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Double �-Step �-Scanning Technique for Spherical
Near-Field Antenna Measurements

Tommi Laitinen

Abstract—Probe-corrected spherical near-field antenna mea-
surements with an arbitrary probe set certain requirements on
an applicable scanning technique. The computational complexity
of the general high-order probe correction technique for an ar-
bitrary probe, that is based on the scanning, is � ��, where

is proportional to the radius of the antenna under test (AUT)
minimum sphere in wavelengths. With the present knowledge, the
computational complexity of the probe correction for arbitrary
probes in the case of the scanning is � ��, which is typically
not acceptable. This paper documents a specific double -step

-scanning technique for spherical near-field antenna measure-
ments. This technique not only constitutes an alternative spherical
scanning technique, but it also enables formulating an associ-
ated probe correction technique for arbitrary probes with the
computational complexity of � �� while the possibility for the
exploitation of the advantages of the scanning are maintained.

Index Terms—Antenna measurement, probe correction, spher-
ical near field.

I. INTRODUCTION

SPHERICAL near-field antenna measurement is a
well-founded technique for the antenna pattern characteri-

zation [1]. Inclusion of the probe correction in the near-field to
far-field transformation enables accurate determination of the
far field [2].

Traditionally, the first-order probe correction tech-
nique [1] has been applied for the probe correction, and it leads
to the computational complexity of in the probe correc-
tion. Here is proportional to the radius of antenna under test
(AUT) minimum sphere in wavelengths. Recently, a probe cor-
rection technique for odd-order probes, for
which the computational complexity is , has been pre-
sented in [3].

The first and odd-order probe correction techniques rely on
the assumption that the azimuthal radiation pattern of the probe
contains only either first-order or odd-order variations, respec-
tively. Good examples of first and odd-order probes are open-
ended circular and rectangular waveguide probes, respectively,
excited with their fundamental waveguide modes. The wider the
required bandwidth for the probe is, the more difficult it practi-
cally becomes to construct a probe that provides precisely the
first-order or odd-order azimuthal variation of the probe pat-
tern assumed by the first and odd-order probe correction tech-
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niques. For this reason, in practice, to cover, e.g., the 1–3 GHz
frequency range, it has been typical to use several waveguide
probes. However, significant savings in the measurement time
could be gained by using only one probe covering the whole
frequency range.

A natural way to overcome the necessity for precise manu-
facturing of a probe is to apply a more general probe correction
technique. Two known techniques for this purpose are the itera-
tive [4] and the general high-order [5] probe correction tech-
niques. A drawback of the iterative technique, though being
computationally efficient, is that its applicability range is not
precisely known [6]. Instead, although being less computation-
ally efficient, the fact that the general high-order probe correc-
tion technique is applicable for (almost) arbitrary probes makes
it attractive.

A complete antenna pattern characterization procedure based
on the general high-order probe correction technique has been
recently developed for the DTU-ESA Spherical Near-Field An-
tenna Test Facility [7] within a project funded by the Euro-
pean Space Agency [8]. This work has shown that the use of
an arbitrary probe sets certain specific requirements on an ap-
plicable scanning technique [9], which do not have to be taken
into consideration if the probe correction is not included [10],
or if the simplification of assuming a first-order probe is made
[11] [12]. For instance, in the case of the scanning the com-
putational complexity of in the probe correction for ar-
bitrary probes is reached, which is sufficient for a major part of
the antenna measurement projects. In the case of the scanning,
the computational complexity becomes [13], and this is
typically not acceptable. A possibility for the scanning would,
however, be useful, because it is known to have certain advan-
tages over the scanning [1].

The purpose of this paper is to introduce a specific double
-step -scanning technique for spherical near-field antenna

measurements. While being applicable also with a first or
odd-order probe, the technique is shown to be particularly
beneficial in the case of an arbitrary probe for which it enables
formulating a probe correction technique with the computa-
tional complexity of and maintaining the possibility
for the exploitation of the advantages of the scanning. Com-
pared to the usual -scanning technique [1], the application of
the double -step -scanning technique does not practically
increase the measurement time.

The background theory for the probe-corrected spherical
near-field antenna measurements is presented in Section II. The
double -step -scanning technique, and the probe correction
technique based on this scanning technique, are presented
in Section III. Validation of the technique is presented in
Section IV, and conclusions in Section V.

0018-926X/$25.00 © 2008 IEEE
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II. BACKGROUND THEORY

A. Measurement Geometry

The spherical antenna measurement geometry is presented in
Fig. 1. The and are the Cartesian coordinates
of the AUT and the probe coordinate systems, respectively. The

are the spherical coordinates of the AUT coordinate
system. The measurement distance is the distance between
the origins of the AUT and the probe coordinate systems. The
AUT and probe minimum spheres are centered in the AUT and
the probe coordinate systems, respectively. The is the probe
orientation angle such that for and the axis
coincides with the and unit vectors of the AUT coordinate
system, respectively.

B. Transmission Formula

The transmission formula [1], that expresses the signal re-
ceived by the probe as a function of the unknown coeffi-
cients , can be written as

(1)

where are the spherical vector wave coefficients of the
spherical wave expansion of the AUT field, the terms

and are the three rotation functions of the spherical
vector wave functions, and the probe response constants are

(2)

where are the translation coefficients, and are
the probe receiving coefficients [1]. As in [1], the integers and

are the truncation numbers for the and summations of
the spherical wave expansion of the AUT field [1], respectively,
and proportional to the radii of the AUT minimum sphere and
cylinder (shown in Fig. 1) in wavelengths, respectively. Sim-
ilarly, the integers and are the truncation numbers
for the and summations of the spherical wave expansion of
the probe field, respectively, and proportional to the radii of the
probe minimum sphere and cylinder (shown in Fig. 1) in wave-
lengths [1], respectively.

III. DOUBLE -STEP -SCANNING TECHNIQUE AND PROBE

CORRECTION TECHNIQUE FOR ARBITRARY PROBES

The near-field to far-field transformation including the probe
correction is accomplished by solving the transmission formula
(1) for , and by calculating the far field from the spherical
wave expansion of the AUT field. The probe receiving coeffi-
cients in (2) are known from a separate probe pattern calibration

Fig. 1. Measurement geometry.

Fig. 2. Illustration of the measurement directions in the angular region � �

� � �� for the double �-step �-scanning technique. In this example case the
double � step is ��� � �� � � � �� �� � �� , and � � ��.

measurement. A spherical near-field measurement for the AUT
provides the necessary probe signals in the left-hand side of the
transmission formula.

In the case of an arbitrary probe, the possibility for exploiting
the orthogonality of in solving the transmission formula
(1) place the and -scanning techniques in an essentially dif-
ferent position [9]. In the case of the scanning, this orthog-
onality can be exploited, and the computational complexity of

in solving the transmission formula (i.e., in performing
the probe correction) is reached. With the present knowledge, in
the case of the scanning, the orthogonality of cannot be
exploited, and the computational complexity of the probe cor-
rection becomes .

A specific double -step -scanning technique, and a probe
correction technique associated with it, will be presented in this
section. It will be shown that the double -step -scanning tech-
nique provides a possibility to indirectly exploit the orthogo-
nality of , and to reach the computational complexity of

in the probe correction for arbitrary probes.



LAITINEN: DOUBLE -STEP -SCANNING TECHNIQUE FOR ANTENNA MEASUREMENTS 1635

Fig. 3. Illustration of the measurement directions and the corresponding probe
orientation angles in the angular region � � � � � (upper sphere) for the
double �-step �-scanning technique. The probe orientation angle is � for � �

�� ���� ��� � � � ������ (white nodes), and ��� for � � ��� ���� � � � ���

�� (black nodes).

A. Double -Step -Scanning Technique

In the double -step -scanning technique the stepping is per-
formed in for in steps of , where
is the double step. The total number of angles is , and,
importantly, must be an odd integer. For each fixed , the
scanning is performed in for , and the sam-
ples become available in the intervals of . The total number
of samples in for is . It is assumed here
for simplicity that is an even integer. A possible scanning
grid for the double -step -scanning technique is illustrated in
Fig. 2, where the double step is , the
interval is , and .

In each measurement direction, the samples are gathered for
the probe orientation angles and , and it is
assumed here, that and . The measurement
distance is the same in each measurement direction.

The measurement directions, that are shown in Fig. 2 in the
angular region (2-sphere), are now mapped to
the corresponding directions in the angular region
(upper sphere), and illustrated in Fig. 3, where the probe ori-
entation angles and are depicted with white and black
nodes, respectively. Importantly, due to the requirement that
is an odd integer, the measurement directions in the upper sphere
interleave in , so that for every second angle the probe ori-
entation angle is (white nodes), and for the other angles it
is (black nodes).

The total number of measurement angles in in the upper
sphere in the interval is denoted , and
the total number of measurement angles in in the interval

is denoted . The following relations then hold:
, and . The upper-sphere samples are thus

available in the measurement directions and
for each possible index pair for

and . For the example scanning grid illustrated in
Fig. 3 , and .

For comparison, while the stepping is performed from 0 to
in steps of in the -scanning technique [1], it is per-

formed from 0 to in steps of in the double -step

-scanning technique. The number of steps in thus remains
the same for the two scanning techniques. The measurement di-
rections remain the same as well, and thus the only essential
difference between the two techniques is with the probe orien-
tation angles in the upper sphere.

B. Probe Correction Technique

The probe correction technique based on the double -step
-scanning technique is presented in this section. The sampling

criteria is presented first in Section III-B.1. The two parts of the
probe correction technique: 1) the indirect exploitation of the
orthogonality of , and 2) the matrix inversions, will then be
presented in Sections III-B.2 and III-B.3, respectively.

1) Sampling Criteria: The number required angles for the
double -step -scanning technique, , must be chosen as fol-
lows:

(3)

and, as previously mentioned, this must be an odd integer. The
number of samples in , must be chosen as follows:

(4)

where the right choice of the integer , that is related to the
degree of over-sampling, depends on the application. According
to the author’s experience, should be greater than or equal to
1, and can be chosen from the range .

2) Indirect Exploitation of the Orthogonality of : As il-
lustrated in Fig. 3, the probe orientation angles in the double

-step -scanning technique in the upper sphere are and .
By interchanging the and summations of the transmission
formula (1), the received signals for these two probe orientation
angles are first rewritten in terms of Fourier expansions as fol-
lows:

(5)

(6)

where the Fourier coefficients of the even and odd-order signals
are

(7)

(8)
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respectively. Here , and

(9)

(10)

The following discrete signal is now formed for each index pair
:

(11)

where

.
(12)

The components for are
thus samples of the received signal in the upper sphere for

, respectively, and represent the sam-
ples of the signal in the left-hand side of (5). The components

for are samples of the re-
ceived signal in the upper sphere for

, respectively, multiplied by , and they thus represent the
negatives of the samples of the received signal in the left-hand
side of (6).

Let us now form an analytical, continuous signal as follows:

(13)

where

Importantly, the components of the discrete
signal in (11) now represent samples of the signal in (13) for

and for all indices . Equation (13)
is further written as

(14)

The signal in (14) is periodic, with the period of , and ban-
dlimited, and it may be written as the following Fourier expan-
sion:

(15)

where, see (16), shown at the bottom of the page, and where
is assumed, and

(17)

The discrete signals in (11) consist of the samples of the signal in
(15) equidistantly spaced in for and . Therefore,
performing the IDFT of the discrete signal in (11) now leads to
the solutions for the Fourier coefficients in (16).
The IDFT is defined here as follows:

(18)

The essential, useful property of the double -step -scan-
ning technique, which leads to the crucial computational
advantages in the probe correction for arbitrary probes, is
shown in (16). For example, with the choice ,
one obtains: and . Then, for

(16)
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a fixed for , the known Fourier coefficient
is a sum of only and

whereas the known Fourier coefficient is a

sum of only and . For the

known Fourier coefficient is equal to
whereas the known Fourier coefficient is equal

to . In other words, this mixing of the Fourier
coefficients of the even and odd-order signals occurring in the
IDFT of the double -step -scan signals is relatively simple,
and this enables the exploitation of the orthogonality of
indirectly. It is noted, though without presenting a proof here,
that this mixing of the Fourier coefficients of the even and
odd-order signals is crucially more complex in the case of the

scanning with an arbitrary probe.
3) Matrix Inversions: The second step of the probe correc-

tion based on the double -step -scanning technique comprises
matrix inversions, and it will be described now. An equation pair
valid for all values of is first written from (16) as
follows:

(19)
where , and

The left-hand side of this pair of equations is known from the
IDFT performed in (18) for for and 2, and for

for . The pair of equations is now used
together with (7) and (8) to build an over-determined system
of linear equations for each fixed for as
follows:

(20)

(21)

(22)

Here, the matrices , where , are as follows:

...
... (23)

where . For , and for ,
the block matrices are

(24)

where the relation holds, and where the values
for the elements for and 2 are calculated
from (9) and (10).

The and , and the and , shown in (20)–(22),
are obtained from

... (25)

and

... (26)

respectively.
Finally, the over-determined system of linear equations set up

for each fixed for is solved by means of
pseudo inversion [14]. For example, if , for
all coefficients ( and 2, ) are found from
(20), and for each fixed , all coefficients
( and 2, ) and ( and 2,

), where , are found from
(21). In this way all the desired coefficients for and
2, for , and for are thus
found.

IV. VALIDATION

Computer calculations are carried out for validating the pro-
posed double -step -scanning technique. The accuracy and
the computational complexity of the probe correction technique
based on the double -step -scanning technique is tested, and,
for reference, compared with those of the general high-order
probe correction technique based on the scanning.

A. Calculations

1) Probe Models: Two sets of probe receiving coeffi-
cients are used in the calculations, and these sets represent
the probe models. For the first set, denoted by , the only
non-zero coefficients are for . This
set represents an -oriented electric Hertzian dipole probe
[1]. Another set of probe receiving coefficients, denoted by

, is generated for for , and for
, using and

, so that each coefficient is a random complex number
. The and are random numbers between 0 and 1. This

set represents an arbitrary probe.



1638 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 6, JUNE 2008

2) AUT Models: In total 12 sets of spherical vector wave
coefficients are generated for , for , and for

, so that each coefficient is
represented by a random complex number (with unit
[1]). The 12 sets are obtained by varying
so that for each fixed , the is varied as .
These sets, denoted by , are used as reference sets later
in this paper, and they represent the radiated fields of AUTs of
different electrical size. For example, the case with
corresponds to a case where the radius of the AUT minimum
sphere is approximately 50 , and the number of coefficients in

with exceeds .
3) Calculation of the Double -Step -Scan Signals: Using

the sets and , and for each combination of
and , and by choosing the parameters values
and according to the sampling criteria presented
in Section III-B.1, the received signal is calculated in the di-
rections and the probe orientation angles defined in
Section III-A for the measurement distance

. The signals then become available in the upper sphere in a
similar grid as illustrated in Fig. 3, that is, for every second
angle the signals are available for and whereas for
the other angles the signals are available for and .

4) Calculation of the -Scan Signals: Using the sets and
and , the received signal is calculated in the same

directions in the upper sphere, and for the same measure-
ment distance, as for the double -step -scanning technique,
but for the probe orientation angles and in each di-
rection. This corresponds to the scanning [1].

5) Application of the Probe Correction Techniques: Finally,
the probe correction technique presented in Section III-B is
applied by using the double -step -scan signals, and the
general high-order probe correction technique [5] by using
the -scan signals. These calculations thus provide 48 sets of
spherical vector wave coefficients in total (2 probe models, 12
AUT models, and 2 probe correction techniques), and these sets
are denoted by , where for the probe correction
technique based on the double -step -scanning technique,

for the general high-order probe correction technique,
for the electric Hertzian dipole probe , and

for the arbitrary probe .

B. Results

1) Accuracy: The accuracy of the probe correction technique
based on the double -step -scanning technique, and for refer-
ence that of also the general high-order probe correction tech-
nique, are tested by comparing the sets with the refer-

ence set . The difference set is
calculated first via component by component subtraction. The
maximum relative difference, , is then calculated from

(27)

TABLE I
THE VALUES OF � [DB] FOR THE ARBITRARY PROBE �� � ��

TABLE II
THE VALUES OF � [DB] FOR THE ELECTRIC HERTZIAN DIPOLE PROBE

�� � ��

TABLE III
THE VALUES OF � [DB] FOR THE CASE WITH THE ARBITRARY PROBE

where the and are the maximum

values of the absolute values of the coefficients of the sets
and , respectively.

The obtained values for the arbitrary probe and
for the electric Hertzian dipole probe are presented in
Tables I and Table II, respectively. The values of are small
for the range for all , and they are likely due to
numerical inaccuracies in the calculations. The values, however,
increase with increasing the increase rate being significantly
higher for the arbitrary probe compared to the electric Hertzian
dipole probe. This indicates that the numerical inaccuracies de-
pend on the probe. Nevertheless, in conclusion, the probe cor-
rection technique based on the double -step -scanning tech-
nique works and provides an accuracy that is comparable to that
of the general high-order probe correction technique.

2) Computational Complexity: The central processing unit
(CPU) times for performing the required pseudo-inverse oper-
ations for the two probe correction techniques for each combi-
nation of and were recorded during the calculations. The
values of , where the is related to the CPU time in seconds,

, as , are shown in Table III for the case with the
arbitrary probe.

The main result shown in Table III is that the values of
are increased by a factor of approximately 4, and thus by a
factor of approximately 16, as is doubled. This indicates that
the computational complexity for both probe correction tech-
niques is . Furthermore, the results in Table III show
that, for and the required CPU time for the
probe correction technique based on the double -step -scan-
ning technique is higher by a factor of approximately 4 com-
pared to that for the general high-order probe correction tech-
nique. For this factor is approximately 2.5. For the
case with , the actual CPU times for performing
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the required pseudo-inverse operations (on a typical personal
computer of today) for the probe correction techniques based
on the double -step -scanning technique and for the general
high-order probe correction techniques were approximately 130
and 55 minutes, respectively. It is noted, that parallel computing
can be easily exploited in the data processing related to both
probe correction techniques.

V. CONCLUSION

The double -step -scanning technique for spherical near-
field antenna measurements has been introduced. This technique
constitutes an alternative scanning technique for spherical near-
field antenna measurements. Compared to the (usual) -scan-
ning technique [1] the double -step -scanning technique dou-
bles the increment and, instead of stepping from 0 to , steps
from 0 to in . Therefore, the overall measurement time for
the two scanning techniques does not differ significantly.

In the case of the and scanning techniques [1], the ob-
tainable computational complexity of the probe correction is

for a first-order probe, and it is for an odd-order
probe [3]. However, in the case of an arbitrary probe, the com-
putational complexity is for the scanning [5] while it
becomes for the scanning. The important insight of
this paper is that the application of the introduced double -step

-scanning technique with an arbitrary probe enables formu-
lating a probe correction technique with the computational com-
plexity of . The formulation of this probe correction tech-
nique has been presented in the paper. Thus, for arbitrary probes,
the double -step -scanning technique and the associated probe
correction technique provide a method to benefit from the prac-
tical advantages of the scanning over the scanning without
crucially compromising with the computational complexity of
the probe correction.

The probe correction technique based on the double -step
-scanning technique has been shown to work by computer

calculations in this paper. The technique has been tested also
against numerically generated noise and truncation errors, and
shown to work.
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