the base of the mixing InP DHBT device.

The SHM including the frequency doubler, RF pre-amplifier,
and single-ended mixer is shown in Fig. 4. The single-ended
mixer consists of the device ()3, the A\/4Q2 1,0 line short-cir-
cuited with a capacitor for base bias injection, and the IF
matching circuit formed by capacitor Cir and inductor Lip.
The IF matching circuit assures that unwanted mixing products
at the output are shorted to ground, as was also assumed in
the mixer analysis. The frequency doubler should convert the
externally applied LO excitation at fro = 26.25 GHz into a
2fLo = 52.5 GHz frequency signal with sufficient amplitude
(VLo > 0.2 V) to drive the single-ended mixer. The frequency
doubler design is based on reactive termination at the second
harmonic at the input side of device ()3 and short-circuit
termination at the fundamental at the output side [11]. The
second harmonic reactive termination implemented with the
a)Q fr o shorted line in Fig. 4 increases the conversion gain
of the frequency doubler for a certain range of « values, as
demonstrated in Fig. 5. This line is shorted by a capacitor to
allow for the base bias injection needed for the device ).
The short-circuit termination at the fundamental frequency
at the output assures stable operation [7] and is implemented
with the A/4Qfro open stub in Fig. 4. The RF pre-amplifier
is included to separate the output of the frequency doubler
from the RF input and reduce the noise contribution from the
single-ended mixer. The device )7 is biased for minimum
noise at frr = 50 GHz through the \/4Q frr shorted line.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:32 from IEEE Xplore. Restrictions apply.
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Fig. 5. Simulated frequency-doubler conversion gain versus line parameter cv.
LO excitation at f,o = 26.25 GHz.

The matching circuit provides simultaneously power and noise
match. The RF pre-amplifier stage adds a gain of 4.6 dB to the
overall conversion gain of the SHM. The simulated conversion
gain of the SHM is around 9.9 dB so the conversion gain of the
single-ended mixer stage itself is expected to be around 5.3 dB.
A noise figure of NF = 10.3 dB is found from simulations of
the SHM using the Y -factor method. This is acceptable taking
into account that the InP DHBT devices exhibits a rather high
minimum noise figure of NF,,;;, = 6.9 dB at 50 GHz.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The SHM has been fabricated in a high-speed InP/InGaAs
DHBT circuit technology developed at the Alcatel-Thales
III-V Laboratory, Marcoussis, France. The transistors in this
technology exhibit 180/210 GHz f;/ fmax, breakdown voltage
BV eo > 7V, and yield better than 99% [12]. The technology
offers three Au/Ti metallization layers, Ti resistors, and SiN
metal—insulator-metal (MIM) capacitors. The microphotograph
of the fabricated SHM is shown in Fig. 6. The transmission
lines are implemented as coplanar waveguide (CPW) structures.
CPW discontinuities and spiral inductor were modeled using

Fig. 6. Microphotograph of the SHM (1.4 X 1.6 mm? with pads).

Ansoft’s High Frequency Structure Simulator (HFSS)? and
ADS momentum,? respectively.

The SHM was measured with on-wafer probes and the fre-
quency-dependent cable and connector losses were carefully
deembedded from the measurement results. The power con-
sumption is 158 mW when biased from a single 4-2.5-V supply.

The conversion gain of the SHM versus the LO power is il-
lustrated in Fig. 7 for an RF frequency of frr = 50 GHz with a
power of —27 dBm, which assures linear operation of the mixer
at the RF port. The LO frequency is fo = 26.25 GHz, which
results in an IF frequency of fir = 2fLo — frr = 2.5 GHz.
The measurements demonstrate typical conversion gain charac-
teristic as a function of the LO power with a clear saturation
region, which starts already at around 1 mW. The agreement
between simulations and measurements is very good, especially
at high LO power levels, which are crucial for good mixer op-
eration. At sufficient LO power level, the SHM presented here
exhibits a gain of Gony > 8 dB. It should be emphasized that
this gain is achieved without an IF amplifier, which could boost
the gain even further. It should be further emphasized that this
gain is achieved at relatively low LO power levels. Assuming a
typical gain of an LNA in front of the mixer of Gy xa =~ 20 dB,
a receiver front-end using our SHM would exhibit a total gain
of > 28 dB requiring only 20-40-dB gain on the IF side, which
makes the design of the IF circuitry much easier.

The conversion gain achieved with our SHM is available over
a wide RF frequency range of more than 10 GHz with a max-
imum conversion gain of 10.3 dB around 45 GHz. The SHM can
be operated over even wider bands, but then with a compromise
in conversion gain, as indicated in Fig. 8. Fig. 8 presents the
variation of the conversion gain versus the RF frequency, while
keeping the IF frequency constant at 2.5 GHz. In the range be-
tween 40-50 GHz, the conversion gain is nearly constant with a
small variation of around 1.5 dB over the frequency range. At

2HFSS v.9, Ansoft Corporation, San Jose, CA
3ADS 2004A, Agilent Technol Inc., Palo Alto, CA
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Fig. 7. Measured (symbols) and simulated (solid line) conversion gain versus
LO power.
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Fig. 8. Measured (symbols) and simulated (solid line) ¢}-band conversion gain
for the subharmonic 2 f1,o — frr and fundamental fi,o — frr mixing product.
The IF for the SHM is fip = 2.5 GHz.

lower frequencies, the conversion gain performance is limited
mainly by the performance of the doubler circuit and by con-
siderable mismatch in the combiner circuitry and the gain drops
to values Geony = 1 dB. The parasitic mixer output signal at
fir = fLo — frr is also included in the figure and is at least
24 dB below the desired signal at IF output. This is regarded as
a good number for a single-ended mixer configuration.

The large-signal performance of the SHM has been evalu-
ated using the gain compression characteristics of the mixer cir-
cuit. In Fig. 9, a comparison between measured and simulated
output power at IF frequency versus the input power at the RF
port. An excellent agreement between measurements and simu-
lations is achieved up to power saturation. The SHM presented
here exhibits an output referred 1-dB power compression point
of Pir.1 4 =~ —6 dBm. The good agreement between mea-
surements and simulations up to power saturation also proves
the accuracy of the large-signal model employed in the design
of the mixer. At very large powers, the SHM circuit seems to

0 . , . , .

P =18 dBm
fRF =45.00 GHz
5t fLO =23.75GHz

€
[a4])
= -10
0-&
—15+ 4
-20, : : : : :
=30 -25 20 -15  -10 -5 0
P, [dBm]

Fig. 9. Measured (symbols) and simulated (solid line) IF output power versus
RF power.

saturate much faster as compared to the simulations; however,
the trend is evaluated correctly.

Overall, the measured performance for the SHM is very well
predicted by simulations. The good agreement is a result of ac-
curate large-signal modeling of the InP DHBT devices, as well
as EM simulation of passive structures.

A comparison of the results presented here and those pub-
lished earlier points out the capabilities of the design and the
technology employed in this paper. Such a comparison between
different millimeter-wave SHMs is given in Table II. Previously
reported SHM designs have mainly employed pHEMTSs or
Schottky barrier diodes in GaAs. More recently, SHM designs
based on SiGe HBT devices have been reported with good
millimeter-wave properties. To the authors’ knowledge, our
study represents the first reported SHM using InP DHBT
devices. Many SHM published earlier integrate an IF boost
stage with high gain to increase the signal level on the IF side.
This is important in order to alleviate the necessity for an
amplifier in the IF circuitry. We have demonstrated above that
our SHM outperforms the SHM circuits presented in Table II
with regard to critical parameters such as LO power, conversion
gain, and output power. In order to make a fair comparison
between various devices, the conversion gain without the IF
buffer stage is reported in Table II. The estimated conversion
gain of our SHM without the RF preamplifier stage is also
stated in Table II. Even without the gain of the RF preamplifier,
our SHM circuit is expected to provide a high conversion gain
of 5.3 dB. It should be noticed that the GaAs pHEMT SHM
circuits in Table II also include the gain of an RF preamplifier
stage. The operational frequency of our SHM is comparable to
that of other GaAs pHEMT circuits, while most of the GaAs
Schottky diode and the SiGe HBT-based SHMs operate at
higher frequencies. The conversion gain of our SHM is almost
double that of the best reported SHM circuits provided in
Table II. It is interesting to note that at the same time the 1-dB
compression point, P} gg of —6 dBm, is comparable to that of
the antiparallel Schottky barrier diode SHM reported in [14],
which shows that the higher gain achieved in this paper is not at
an expense of the power capabilities. It is further observed that
our InP DHBT SHM design achieves the highest conversion
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TABLE II

MILLIMETER-WAVE SHM PERFORMANCE

Device frr [GHz] | LO harm. | C.G. [dB] | Pigp [dBm] | Pro [dBm] Ref

InP DHBT 40-50 ond > 7(5.31) -6.0 0.3 This work
GaAs pHEMT 40 ond 4.8 -14.0 10.0 [5]
GaAs pHEMT 60.4 4th 34 -9.0 13.0 [13]
SiGe HBT 122 ond 4.0* NA 3.0 [3]
SiGe HBT 77 ond —10.3" 8.0 10.0 [4]
GaAs Schottky Diode 94 ond -7.0 NA 85 2]
GaAs Schottky Diode 94 ond [4th -9.2/-11.4 -6.0 5.0/10.0 [14]
GaAs Schottky Diode 44 ond -8.0 -2.0 9.0 [15]

(*tConversion gain w/o RF preamplifier. *Conversion gain w/o IF output buffer. )

gain over a wide bandwidth with the lowest LO input power.
Our circuit operates at LO power levels at least a factor of 10
lower than comparable SHM circuits. The noise figure and
intermodulation properties of the mixer could not be measured
due to lack of suitable millimeter-wave test equipment.

V. CONCLUSION

This paper reported the design, fabrication, and characteriza-
tion of a ()-band SHM using InP DHBT devices. It is believed
to be the first demonstration of an SHM using InP DHBT
MMIC technology. We have presented a design procedure,
which greatly facilitates the design of the SHM circuit, which
can accurately predict the required LO power level, but is too
optimistic with regard to conversion gain predictions, due to
its simplicity. The design procedure is centered around an
analytical formulation of the conversion gain in the SHM,
which provides not only the LO power level, but also the bias
conditions for the transistors and the matching for the respective
devices.

An accurate design of the SHM requires a subsequent large-
signal simulation and an accurate determination of the passive
circuit structure, which is obtained from full-wave EM simu-
lations. The large-signal harmonic balance simulations are em-
ploying an accurate large-signal model presented earlier. This is
believed to be crucial for the good agreement between predicted
and measured performance of the SHM circuit presented here.

The performance of the SHM is believed to be better with
regard to conversion gain and LO power level as compared to
other earlier published SHM. The circuit exhibits a conversion
gain of > 7 dB when operated with an LO power level of only
1 mW. The circuit can deliver an output power around 0.25 mW
at the IF frequency before conversion gain compression. This
performance has been measured across an RF frequency band
of 40-50 GHz and it is believed that this performance can also be
achieved at higher frequencies with frequency scaled designs.
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