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Adaptive Integral Method for Higher Order Method
of Moments

Oleksiy S. Kim and Peter Meincke, Member, IEEE

Abstract—The adaptive integral method (AIM) is combined
with the higher order method of moments (MoM) to solve integral
equations. The technique takes advantage of the low computa-
tional complexity and memory requirements of the AIM and the
reduced number of unknowns and higher order convergence of
higher order basis functions. The classical AIM is appropriately
modified to allow larger discretization elements and, consequently,
higher basis function expansion orders. Numerical examples
based on the higher order hierarchical Legendre basis functions
show the advantages of the proposed technique over the classical
AIM based on low-order basis functions in terms of memory and
computational time.

Index Terms—Adaptive integral method (AIM), higher order hi-
erarchical Legendre basis functions, integral equations, method of
moments (MoM), scattering.

I. INTRODUCTION

T HE METHOD of moments (MoM) has been widely used
in the past decades to solve electromagnetic scattering

problems formulated in terms of integral equations [1]–[3].
The conventional straightforward application of MoM involves
low-order basis functions with support in mesh cells with size
in the order of one tenth of a wavelength, leading to a dense
system of linear equations. The resulting memory requirement
is and the solution complexity for a direct solver
and for an iterative one, with being the number of
unknowns. Hence, the computational demands increase drasti-
cally as the problem size grows.

Several techniques have been proposed to reduce the memory
demands as well as the solution complexity of the conventional
MoM. Fast integral equation solvers, such as the multilevel
fast multiple method (MLFMM) [4], [5], the adaptive integral
method (AIM) [6], [7] and its close counterpart the precor-
rected FFT (PC-FFT) [8], [9] reach the solution complexity

. Furthermore, MLFMM and AIM are able to
reduce the memory demands for volumetric problems to

and , respectively, and to and
, respectively, for surface problems [10]. Higher order

basis functions can also be employed in the conventional MoM
to significantly reduce the number of unknowns, which in many
practical cases is more memory and computationally efficient as
compared to the fast solvers based on low-order basis functions
[11]. An obvious advantage is obtained by combining the fast
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solvers with higher order basis functions. This approach has
been pursued in [12] and [13], in which MLFMM is applied to
surface integral equations (SIE) discretized with higher order
interpolatory basis functions. The computational complexity
and memory requirements of this technique are addressed in
[14]. The PC-FFT technique along with the higher order locally
corrected Nyström method are used in [15] to solve SIE for
metallic objects.

In this paper, AIM is employed to accelerate the higher
order MoM solution of volume and volume-surface integral
equations. Among various types of higher order basis functions
a set of hierarchical basis functions based on the orthogonal
Legendre polynomials are chosen [16] due to their favorable
properties with respect to the iterative solver convergence [17].
As compared to the basis functions utilized in [15], the higher
order Legendre basis functions maintain continuity of the
unknown function across a boundary between discretization
elements, which improves accuracy and convergence of the
solution.

The remaining of this paper is organized as follows. In
Section II the procedure for solving integral equations using
higher order orthogonal Legendre polynomials is briefly re-
viewed. The application of the higher order basis functions
becomes advantageous when they are defined on relatively
large subdomains. However, this large subdomain size contra-
dicts with the accuracy conditions for multipole expansions
established within the framework of AIM [6]. The appropriate
modifications are developed in Section III, so that the low
computational complexity and memory requirements of AIM
are preserved, even when combined with higher order basis
functions. In Section IV numerical examples are given to
validate the presented technique as well as to show its effi-
ciency. The examples involve solutions of volume, surface and
volume-surface integral equations. Finally, the conclusions are
given in Section V.

II. MOM

The MoM is a discretization scheme for equations of the form

(1)

where is a linear integro-differential operator, is a known
function, and is the unknown function to be determined. The
first step in the MoM solution is to approximate the unknown
function by a linear combination of known basis functions ,

as

(2)

0018-926X/$25.00 © 2008 IEEE
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where are unknown coefficients. Inserting (2) into (1) and
testing with a set of known functions yields the matrix equa-
tion

(3)

The MoM matrix and the excitation vector have the ele-
ments

(4a)

(4b)

with denoting the inner product. For subdomain basis func-
tions, for which the AIM is applicable, the discretization pro-
cedure (2) includes representation of the object of interest by
smaller regular geometrical elements (such as triangles, quadri-
laterals, hexahedra, etc.) and the basis functions are then de-
fined on these elements, also referred to as subdomains. To im-
prove the convergence of the solution the continuity condition
is usually imposed for either tangential or normal components
of the basis functions at the boundaries between subdomains.
Thus, a basis function can span more than one subdomain. The
rooftop basis function is an example of a function defined on two
neighbor elements, and it belongs to the class of low-order basis
functions, i.e., functions defined by zero or first-order polyno-
mials. Higher order basis functions involve second, third, or
higher polynomial expansion orders.

In this work, the contravariant components of the unknown
function are represented in terms of the higher order hierar-
chical Legendre basis functions [16] as

(5)

in volume hexahedral elements and as

(6)

on surface quadrilateral elements. In (5) and (6), and are
the Jacobians of the parametric transformation between the local
curvilinear coordinate system of the subdomain and the phys-
ical space coordinates for hexahedra and quadrilaterals, respec-
tively,

(7)

are Legendre polynomials, and , , and denote
the expansion orders along the parametric directions.

The expansions (5) and (6) include the subset of first and
higher order rooftop functions with indices and 1. These
rooftop functions ensure continuity of the normal component
of the unknown function across the boundary between two
neighbor subdomains. Thus, the rooftop functions span two
subdomains while the remaining higher order functions are
defined on a single subdomain.

Fig. 1. Auxiliary Cartesian grid for the far-field interaction computations in
AIM.

III. FORMULATION OF THE AIM FOR HIGHER ORDER MOM

The AIM accelerates the solution of an integral equation by
separating elements of the MoM matrix, responsible for near-
and far-field interactions, as . The near-field
elements are defined as

otherwise
(8)

where is the distance between the centers of the corre-
sponding basis function support subdomains, and is the
near-field range. The near-field elements, which constitute a rel-
atively small part of the full matrix, are computed explicitly and
stored in a sparse-matrix format. The far-field interactions are
accounted for implicitly in the matrix-vector product in each it-
eration of the iterative solution of the MoM matrix system. Here,
to apply AIM, the components of the
basis functions are expanded in terms of Dirac delta func-
tions defined at nodes of a regular Cartesian grid enclosing the
object (see Fig. 1) as

(9)

where is a cube of nodes. The coefficients are
chosen so that the expansion reproduces the far field radiated by

. Subsequently, the computation of the matrix-vector product
at each iteration of the iterative solution process is sped up

by application of the FFT. The accuracy of the expansion in (9)
is controlled by the multipole expansion order , the support
size of the expanded function, and the grid step size . To
assure a reasonable error, both and should satisfy the
relation [6]

(10)

where is the wavenumber in free space. In other words, the
AIM works fine for low-order basis functions since their support
size is relatively small. However, the higher order basis func-
tions become advantageous when they are defined on relatively
large subdomains, allowing high expansion orders. Obviously,
this contradicts the accuracy condition (10). This is the case es-
pecially for basis functions that span two or more subdomains,
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Fig. 2. Relative error bound as a function of the support size �.

for which the support size is the sum of the corresponding el-
ement sizes.

To alleviate this contradiction it is here proposed to expand
the parts of the basis functions, which are defined on several
subdomains, separately in each subdomain. Thus, the support
size is effectively reduced to the size of a single subdomain ,
implying that larger discretization elements with higher basis
function expansion orders can be utilized. For instance, if the
rooftop basis function is expressed as a sum of two subfunctions
defined on each subdomain as , (9) can
be modified as

(11)

This expansion requires two matrices and to store the
coefficients. One of them is also used store the coefficients for
basis functions defined on a single subdomain.

As it is shown in [6], the relative far-field error bound of
the expansion (9) satisfies

(12)

where is the Fourier transform of , , and

(13a)

(13b)

For the modified expansion (11) it can be shown that

(14)

Fig. 3. Bistatic RCS of a ���� dielectric sphere with � � ���.

where and are estimated separately for each
subdomain using (13) with . For a symmetric basis func-
tion defined on equal subdomains it is sufficient to perform this
estimation for only one of them.

To illustrate the effect of the modification in (11) on the error
consider a one dimensional rooftop basis function, which

is defined on two equal subdomains as

otherwise
(15)

and a function, which is defined on a single subdomain as
, . The first function has

the support size . The second function represents one
half of the rooftop basis function (say ) if , or a higher
order basis function if , and its support size is .
Fig. 2 shows the relative error bound for as
a function of the support size . The order is varied from

to for the multipole expansion orders and
. It is easily seen, that estimated for according

to (12) is equal to estimated for according to
(14).

For the function with , being the wave-
length in free space, , and the multipole ex-
pansion order yields . When we apply our
modified expansion (11) to the same function, the error bound
decreases to for , since now

. Thus, we can undoubtedly decrease the multipole
expansion order to and achieve the error ,
which is still much lower than the initial bound .
However, this occurs at the expense of a finer AIM auxiliary
grid, since the grid step size decreases with according to
(13b).

Alternatively, we can keep , increase the subdomain
size to and use the higher basis functions with
orders up to . In this case, the AIM auxiliary grid re-
mains unchanged and the number of unknowns is also nearly
the same, but the accuracy of the final solution increases. No-
tably, the error curve corresponding to in Fig. 2 is even
slightly lower than the curve for , which ensures that the
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TABLE I
MOM AND AIM PARAMETERS USED FOR SOLVING THE SCATTERING PROBLEM FOR A ���� DIELECTRIC SPHERE

average.
on a 4-CPU 2200 MHz desktop PC.

error bound still satisfies for . With the
original expansion (9) this would be nearly impossible because
the support size would then be , and the dra-
matic error increase could not be prevented by increasing the
multipole expansion order .

It is observed that the error bound in Fig. 2 increases as the
basis function order exceeds 2. Analysis similar to that given
above shows that in order to use with the subdomain
size and keep the error bound at the level

, the multipole expansion order must be increased
to . In this case, the accuracy of the final solution further
enhances and the AIM auxiliary grid becomes coarser. The high
error bound for the basis functions with orders makes
their usage practically inefficient in the context of AIM. Indeed,
for a reasonable error can be achieved with
and . However, in this case the problem becomes heavily
overdiscretized. Support sizes larger than require mul-
tipole expansion orders higher than , for which the nu-
merical procedure for computing the coefficients is very
unstable even with double precision arithmetics. It should also
be noted that although the absolute size of the matrix tends
to grow as the expansion order increases, the complexity of
the memory requirement remains unchanged.

The considerations given above, along with the relative error
bounds (12) and (14), can be used to determine the multipole ex-
pansion orders individually for each basis function. In our im-
plementation, however, we undertake another approach. We use
the same for all basis functions in a given subdomain based
on the error bound corresponding to the basis function with the
highest order . Thus, we ensure that the relative error for all
basis functions in this subdomain is less than some preset value,
and at the same time this requires only one computation of the
inverse of the Vandermonde’s matrix for determining the coef-
ficients in each subdomain. The grid step size is selected
according to (13b) using the average support size along each
dimension. The near-field range should, as a rule of thumb,
not be less than [6].

IV. NUMERICAL EXAMPLES

The AIM technique presented in the previous section has been
implemented for the volume and volume-surface integral equa-
tions solved with the higher order MoM as described in [11] and
[18], respectively. In all simulations, the generalized minimal
residual (GMRES) iterative algorithm with restarts after 30 it-
erations has been employed. All calculations are performed with
the double precision arithmetic.

In the first example, plane wave scattering by a solid sphere
of diameter made of lossless dielectric with relative per-
mittivity is considered. The exact Mie series solution
serves as a reference. Table I summarizes the AIM parameters
for three mesh sizes and expansion orders used to solve the
problem. Cases 1–5 correspond to the mesh composed of 2048
hexahedral elements and the expansion order , yielding
49 920 unknowns. The AIM procedure uses the modified expan-
sion (11) with the grid step size varying from to

. The near-field range needs to be enlarged
as the grid step size increases so that the resulting root mean
square (RMS) error for the bistatic radar cross section (RCS)
remains equal to 0.11 dB. Consequently, the memory consump-
tion and the matrix filling time also grow, while the time
spent per iteration decreases due to the coarser AIM auxiliary
grid. Thus, the optimal choice of the AIM parameters in each
specific case is a compromise between the memory consump-
tion, solution time, and required accuracy.

Next we consider the situation, in which low-order basis func-
tions and the original AIM expansion (9) are used to solve the
problem with the same number of unknowns. The scenario is
illustrated in Table I in lines 7–10 for a 17 051-element mesh
that yields 52 020 unknowns with . The average sup-
port size is nearly the same as in the previous cases 1–5. To
make a direct comparison possible the AIM auxiliary grid and
the near-field range in the cases 7, 8, and 9 are the same as
in the cases 1, 3, and 5, respectively. It is observed that the re-
sulting RMS error is relatively high compared to the cases 1–5
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TABLE II
AIM PARAMETERS FOR THE SIMULATIONS IN FIG. 4

Fig. 4. RMS error, the computer memory used, and the time spent at each itera-
tion versus the number of unknowns. The results are for a ���� ����� �����
dielectric cube with � � ���.

where , and it is not improved even when is in-
creased (case 10). This illustrates that the limiting factor for the

Fig. 5. Unit cell for a 10 � 10 array. Parameters of the PEC rings are
�� � � �, inner, outer radius �� � � �: ������� � ���� �� ����� � ��	�� �;
�	����� � ���� �� ���
�� � ���� �; �
���	� � ��	� �� ����� � ��	� �;
�����	� � ��	� �� ����� � ��	� �; �����	� � ��	� �� ����� � ��	� �.

accuracy is not the AIM but the low-order basis functions. Fur-
thermore, the matrix filling time increases significantly
since the number of integration points, in which the Green’s
function needs to be calculated, is much larger [19].

Finally, the problem is solved with the expansion order
and the modified AIM expansion (11) on a 256-element mesh

with 21 168 unknowns. The large average subdomain size
makes an accurate solution with the original AIM

expansion (9) next to impossible, as discussed in the previous
section. The higher order basis functions combined with the
modified expansion (11) allows us to obtain an accurate result
as shown in Table I (case 6) and in Fig. 3, in which an excellent
agreement between the computed bistatic RCS and the exact
Mie series solution is illustrated.

The second example deals with a dielectric cube with the side
length illuminated by an -polarized plane wave propa-
gating in the negative direction. The relative permittivity of
the cube is and its edges are aligned along the axes
of a rectangular -coordinate system. To illustrate that the
presented AIM technique still maintains the higher order con-
vergence properties of the higher order MoM the RMS error of
the bistatic RCS versus the number of unknowns is calculated
and plotted in Fig. 4(a) for the expansion orders from to

. The mesh size is varied from 125 to 42 875 hexahedral
elements. The AIM grid size in all simulations is selected as
prescribed by the inequality (13b), and the near-field range
is chosen large enough to isolate the effect of the expansion
order . It is observed that the slope of the convergence curves
increases with the expansion order indicating the higher
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TABLE III
AIM PARAMETERS FOR THE SIMULATIONS IN FIGS. 6 AND 8

Fig. 6. Bistatic RCS of the planar 10� 10 ring array. (a) V-V polarization. (b)
H-H polarization.

order convergence of the method. Fig. 4 also shows the com-
puter memory used and the time spent at each iteration versus
the number of unknowns. Corresponding values for the classical
(unaccelerated) MoM simulations are also given for compar-
ison. As the expansion order increases the AIM memory
usage grows for the same number of unknowns. This is the nat-
ural result for the higher order basis functions, since the number
of basis functions defined over the same discretization element
increases with , which makes the matrix more popu-
lated. However, the computational complexity demonstrates the
opposite behavior: The solutions with require less time
per iteration than the solutions with and . It
can be explained as follows. The most of the time spent at each
iteration is due to the computation of the matrix-vector product

(16)

TABLE IV
PARAMETERS OF THE AIM, P-FFT AND MLFMM SIMULATIONS OF THE

PLANAR 10 � 10 RING ARRAY

double precision.
single precision.

where the first and the second terms are calculated by a stan-
dard sparse matrix-vector product and the FFT, respectively. As
it was stated above, becomes more dense when the ex-
pansion order increases, and this slows down the compu-
tation of the first term in the matrix-vector product (16). At the
same time, as it can be seen in Table II, where the parameters
of the AIM simulations for selected points in Fig. 4(b) and (c)
are given, higher order basis functions are defined in larger hex-
ahedral elements, which allows a coarser AIM auxiliary grid
and consequently, the FFT calculation of the second term in the
matrix-vector product in (16) is faster. Evidently, for the given
example the expansion order provides the best compro-
mise between the density of and the size of the AIM aux-
iliary grid. The expansion order is better than
and worse than in terms of time spent in each iteration,
but the resulting solution is much more accurate as compared to
the results for both and .

It should be noted that coarser meshes with hexahedral ele-
ments larger than those in the example above cannot be utilized
since the accuracy condition (10) is violated. Moreover, further
increase of the expansion order leads to unreasonable waste
of computational resources both in terms of memory and com-
putational time. Therefore, the use of the basis function expan-
sion orders higher than or is not desirable.

The next example is a planar 10 10 element array com-
posed of unit cells shown in Fig. 5. The cells are arranged on
a square lattice with a period of . The geometry is dis-
cretized into 2400 third-order quadrilateral elements, and the
surface current density is represented up to the order ,
resulting in 21 600 unknowns. The bistatic RCS computed for
the normally incident plane wave is presented in Fig. 6 along
with the reference result from [15] produced by MLFMM [20]
with RWG basis functions. The parameters of the AIM simula-
tion are given in Table III.

This array is also studied in [15] by the higher order P-FFT
method. Table IV summarizes parameters of the AIM, P-FFT,
and MLFMM simulations. The P-FFT and AIM simulations
both exploit the planar geometry and solve the problem using
the 2-D FFT.

In the final example, AIM for the volume-surface integral
equation is tested for a planar 9 9 array of PEC crosses (Fig. 7)
printed on a finite dielectric substrate . The crosses

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 09:56 from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Unit cell for a 9 � 9 array. The PEC crosses are printed on a ��� �
���� � �� dielectric substrate �� � ����.

Fig. 8. Bistatic RCS of the 9 � 9 array of PEC crosses (Fig. 7) printed on a
���� ���� � �� dielectric substrate �� � ����. The array is illuminated
at 9 GHz by a plane wave incident at � � 	� , � � ��� . TM polarization.

are arranged on a square lattice with the period 20 mm, and the
substrate dimensions are . The geometry of
the problem is meshed with 1369 volume hexahedral and 405
surface quadrilateral elements. The expansion orders
and are used for the longitudinal and trans-
verse components of the unknown functions, respectively.
The total number of unknowns is 53 574. The AIM parame-
ters are summarized in Table III. The bistatic RCS computed
at 9 GHz for a plane wave incident from ,
is plotted in Fig. 8. The dashed line represents an approximate
solution [21], in which an infinite substrate is considered, and
the currents on the PEC crosses are assumed to be the same as
in the infinite array case. Hence, the largest difference between
these two results is observed at grazing angles emphasizing the
effects of the substrate truncation.

V. CONCLUSION

The AIM for the higher order MoM solution of integral
equation is presented. Higher order hierarchical Legendre basis
functions are employed to discretize the integral equation.
Unlike the classical AIM technique, basis functions that span
more than one subdomain are treated independently in each

subdomain, thus allowing larger discretization elements and
higher basis function expansion orders. Numerical examples
for volume, surface and volume-surface integral equations are
given to illustrate the performance as well as the higher order
convergence of the method.
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